Gabriel Nagy, Department of Mathematics, Kansas State University, Manhattan, KS 66506, U.S.A. email: nagy@math.ksu.edu

A FUNCTIONAL ANALYSIS POINT OF VIEW ON THE ARZELA-ASCOLI THEOREM

Abstract

We discuss the Arzela-Ascoli pre-compactness Theorem from the point of view of Functional Analysis, using compactness in ℓ^{∞} and its dual

The Arzela-Ascoli Theorem is a very important technical result, used in many branches of mathematics. Aside from its numerous applications to Partial Differential Equations, the Arzela-Ascoli Theorem is also used as a tool in obtaining Functional Analysis results, such as the compactness for duals of compact operators, as presented for example [1]. The purpose of this note is to offer a new perspective on the Arzela-Ascoli Theorem based on a functional analytic proof.

The theorem of Arzela and Ascoli deals with (relative) compactness in the Banach space C(K) of complex valued continuous functions on a compact Hausdorff space K. One helpful characterization of pre-compactness for sets in a complete metric space is the following well-known criterion, which we state without proof.

Proposition 1. Let (\mathcal{Y}, d) be a complete metric space. For a subset $\mathcal{M} \subset \mathcal{Y}$, the following are equivalent:

- (i) \mathcal{M} is relatively compact in \mathcal{Y} ; i.e., its closure $\overline{\mathcal{M}}$ in \mathcal{Y} is compact;
- (ii) \mathcal{M} contains no infinite subsets \mathcal{T} , satisfying

$$\inf \left\{ d(x,y) : x, y \in \mathcal{T}, \ x \neq y \right\} > 0.$$

Key Words: Self-commutator, AW*-algebras, quasitrace Mathematical Reviews subject classification: Primary: 46L35; Secondary: 46L05 Received by the editors January 4, 2007 Communicated by: Alexander Olevskii 584 Gabriel Nagy

Proposition 2. Let \mathcal{X} be a normed vector space, let $\mathcal{S} \subset \mathcal{X}$ be a compact subset, and let \mathcal{B} be the unit ball in \mathcal{X}^* —the (topological) dual of \mathcal{X} —equipped with the w^* -topology. If we consider the Banach algebra $\mathcal{A} = C(\mathcal{S})$, equipped with the uniform topology, then the restriction map $\Theta : (\mathcal{B}, w^*) \ni \phi \longmapsto \phi \big|_{\mathcal{S}} \in (\mathcal{A}, \|.\|)$ is continuous. In particular, the set $\Theta(\mathcal{B})$ is compact in \mathcal{A} .

PROOF. To prove continuity, we start with a net $(\phi_{\lambda})_{\lambda \in \Lambda}$ in \mathcal{B} , that converges to some $\phi \in \mathcal{B}$ in the w^* -topology, and let us show that the net $(\phi_{\lambda}|_{\mathcal{S}})_{\lambda \in \Lambda}$ converges to $\phi|_{\mathcal{S}}$ uniformly on \mathcal{S} . Fix some $\varepsilon > 0$, and (use compactness of \mathcal{S}) choose points $s_1, \ldots, s_n \in \mathcal{S}$, such that

(*) for every $s \in \mathcal{S}$, there exists $k \in \{1, ..., n\}$, with $||s - s_k|| < \varepsilon/3$.

Using the condition $\phi_{\lambda} \xrightarrow{w^*} \phi$, there exists $\lambda_{\varepsilon} \in \Lambda$, such that

$$|\phi_{\lambda}(s_k) - \phi(s_k)| < \varepsilon/3, \ \forall \ \lambda \ge \lambda_{\varepsilon}, \ k \in \{1, \dots, n\}.$$
 (1)

Now we are done, since if we start with some arbitrary $s \in \mathcal{S}$, and we choose $k \in \{1, ..., n\}$, such that $||s - s_k|| < \varepsilon/3$, then using (1) we get

$$\begin{aligned} |\phi_{\lambda}(s) - \phi(s)| &\leq |\phi_{\lambda}(s) - \phi_{\lambda}(s_{k})| + |\phi_{\lambda}(s_{k}) - \phi(s_{k})| + |\phi(s_{k}) - \phi(s)| \\ &\leq ||\phi_{\lambda}|| \cdot ||s - s_{k}|| + |\phi_{\lambda}(s_{k}) - \phi(s_{k})| + ||\phi|| \cdot ||s - s_{k}|| \\ &\leq 2||s - s_{k}|| + |\phi_{\lambda}(s_{k}) - \phi(s_{k})| \leq \varepsilon, \ \forall \lambda \geq \lambda_{\varepsilon}. \end{aligned}$$

Having proven the continuity of Θ , the second assertion follows from Alaoglu's Theorem (which states that \mathcal{B} is compact in the w^* -topology).

Theorem (Arzela-Ascoli). Let K be a compact Hausdorff space, and let $\mathcal{M} \subset C(K)$ be a set which is

- pointwise bounded: $\sup\{|f(p)|: f \in \mathcal{M}\} < \infty, \forall p \in K;$
- equicontinuous: for every $p \in K$ and $\varepsilon > 0$, there exists a neighborhood $N_{p,\varepsilon}$ of p in K, such that $\sup_{f \in \mathcal{M}} |f(q) f(p)| \le \varepsilon, \forall q \in N_{p,\varepsilon}$.

Then \mathcal{M} is relatively compact in C(K) in the uniform topology.

PROOF. The main observation is that, using pointwise boundedness, any set $\mathcal{T} \subset \mathcal{M}$ gives rise to a map

$$\Phi_{\mathcal{T}}: K \ni p \longmapsto [f(p)]_{f \in \mathcal{T}} \in \ell^{\infty}(\mathcal{T}).$$

(Here $\ell^{\infty}(\mathcal{T})$ denotes the Banach space of all bounded functions from \mathcal{T} to \mathbb{C} .) Furthermore, by equicontinuity the map $\Phi_{\mathcal{T}}$ is in fact continuous, when $\ell^{\infty}(\mathcal{T})$ is equipped with the norm topology. Since K is compact, so is the set

$$S_{\mathcal{T}} = \Phi_{\mathcal{T}}(K) \subset \ell^{\infty}(\mathcal{T}).$$

We are going to argue by contradiction (see Proposition 1), assuming the existence of some $\rho > 0$, and of an infinite set $\mathcal{T} \subset \mathcal{M}$, such that

$$||f - g|| > \rho, \ \forall f, g \in \mathcal{T}, \ f \neq g. \tag{2}$$

Consider now the unit ball \mathcal{B} in the dual space $\ell^{\infty}(\mathcal{T})^*$, and use Proposition 2 to conclude that the set

$$\Theta_{\mathcal{T}} = \left\{ \phi \big|_{\mathcal{S}_{\mathcal{T}}} : \phi \in \mathcal{B} \right\} \subset C(\mathcal{S}_{\mathcal{T}})$$

is compact in $C(\mathcal{S}_{\mathcal{T}})$ in the norm topology. Consider now the coordinate maps $e_f: \ell^{\infty}(\mathcal{T}) \to \mathbb{C}, f \in \mathcal{T}$, and their restrictions $\theta_f = e_f|_{\mathcal{S}_{\mathcal{T}}} \in C(\mathcal{S}_{\mathcal{T}})$, which satisfy

$$\theta_f(\Phi_{\mathcal{T}}(p)) = f(p), \ \forall p \in K, f \in \mathcal{T}.$$
 (3)

Now, if we start with $f, g \in \mathcal{T}$, $f \neq g$, then using (2) there exists $p \in K$, such that $|f(p) - g(p)| > \rho$, so by (3) we also get

$$\left|\theta_f(\Phi_{\mathcal{T}}(p)) - \theta_g(\Phi_{\mathcal{T}}(p))\right| > \rho.$$

This way we have shown that

$$\|\theta_f - \theta_g\|_{C(\mathcal{S}_{\tau})} > \rho, \ \forall f, g \in \mathcal{T}, f \neq g,$$

and therefore the set $\Theta_{\mathcal{T}}$, which contains all the θ_f 's, cannot be compact in the norm topology.

References

[1] W. Rudin, Functional Analysis, McGraw-Hill, Springer-Verlag, New York, 1973