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Univerzitńı 22, 30614, Pilsen, Czech Republic. email: komil@kma.zcu.cz
G. Kulieva, Department of Mathematics, University of West Bohemia,
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SOME CONDITIONS CHARACTERIZING
THE “REVERSE” HARDY INEQUALITY

Abstract

In this paper, we obtain some characteristic conditions which are
equivalent with the validity of the “reverse” Hardy inequality (−∞ <
q ≤ p < 0) and compare these characterizations.

1 Introduction.

The “reverse” Hardy inequalities(∫ b

a

fp(x)v(x) dx
) 1

p ≤ C
(∫ b

a

(∫ x

a

f(t) dt
)q

u(x) dx
) 1

q

(1.1)

and (∫ b

a

fp(x)v(x) dx
) 1

p ≤ C
(∫ b

a

(∫ b

x

f(t) dt
)q

u(x) dx
) 1

q

(1.2)

for f ≥ 0 with given weight functions u, v are completely characterized for
p, q < 1 by P. R. Beesack and H. P. Heinig [1] and for p, q < 0, and p, q ∈ (0, 1)
by D. Prokhorov [6]. A. Kufner and K. Kuliev in [4] also obtained conditions
in the case −∞ < q ≤ p < 0.

In [2], the authors have described several scales of conditions for the ”clas-
sical” Hardy inequality. The aim of this paper is to find similar scales for
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the “reverse” Hardy inequality. In next section, we present our main results,
namely that an equivalence theorem (see Theorem 2.1) which we will use to
give some new scales of weighted characterizations of the “reverse” weighted
inequalities (1.1) and (1.2) (see Theorem 2.2).

2 Scales of Weighted Characterizations.

We start with an equivalence theorem which we will use in the proof of the
main result (Theorem 2.2).

Theorem 2.1. Let −∞ ≤ a < b ≤ ∞. Let α, β, γi (i = 1, 2) be positive and
si, θi (i = 1, 2) be nonnegative numbers such that

si + θi > 0. (2.1)

(T1) Let φ be measurable and Ψ be monotone nondecreasing functions, positive
a.e. in (a, b), and denote

Φ(x) :=
∫ x

a

φ(t) dt.

If we define

W 1(x;α, β, γ1, s1, θ1) := Φ−s1(x)
(∫ x

a

φ(t)Φ
α+s1

γ1
−1(t)Ψ

−β+θ1
γ1 (t) dt

)γ1

Ψ−θ1(x)

and

W 2(x;α, β, γ2, s2, θ2) := Φs2(x)
(∫ b

x

φ(t)Φ
α−s2

γ2
−1(t)Ψ

−β−θ2
γ2 (t) dt

)γ2

Ψθ2(x),

then the numbers W i(α, β, γi, si, θi) = sup
a<x<b

W i(x;α, β, γi, si, θi) (i =

1, 2) are equivalent. Symmetrically,

(T2) Let φ be measurable and Ψ be monotone nonincreasing functions, positive
a.e. in (a, b), and denote

Φ(x) :=
∫ b

x

φ(t) dt.

If we define
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Ŵ1(x;α, β, γ1, s1, θ1) := Φ−s1(x)
(∫ b

x

φ(t)Φ
α+s1

γ1
−1(t)Ψ

−β+θ1
γ1 (t) dt

)γ1

Ψ−θ1(x),

Ŵ2(x;α, β, γ2, s2, θ2) := Φs2(x)
(∫ x

a

φ(t)Φ
α−s2

γ2
−1(t)Ψ

−β−θ2
γ2 (t) dt

)γ2

Ψθ2(x),

then the numbers Ŵi(α, β, γi, si, θi) = sup
a<x<b

Ŵi(x;α, β, γi, si, θi) (i = 1, 2) are

again equivalent.

In both cases, the equivalence relations can depend on α, β, γi, si, and θi (i =
1, 2).

Proof. We show that W 1 and W 2 are equivalent to the number

W (α, β) = sup
a<x<b

W (x;α, β) = sup
a<x<b

Φα(x)Ψ−β(x).

First, we consider the case when θi > 0 (i = 1, 2). Here we use Theorem 1 in
[2], and we put for the functions

fi(t) = φ(t)Φ
α(θi−si)

γiθi
−1(t)Ψ−α+β

γi (t), and Gi(x) = Φ
si
θi (x)Ψ(x), i = 1, 2.

Then we find

B4(x; γi, α, β) =
(∫ x

a

fi(t)G
α+β

γi
i (t) dt

)γi

G−β
i (x)

=
(∫ x

a

φ(t)Φ
αθi+βsi

γiθi
−1(t) dt

)γi

Φ− βsi
θi (x)Ψ−β(x)

=
( γiθi

αθi + βsi)

)γi

Φα+
βsi
θi (x)Φ− βsi

θi (x)Ψ−β(x),

= CiΦα(x)Ψ−β(x) = CiW (x;α, β), i = 1, 2,

B4(x; γ1, α, θ1) =
(∫ x

a

f1(t)G
θ1+α

γ1
1 (t) dt

)γ1

G−θ1
1 (x)

=
(∫ x

a

φ(t)Φ
θ1+α

γ1
−1(t)Ψ

θ1−β
γ1 (t) dt

)γ1

Φ−s1(x)Ψ−θ1(x)

= W 1(x;α, β, γ1, s1, θ1)

and

B2(x; γ2, α, θ2) =
(∫ b

x

f2(t)G
−θ2+α

γ2
2 (t) dt

)γ2

Gθ2
2 (x)

= W 2(x;α, β, γ2, s2, θ2).
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Denote
B4(γi, α, β) := sup

a<x<b
B4(x; γi, α, β)

and
B6−2i(γi, α, θi) := sup

a<x<b
B6−2i(x; γi, α, θi) i = 1, 2.

According to the Theorem 1 in [2], we have that

B4(γ1, α, β) ≈ B4(γ1, α, θ1) and B4(γ2, α, β) ≈ B2(γ2, α, θ2).

Therefore, we obtain

W 1(α, β, γ1, s1, θ1) ≈ B4(γ1, α, β) = C1W (α, β)

and

W 2(x;α, β, γ2, s2, θ2) ≈ B4(γ2, α, β) = C2W (α, β).

Consequently, we get the equivalence of W 1 and W 2. Let θi = 0. Then

si > 0 (i = 1, 2) since (2.1), and the expressions W 1 and W 2 take the forms

W 1(x;α, β, γ1, s1, 0) = Φ−s1(x)
(∫ x

a

φ(t)Φ
α+s1

γ1
−1(t)Ψ− β

γ1 (t) dt
)γ1

and

W 2(x;α, β, γ2, s2, 0) = Φs2(x)
(∫ b

x

φ(t)Φ
α−s2

γ2
−1(t)Ψ− β

γ2 (t) dt
)γ2

.

Then by the monotonicity of Ψ, we get

W 1(x;α, β, γ1, s1, 0) ≥Φ−s1(x)
(∫ x

a

φ(t)Φ
α+s1

γ1
−1(t) dt

)γ1

Ψ−β(x)

=
( γ1

α + s1

)γ1

W (x;α, β),

and

W 2(x;α, β, γ2, s2, 0) ≥ Φs2(x)
(∫ b

x

φ(t)Φ
α−s2

γ2
−1(t)Ψ− β+s2

γ2 (t) dt
)γ2

Ψs2(x)

= W 2(x;α, β, γ2, s2, s2).

From these and from the above (namely, the case θ2 > 0), we get

W i(α, β, γi, si, 0) ≥ CiW (α, β) i = 1, 2.
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The inverse inequality also holds since

W 1(x;α, β, γ1, s1, 0) ≤ Φ−s1(x)
(∫ x

a

φ(t)Φ
s1
γ1

−1(t) dt
)γ1

W (α, β) =
(γ1

s1

)γ1

W (α, β)

and

W 2(x;α, β, γ2, s2, 0) ≤ Φs2(x)
(∫ b

x

φ(t)Φ− s2
γ2

−1(t) dt
)γ2

W (α, β) ≤
(γ2

s2

)γ2

W (α, β).

Thus, we have proved part (T1) of the theorem. Part (T2) can be proved
analogously as part (T1), namely, let θi > 0 (i = 1, 2), and we choose for the
functions

Gi(x) = Φ− si
θi (x)Ψ−1(x) and fi(x) = φ(x)Φ

α
γi

+
βsi
γiθi

−1(x), i = 1, 2.

Then we find that

B1(x; γi, β) =
(∫ b

x

fi(t) dt
)γi

Gβ
i (x) = CiŴ (x;α, β), i = 1, 2,

B2(x; γ1, β, θ1) =Gθ1
1 (x)

(∫ b

x

f1(t)G
β−θ1

γ1
1 (t) dt

)γ1

= Ŵ1(x;α, β, γ1, s1, θ1)

and

B4(x; γ2, β, θ2) = G−θ2
2 (x)

(∫ x

a

f2(t)G
β+θ2

γ2
2 (t) dt

)γ2

= Ŵ2(x;α, β, γ2, s2, θ2),

where Ŵ (x;α, β) = Φα(x)Ψ−β(x) and Bi (i = 1, 2, 4) were defined in Theorem
1 in [2]. The proof of θi = 0 (i = 1, 2) follows by the same ideas as the proof
of the case θi = 0 in part (T1). The proof is complete.

Theorem 2.1 is an analogue and little extension of the equivalence theo-
rem in [2] (Theorem 1) and allows to give equivalent characterizations of the
“reverse” Hardy inequality (1.1) and (1.2).

Theorem 2.2. Let −∞ < q ≤ p < 0 and p′ = p
p−1 , q′ = q

q−1 . Let λi, µi, and
νi (i = 1, 2) be real parameters such that νi > 0 and λi, µi ∈ (−∞, 1], and

λi + µi < 2. (2.2)

(T’1) Denote

U(x) :=
∫ x

a

u(t) dt, V (x) :=
∫ x

a

v1−p′(t) dt,
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and suppose

V (x) <∞ and U(x) <∞ for x ∈ (a, b). (2.3)

Define

A1(x;λ1, µ1, ν1) := U
λ1−1

q′ (x)
(∫ x

a

u(t)U
2−q′−λ1

q′ν1
−1(t)V

µ1−p
pν1 (t) dt

)ν1

V
1−µ1

p (x),

A2(x;λ2, µ2, ν2) := U
1−λ2

q′ (x)
(∫ b

x

u(t)U
λ2−q′

q′ν2
−1(t)V

2−p−µ2
pν2 (t) dt

)ν2

V
µ2−1

p (x).

Then any of the weighted inequality (1.1) holds for all measurable func-
tions f ≥ 0 if and only if any of the quantities

Ai(λi, µi, νi) = sup
a<x<b

Ai(x;λi, µi, νi)

is finite. Moreover, for the best constant C in (1.1), we have C ≈ Ai, i =
1, 2. Symmetrically,

(T’2) Denote

U(x) :=
∫ b

x

u(t) dt, V (x) :=
∫ b

x

v1−p′(t) dt,

and suppose

V (x) <∞ and U(x) <∞ for x ∈ (a, b). (2.4)

Define

Â1(x;λ1, µ1, ν1) := U
λ1−1

q′ (x)
(∫ b

x

u(t)U
2−q′−λ1

q′ν1
−1(t)V

µ1−p
pν1 (t) dt

)ν1

V
1−µ1

p (x),

Â2(x;λ2, µ2, ν2) := U
1−λ2

q′ (x)
(∫ x

a

u(t)U
λ2−q′

q′ν2
−1(t)V

2−p−µ2
pν2 (t) dt

)ν2

V
µ2−1

p (x).

Then any of the weighted inequality (1.2) holds for all measurable func-
tions f ≥ 0 if and only if any of the quantities

Âi(λi, µi, νi) = sup
a<x<b

Âi(x;λi, µi, νi)

is finite. Moreover, for the best constant C in (1.2), we have C ≈ Âi, i =
1, 2.
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Proof. In Theorem 2.1, we put α = − 1
q , β = 1

p′ , γi = νi, si = 1−λi

q′ , and
θi = µi−1

p (i = 1, 2), and the condition (2.1) was satisfied because of (2.2).

(T ′1) We choose for the functions φ(x) = u(x), and Ψ(x) = V (x). Then

Φ(x) = U(x) =
∫ x

a

u(t) dt.

Then the assertion follows from the fact that

A = sup
a<x<b

W (x;−1
q
,

1
p′

),

A1(λ1, µ1, ν1) = sup
a<x<b

W 1

(
x;−1

q
,

1
p′

, ν1,
1− λ1

q′
,
µ1 − 1

p

)
,

A2(λ2, µ2, ν2) = sup
a<x<b

W 2

(
x;−1

q
,

1
p′

, ν2,
1− λ2

q′
,
µ2 − 1

p

) (2.5)

are all equivalent to A according to Theorem 2.1, and the finiteness of A is
necessary and sufficient for the inequality (1.1) to hold. Moreover, since for
the least constant C in (1.1), we have C ≈ A, it is clear that C ≈ Ai.
(T ′2) We choose for the functions φ(x) = u(x) and Ψ(x) = V (x). Then

Φ(x) = U(x) =
∫ b

x

u(t) dt.

Then the assertion follows from the fact that

Â = sup
a<x<b

Ŵ
(
x;−1

q
,

1
p′

)
,

Â1(λ1, µ1, ν1) = sup
a<x<b

Ŵ1

(
x;−1

q
,

1
p′

, ν1,
1− λ1

q′
,
µ1 − 1

p

)
,

Â2(λ2, µ2, ν2) = sup
a<x<b

Ŵ2

(
x;−1

q
,

1
p′

, ν2,
1− λ2

q′
,
µ2 − 1

p

) (2.6)

are all equivalent to Â according to Theorem 2.1, and the finiteness of Â is
necessary and sufficient for the inequality (1.2) to hold. Moreover, since for
the least constant C in (1.2), we have C ≈ Â, it is clear that C ≈ Âi. The
proof is complete.

Remark 2.3. (i) In Prokhorov [6], it is shown that the validity of the inequal-
ities (∫ b

a

gp(x) dx
) 1

p ≤ C
(∫ b

a

(∫ x

a

g(t)w(t) dt
)q

u(x) dx
) 1

q

(2.7)
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and (∫ b

a

gp(x) dx
) 1

p ≤ C
(∫ b

a

(∫ b

x

g(t)w(t) dt
)q

u(x) dx
) 1

q

(2.8)

are equivalent with the finiteness of the expressions

AP := sup
a<x<b

(∫ x

a

u(t) dt
)− 1

q
(∫ x

a

wp′(t) dt
)− 1

p′

and

A∗
P := sup

a<x<b

(∫ b

x

u(t) dt
)− 1

q
(∫ b

x

wp′(t) dt
)− 1

p′
,

respectively. Since AP and A∗
P coincide with the A and Â from (2.5) and

(2.6), respectively, Prokhorov’s results follow from Theorem 2.2. Inequalities
(2.7) and (2.8) can be obtained from (1.1) and (1.2) by replacing the function
f(t) by g(t)v−

1
p (t).

(ii) Similarly, the results of A. Kufner & K. Kuliev [4] also follow from Theo-
rem 2.2 since their conditions of the validity of (1.1) and (1.2) read:

AK(s) := sup
a<x<b

(∫ x

a

u(t)V
p−s

p q(t) dt
)− 1

q

V
1−s

p q(x) <∞

and

A∗
K(s) := sup

a<x<b

(∫ b

x

u(t)V
p−s

p q(t) dt
)− 1

q

V
1−s

p q(x) <∞,

and it is

AK = A1

(
1, s,−1

q

)
,

A∗
K = Â1

(
1, s,−1

q

)
.
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