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SOME CONDITIONS CHARACTERIZING
THE “REVERSE” HARDY INEQUALITY

Abstract

In this paper, we obtain some characteristic conditions which are
equivalent with the validity of the “reverse” Hardy inequality (—oo <
g < p < 0) and compare these characterizations.

1 Introduction.

The “reverse” Hardy inequalities

(/: P (@)o() dw)% < C(/ab(/:f(t) dt) "uz) d:c)% (1.1)
(/ab fP(z)v(x) dx)i < C(/ab (/: f @) dt) qu(x) da:)é (1.2)

for f > 0 with given weight functions u,v are completely characterized for
p,q < 1 by P. R. Beesack and H. P. Heinig [1] and for p,¢ < 0, and p,q € (0,1)
by D. Prokhorov [6]. A. Kufner and K. Kuliev in [4] also obtained conditions
in the case —oco < ¢ < p < 0.

In [2], the authors have described several scales of conditions for the ”clas-
sical” Hardy inequality. The aim of this paper is to find similar scales for

and
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the “reverse” Hardy inequality. In next section, we present our main results,
namely that an equivalence theorem (see Theorem 2.1) which we will use to
give some new scales of weighted characterizations of the “reverse” weighted
inequalities (1.1) and (1.2) (see Theorem 2.2).

2 Scales of Weighted Characterizations.

We start with an equivalence theorem which we will use in the proof of the
main result (Theorem 2.2).

Theorem 2.1. Let —oco < a <b < oo. Let o, B, v; (i =1,2) be positive and
siy 0; (i =1,2) be nonnegative numbers such that

s; +6; >0. (2.1)

(T1) Let ¢ be measurable and ¥ be monotone nondecreasing functions, positive
a.e. in (a, b), and denote

O(x) := /w o(t) dt.

If we define

atsy g —B+61

Wiaia, 61,50,6) 1= 87 ) Coe T e R ) ar) e (@)

and

—B—063

b - y
Wa(z; a, 3,72, 82, 02) := ®°2(x) (/ qS(t)(I)T*l(t)\I/ 2 (t) dt)v \D92($),

then the numbers Wi(a, 3,7, 8:,0;) = sup Wilx;a, 8,7, 5i,0;) (i =
a<z<b
1,2) are equivalent. Symmetrically,

(T2) Let ¢ be measurable and U be monotone nonincreasing functions, positive
a.e. in (a, b), and denote

b
D(x) ::/ o(t) dt.
If we define
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b atsy —B+61

/Wl(a:;a,ﬂ,%,sl,ﬂl) = @751(:1:)(/ o(t)d ™™ 1(t)\I/T(t) dt)wlllfel(x),

x

Wg(m; a, 8,72, 82,02) := ®°?(x) (/ ¢(t)¢af,;2 71(0\1/7;1;92 (t) dﬁ)wlllg2 (x),

then the numbers Wi(a,ﬁ,%,siﬁi) = sup /Wi(ac;a,ﬁ,'yi7si,9i) (1 =1,2) are
again equivalent. st

In both cases, the equivalence relations can depend on «, 3, 7;, si, and 0; (i =
1,2).
PROOF. We show that W; and Wy are equivalent to the number

W(a,8) = sup W(r;a,8) = sup ®*(2)¥ 7(x).

a<x<b a<z<b

First, we consider the case when 6; > 0 (i = 1,2). Here we use Theorem 1 in
[2], and we put for the functions

(Oi—si) 4 _atB

£it) = 6@ w7 HOT (1), and Gy(x) = 7 (2)T(x), i=1,2.
Then we find

a+8

’ fi(OG, ™ (t) dt)%Gfﬁ ()

B4(‘T;’W,Oé7ﬁ) =

2

ab;+p8

RO ) dt)

Vi Bsg

|
/N 7N /N

%0@ Vi a+ﬂ5i _Bsi -3
— " ) %" E b o )4
i) (2)2 7 ()0 (a),

iCIJO‘(x)\I/*’G(:E) =CW(z;a,0), i=1,2,

I
Q

01 +a

Chme ™ 0d) " 6" @

B4(I;"}/1,0[,91)

f1+a 01-8

"o e S () dt)“qrﬁ(x)xr@l (x)

/N N

Wl(l‘;&,ﬁ,’Yl,Sl,el)

and

—fOg+a

Bafaina..00) = ( | hn6; = ) "

= WQ((E, avﬁv’)ﬁu 52, 92)
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Denote

B4(’Yi,0{,ﬁ> = sup B4<x,7laa7ﬁ)
a<z<b

and

B6—2i('7i,0¢70i) (= sup Be_gi(a:;%,a,ﬁi) 1= 1,2.
a<xz<b

According to the Theorem 1 in [2], we have that
B4(717a76) %34(71704’91) and B4(72,0{,6) %BQ(FYQaO[aGQ)'

Therefore, we obtain
Wi(a, 8,7, 51,01) = Ba(y1,a,8) = CiW(a, B)
and
Wa(z; e, 8,72, 52, 02) = Ba(v2, @, ) = CoW (e, B).

Consequently, we get the equivalence of W; and Wy. Let 6; = 0. Then
s; > 0(i = 1,2) since (2.1), and the expressions W; and Wy take the forms

Wiaia,61,50,0) = 27 @)( [ 0087 (0w 0y ar)
and

— b azsy g _B 72

Wa(aia 0,72,52,0) = 020 [ o0 " 0w 5 (0)at)

Then by the monotonicity of ¥, we get

1

Wi B s1,0) 207 @) ([ 0@ 50 ar) ")

=< n )%W(x; a,f),

o+ 81

and

= b azsy g _Bsy V2
Wa(aia 8,72,52,0) = 00 [ 008" )05 (0 de) "w2(0)
- W?(ij «, ﬂ772a 52, 82)'
From these and from the above (namely, the case 65 > 0), we get

Wi(aaﬁ7 7i7si70) > CzW(Oé,ﬁ) 1= 172
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The inverse inequality also holds since

W(aia Ao, 0) < 0 @) [ o0os 0 )" Wea ) = (2) " Wia0)

S1
and

Wafaicn, B, 52.0) < 9(o) [ CosE 0 @) "W 5) < (2) (a0,

52

Thus, we have proved part (T'1) of the theorem. Part (T2) can be proved
analogously as part (T'1), namely, let 6; > 0 (i = 1,2), and we choose for the
functions

o Bs; 1

Gi(x) = qf%(a:)\ll_l(:c) and  fi(z) = ¢(x)®% T N(x), i=1,2.

Then we find that

b
By(w;7:,8) = ( / fit) dt) " G(@) = CW (w0, 8), i=1,2,

B—01

b 1 —
BQ(x;’yhﬁael) :G?_l(x)</ fl(t)G]_’Yl (t)dt>’y :Wl(l’;a,57’}/1,81,91)

and

z £+02 Y2 —
B4(l’;")/2,ﬂ,92) :GZ_QQ(Z)(/ fQ(t)GQ’Y? (t) dt) :WQ(x;a35372782;02)7
where W (z; o, B) = & (x)¥U~A(x) and B; (i = 1,2,4) were defined in Theorem
1 in [2]. The proof of §; = 0 (i = 1,2) follows by the same ideas as the proof
of the case 0; = 0 in part (T'1). The proof is complete. O

Theorem 2.1 is an analogue and little extension of the equivalence theo-
rem in [2] (Theorem 1) and allows to give equivalent characterizations of the
“reverse” Hardy inequality (1.1) and (1.2).

Theorem 2.2. Let —co < qg<p<0 and p = ﬁ, q = qﬁ—l. Let N\;, p;, and

v; (i =1,2) be real parameters such that v; > 0 and X\;, p; € (—o0,1], and

(T’1) Denote
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and suppose
V(z)<oo and U(x)<oo for z€(a,b). (2.3)

Define

— 1—pq

Ap—1 z 2—q’—X1 b1—p V1
Ay(w3 A0, ) o= U7 (x)(/ WU T VI @ dt) v (),

1—Xg 2—p—pug po—1

b Ap—d' g vy
Aotz va) = U7 @) [ uu 95 v T g ar) v @)

Then any of the weighted inequality (1.1) holds for all measurable func-
tions f > 0 if and only if any of the quantities

Ai(Niy pisvi) = sup A (s Mg, iy vi)
a<z<b

is finite. Moreover, for the best constant C in (1.1), we have C' ~ A;,i =
1,2. Symmetrically,

(T°2) Denote
Ulz) = / Cu(t)dt Vie) = / "o (1) d.
and suppose
V(z) <oo and U(x)<oo for z € (a,b). (2.4)

Define

Ap—1 2—q' =2y

Ay hy i) = U7 (@) ( / Cuu (VIR (1) de) VI (),

—~ 1—Xg z Azfq’_l 2—p—po pg—1
Ao Ao iy 1) 1= U7 (@) (/ w(OU T OV () dr) VI )
Then any of the weighted inequality (1.2) holds for all measurable func-

tions f > 0 if and only if any of the quantities

Ai(Niy pisvi) = sup Ag(x; N, iy 4)
a<x<b

is finite. Moreover, for the best constant C in (1.2), we have C =~ ;1\1-,2' =
1,2.
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PROOF. In Theorem 2.1, we put a = —%, 8 = ;, Vi = Vi, 8§ = 1;/’\", and

0; = ‘“’Tfl (i = 1,2), and the condition (2.1) was satisfied because of (2.2).

(T"1) We choose for the functions ¢(x) = u(z), and ¥(z) = V(x). Then

Then the assertion follows from the fact that
11

A= sup W(w;—f,—/),
a<z<b q p
— — 11 1—A -1
A1(M1, p1,v1) = sup W1<90;—*7*,7V1, ; 17L), (2.5)
a<z<b p q p

( 11 ].—>\2 /JQ—].)

Ay(Ag, pia, 1) = sup Wala;——, =, v0, ——,
q p q p

a<z<b

are all equivalent to A according to Theorem 2.1, and the finiteness of A is
necessary and sufficient for the inequality (1.1) to hold. Moreover, since for
the least constant C in (1.1), we have C ~ A, it is clear that C ~ A;.

(T"2) We choose for the functions ¢(x) = u(z) and ¥(z) = V(z). Then

Then the assertion follows from the fact that

~ —~ 11
A= sup W(x;—f —),

a<z<b q’p/

—~ — 11 1—-A -1
Al()‘lv,uhyl) = sup Wl(z;_777,7V177,1aL>7 (26)
a<z<b q p q b
~ — 11 1—-A -1
Az(A2, p2,v2) = sup WQ(I‘;—*,*,,VQ, - 2,L)

a<z<b p q b

are all equivalent to A according to Theorem 2.1, and the finiteness of A is
necessary and sufficient for the inequality (1.2) to hold. Moreover, since for
the least constant C in (1.2), we have C' = E, it is clear that C' = ﬁi. The
proof is complete. O

Remark 2.3. (i) In Prokhorov [6], it is shown that the validity of the inequal-

ities
(/ab 9 () dgs)E < C(/ab (/:g(t)w(t) dt)qu(x) dx)a (2.7)
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and

(/ab () dx)% < c(/ab (/:g(t)w(t) dt) "uz) dx)% (2.8)

are equivalent with the finiteness of the expressions
1 1

Ap = sup (/:u(t) dt)q(/;w”’(t) a)

a<x<b

Al = aitigb(/:u(t) dt)_% (/b w? (1) dt)_i,

x

and

respectively. Since Ap and A% coincide with the A and A from (2.5) and
(2.6), respectively, Prokhorov’s results follow from Theorem 2.2. Inequalities
(2.7) and (2.8) can be obtained from (1.1) and (1.2) by replacing the function
£t) by g(t)v 7 (1).

(ii) Similarly, the results of A. Kufner & K. Kuliev [4] also follow from Theo-
rem 2.2 since their conditions of the validity of (1.1) and (1.2) read:

Ag(s) == sup (/ju(t)v”ﬂ(t) dt)_%v$%x) < 00

a<zr<b
and
b pP—s 7% 1—s
A% (s) == sup (/ u(t)V ' 1(t) dt) Ve () < oo,
a<x<b Mg
and it is

A = 44 (1,3, —é),

Ay = A, (1,5, 7%)
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