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ON THE JOHN-STROMBERG
CHARACTERIZATION OF BMO FOR
NONDOUBLING MEASURES

Abstract

A well known result proved by F. John for 0 < A < 1/2 and by
J.-O. Stromberg for A = 1/2 states that

| fll Barow) =< sgpiréginf{a >0:wf{z e |f(z)—cl>a} < Iw(@)}

for any measure w satisfying the doubling condition. In this note we
extend this result to all absolutely continuous measures. In particular,
we show that Strémberg’s “1/2-phenomenon” still holds in the nondou-
bling case. An important role in our analysis is played by a weighted
rearrangement inequality, relating any measurable function and its John-
Stromberg maximal function. This inequality was proved earlier by the
author in the doubling case; here we show that actually it holds for all
weights. Also we refine a result due to B. Jawerth and A. Torchinsky,
concerning pointwise estimates for the John-Stromberg maximal func-
tion.

1 Introduction

Let w be a weight; that is, non-negative, locally integrable function on R™.
Given a measurable set F, let w(E) = [pw(x)dz. A weight (or measure) w
is doubling if there exists a constant ¢ such that w(2Q) < cw(Q) for all cubes
@ C R™. Throughout this work we shall only consider open cubes with sides
parallel to the coordinate axes.

We say that f is the weighted non-increasing rearrangement of a mea-
surable function f with respect to w if it is non-increasing on (0, w(R™)) and
w-equimeasurable with | f]; i.e., for all « > 0,

{t € (0,w(R")): f5(t) > a}| = w{z € R" : [f(2)] > a}.
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We shall assume that the rearrangement is left-continuous. Then it is uniquely
determined and can be defined by the equality

fo(t) = sup inf |f(z)].

w(EB)= tTEE

A function f € L}, (w) is said to belong to BMO(w) if
fllsssor =5 oo [ 1560) ~ faulut) e < oo

where fg., = (w(Q))™! fQ fw is the mean value of f over Q.

It is well known that if a weight w is doubling, then any f € BMO(w)
satisfies the John-Nirenberg inequality which says that for every cube @ we
have (see [4, 7]):

((f - fQ,w)XQ):(t) < | fllBro(w) log

2Q i<

(This inequality is usually formulated in terms of the distribution function
but it will be a more convenient for us to use this equivalent “rearrangement”
form.)

F. John [3] and J.-O. Stromberg [11] showed that a very weak condition

sup inf ((f = 9Xq),, (Mw(Q)) < o0 (0 <A <1/2) (2)

equivalent to f € BMO(w); so (2) implies (1). This result was obtained in
the unweighted case but it can easily be extended to the case when w is any
doubling weight. In [11], the following so-called local sharp maximal function
was introduced (or the John-Strémberg maximal function) which naturally
connected with condition (2):

M, f(z) = sup inf ((f =~ )Xq),, (Ww(@) (0 <A <),

The John-Stromberg characterization states that for 0 < A < 1/2,

MM, fllse < B0 < ellME L flloo- 3)

Note that the left-hand side of (3) trivially holds, by Chebyshev’s inequality,
for all 0 < A < 1. The right-hand side of (3) was proved by John [3] for
0 < XA < 1/2, and a more difficult result that it also holds for A = 1/2
was proved by Stromberg [11]. A simple argument shows (see [11]) that this
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inequality fails for A > 1/2. A key ingredient in proving the right-hand side
of (3) is a somewhat stronger formulation of the John-Nirenberg inequality

2w(Q)

((f = mpw(@)Xq) () < el Mf),  fllolog O<t<w(@), (4

where my,(Q) is a weighted median value of f over Q; i.e., a, possibly
nonunique, real number such that

w{z € Q: flx) >mso(Q)} <w(@)/2

and
w{z € Q: f(z) <mu(Q)} Sw(Q)/2.

In a recent work [6], it is shown that actually the John-Nirenberg inequal-
ity (1) holds for any (not necessarily doubling) weight w and the corresponding
constant ¢ in (1) depends only on n. A natural question arises whether the
John-Stromberg characterization of BMO still holds for nondoubling mea-
sures. A closely related question is whether or not the “l/2-phenomenon”
expressed in (4) holds in the general nondoubling case. It is known, for ex-
ample, that for BM O defined in terms of local polynomial approximation the
corresponding John-Strémberg characterization fails when A = 1/2 (see [10]).

In this paper, using a covering argument presented in [6], we extend to
nondoubling weights a weighted rearrangement inequality proved in [5] only
in the doubling case. More precisely, we get the following theorem.

Theorem 1.1. Let w be any weight. Then for any measurable function f and
each cube Q C R™ we have

(FX)5 () < 2((MF L F)XG),(20) + (fX0)5(28) (0 <t < Nw(Q)),  (5)
where a constant A\, depends only on n.

It follows easily from this theorem that the nondoubling John-Stromberg
characterization holds for A < \,,. Next, combining geometric arguments
from [6] and [11], we show that [|M{ [ < cal M)y, [loo, which gives a
positive answer to our question.

Theorem 1.2. Inequality (4) holds for any weight w with a constant ¢ de-
pending only on n.

To state our next result, we recall that the weighted Hardy-Littlewood and
Fefferman-Stein maximal functions are defined respectively by

1
M. f(w) = s oo /Q F@)lw(y) dy
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and

#xzsui — w .
) = s s | 10~ fauletw) dy

In [2], a more precise result than (3) was obtained for any doubling weight w
and A\ < A\(w,n); namely, for any f € Li (w) and all x € R™,

loc
exe Mo (M f) (@) < fH(2) < coMu (M f)(@) (0 <A < Aw,n)).  (6)

(This was proved only in the unweighted case but the proof easily works for
any doubling weight.) Clearly, (6) implies (3) for A < A(w,n). However, the
method of proof shows that A(w, n) is essentially smaller than 1/2 even in the
case when w is Lebesgue measure. We will present a different proof of (6)
which yields a sharp bound for A; namely, (6) holds for all A <1/2.

Theorem 1.3. Let w satisfy the doubling condition. Then for any f € L}, .(w)
and all x € R"

MM, (@) < [ (@) < ML (M, f)(@).

We do not know whether this theorem holds for nondoubling weights.

2 Preliminaries

We will use the following covering lemma proved in [6].

Lemma 2.1. Let E be a subset of Q, and suppose that w(E) < pw(Q) for
0 < p < 1. Then there exists a sequence {Q;} of cubes contained in Q such
that:

(1) w(Qi N E) = pw(Qi);

By,

(i1) UQi = U U Q;, where each of the family {Q;}icr, is formed by
i k=1i€EF)
pairwise disjoint cubes and a constant B, depends only on n; in other
words, the family {Q;} is almost disjoint with constant By,;

(#ii) E' C U;Q;, where E' is the set of w-density points of E.

We now make some remarks about the median value my,,(Q). It is easy to
see, by the definition of the rearrangement, that [my ., (Q)| < (fXQ)z (w(Q)/2).
Moreover, when f is a non-negative function, one can take

myrw(Q) = (fXq), (w(@)/2).
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Next, it is clear that my ., (Q ) —c= mf cw(Q) for any constant ¢, and thus,
Imsw(Q) —cl < ((f —c¢ XQ) (w(Q)/2), which in turn gives

(f = mpul@)%0), ((Q)) < 20t ((F = NQ) (@) (7

for all A < 1/2.

Proposition 2.2. Let f > 0 and let {Q-} be a family of cubes, containing a
cube Q, such that Q. C Q5 when ¢ < 6 and Q. — Q ase — 0. Then

1ir§1_§(1)1p|(fXQ)Z(w(Q)/2) — (fXq.), (@(Qe)/2)] < 2 inf Ml/zwf(a?)-

PROOF. By the above mentioned properties of the median value,

1(£XQ) " (w(@Q)/2) — (£Xq.). (w(Q:)/2)
1 = (X)L («(@/2))Xa.) (w(Q0)/2)

) )X
! = (%)L ((@)/2))Xa.)_(«(Q)/2).
Since | | | [f] implies ()5 (1) | £5(t) (see [1, p
1irsn_§(1)1p|(fXQ)Z(w(Q)/2) = (Xq.), (w(Q:)/2)]

< (- (@)L (@(@/2) )xa) (w(@2).

Now applying (7) completes the proof. O

. 41]), we get

3 Proofs of the Main Results

3.1 A Weighted Rearrangement Inequality.

Here we prove Theorem 1.1, and its corollary, the nondoubling John-Strémberg
characterization for A < \,,.

PROOF OF THEOREM 1.1. The proof follows the same lines as the one of [5,
Theorem 3.1], although with some modifications. It is easy to see that for any
constant c,

< if (If(@) = e +1/(@)]) < ((f = el + /) X)5(w(@)
< ((f = oXQ). (w(@)) + (FXQ) - (1 = Nw(@)), (0< A< 1).

lc
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From this we get

(fXq),, (w(@)) <2inf((f = ¢)Xq),, (\w(Q)) + (fXe), (1 = Nw(@))
<2 inf M, (@) + (/XQ) (1 = Nw(@).

Set A\, = 1/5B,,, where B, is the constant from Lemma 2.1. Fix an ar-
bitrary cube Q. Let E be an arbitrary set from @ with w(F) = ¢. Next,
let By = {o € Q< [7(0)| > (MQ(20} and @ = {x € Q : M /() >

(M ¥ JF)Xq) (2t)}. Observe that w(Q) < 2t and w(Ey) < 2t. Applying
Lemma 2.1 to the set E and An, We get that there exists a sequence of al-
most disjoint cubes {Q;}, covering E’ and such that w(Q; N E) = A\w(Q;).

Therefore,
B,
t< Z Z Ql N E 5B Z Z

k=1i€Fy " k=1i€F),

and thus there exists a family {Q;}ier,, of pairwise disjoint cubes such that
ZieFko w(Qi) > 5t.

From {Q;}ic Fy, select a subfamily of cubes {Qi}ic Fl, each of which is not
contained in Q; that is, Q; N Q¢ # @ for any ¢ € I} . Then ZieF,go w(Q;) > 3t,
and

Jnf MY LF@) < (T LF)Xa), (21) (9)

whenever i € Fj, . We now claim that among {Qi}ieFléD there is a cube @,
such that

(FXQiy ), (1= M)w(Qig)) < (FXQ)5(21). (10)
Suppose (10) does not hold for any i € Fy . This meanb that w(Q; N Ey) >
(1 —Ap)w(Q;), and hence 3t <. ieF], w(Ql) < 2t/(1—\,), which contradicts

our choice of \,,.
Combining (8) — (10), we obtain

inf |f(z)] < inf |f(2)] < (fXq,, ). (Aw(Qiy))

z€EE z€ENQ,
<2 inf M L f(@) + (FXay, ), (1= An)e(@in)
2((MF, L )XQ),(20) + (FXQ)L(21):

Taking the upper bound over all sets E C @ with w(E) = ¢ completes the
proof. O
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Corollary 3.1. Letw be any weight. Then for any measurable function f and
each cube Q C R™,

((f = mpw(Q)XQ) () < illMi,wf“oobg@

S Tog? , (0 <t <w(Q)).

PrOOF. Applying Theorem 1.1 to f —my ., (Q), we get

((f = mypw(@)Xq),(0) < 2AMT, , flloe + ((f = mrw(@)Xo), (2), (11)

whenever 0 < t < A\,w(Q). But it follows from (7) that for t > \,w(Q),

((f = mspw(@)XQ)~ () < ((f = msw(@)XQ) " (Mw(Q)) < 2IMF _ fllo.

and so (11) holds for any ¢ > 0.
Suppose now that w(Q)/25! <t <w(Q)/2% (k =0,1,...). Iterating (11)
k times yields

20w(Q)
t )

* 2
((F =ms(@)XQ)( (8) < 2k + VIMT, LS llow < o5 IMF, o Floc log
as required. In the case k =0, (11) implies this result immediately.) O

3.2 Proof of Theorem 1.2.

In view of Corollary 3.1, to prove the theorem, it suffices to show that

IME, oo < enll M) lloo- (12)

We will need the following construction from [6]. For each z € @ and for
r > 0 satisfying r < {g, where {g denotes the sidelength of @, define @(33, T)
as a unique cube with sidelength r, containing x, contained in @ and with
center y closest to x. It is clear that if dist (x, @°) > r/2, then Q(z,r) will be
the cube centered at x.

Note that the bases {Q(x,7)}o<r<e, is a main tool in proving the covering
Lemma 2.1. The Hardy-Littlewood maximal function with respect to this
bases was considered in [8]. For our purposes it will be useful to consider the
following maximal function which controls the median values of f over cubes
from the bases {Q(z,7)}o<r<eq,-

For a measurable function f and for x € @, define the maximal function
my, f by N

mef(x) = sup (fX@(xyr))z(w(Q(x,r))/Q).

0<7'S[Q
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We mention several properties of m,, f. First of all, for any point x € @
of approximate continuity of f (see [9, p.132]) and for any € > 0 one can find

a cube @(Jc,r) and a set £ C Q(z,r) such that w(E) > w(@(m,r))/Q and
|f(z)| < |f(y)| + ¢ for all y € E. It follows from this that

1F@)] < (FXgm)s @ (@, 1))/2) +& <o flz) + ¢,

which gives
[f(@)] < mof(x) ae. (13)

The following lemma is a variant of Strémberg’s Lemma 3.6 from [11].

Lemma 3.2. Let f > 0. For 3,6 >0, let
Q:{xEQ:Mﬁ27wf(x)>ﬁ} and E={z € Q :myf(x) > d}.

Suppose that (fXQ)::(w(Q)/2) < 6 and E\Q # (0. Then there exists a sequence
of cubes {Q;} from Q, covering E \ Q, that are almost disjoint with constant
B,, such that for any Q;, 6 < (fXQi)Z(w(Qi)/Q) <6+ 28.

PROOF. For any z € E'\ Q let

*

re =sup {r € (0,{q] : (fX@(I)T))W(w(@(x,T))/Q) >4}

Note that the function ¢(r) = (fXé(w T))z(w (@(3077‘))/2) is left-continuous
since the rearrangement is. Hence, ¢(r;) > d. If v, = {g for some zy € E'\ Q,
then (fXQ):(w(Q)/2) = ¢ and we can take Q; = Q. So, this case is trivial.

Suppose that r, < £g for any z € E'\ Q. Then, using Proposition 2.2, we get

0 < (FXGr) (@ (Ql,72)) /2) <5+ 2 ot )ijz,w(f) <35+28.
S T,Tx

We now proceed as in the proof of Lemma 2.1 (cf. [6]). For any Q(z,7y)
define the rectangle R, C R™ as the unique rectangle centered at x such that
R.NQ = Q(x,r,). It is easy to see that the ratio of any two sidelengths of R,
is bounded by 2. Applying the Besicovitch Covering Theorem to the family
{R:}zep\q yields a countable collection of rectangles R;, covering £\ €2 that
are almost disjoint with constant B,,. Replacing each R; by its corresponding
cube @), we get the required sequence. O]

Lemma 3.3. For any measurable function f and each cube @,

((f = mpw(@)XQ), (Mnw(Q)) < en((Mf), ,HXa). (Aw(Q)/2).



THE JOHN-STROMBERG CHARACTERIZATION OF BMO 657

PROOF. Let 38 = (M), ,f)Xq). (Aw(Q)/2) and ¥(x) = | f(x) = msu(Q)|.
By (13), it suffices to show that

(ﬁlw)Z ()‘nw(QD < cnf. (14)

Set Q={zx e Q: M1/2 JW(x) > B}. Observe that M1/2 L) < Mﬁgwf(x)

for all x, smceMl/2w|f|<M1/2wfandM1/2w(f c) = 1/2wf Thus,

(@) Swle € Q: ME, f(a) > B} < Aw(Q)/2

For k =1,...,k,, where k, depends only on n and will be choosen later,
we consider the sets Ey = {z € Q : myv(z) > TkB}. If Ex, = 0 for some k,
then (14) holds trivially with ¢, = 7k,. If Ex \ Q = () for some k, we get
w(Er) < w(Q) < A\w(Q)/2, and so (M) (An/2 + €)w(Q)) < Tk3, which
also gives (14) with ¢, = Tk,,.

Assume now that E \ Q # () for all k = 1,...,k,. Note that, in view of
(7), (wXQ):(w(Q)) < 2. Thus, we may apply Lemma 3.2 to get cubes Q?
almost disjoint with constant B, such that

kG < (YXq,. ), (w(@F)/2) < (Tk +2)3. (15)

Set AF = {z € Q) : [v(z) — (VXq,, ). (@(QF)/2) < 26} and Ay = |, AL
It follows from (15) that the sets Ay are pairwise disjoint sets. Next, by (7),
w(Aé?) > w(Q?)/Q. Therefore,

kn

kn kn
3T @) <23 S wh) <28, S w(4y) < 2B,w(Q).
k=1 j k=1

k=1 j
Taking now k, [5B /An] + 1, we get that there exists a natural kg < kj,
such that 3 w ( ) < 2)‘ w(Q). Thus,

w(B,) < w(By, \ Q) + w( Z ) 4+ Aw(Q)/2 < Apw(Q). O

Clearly, this lemma immediately implies (12), and therefore the proof of
Theorem 1.2 is complete.

3.3 Proof of Theorem 1.3.

We prove only that f#(z) < ¢, M, (Mf’;2 ) (), since the converse inequality

can be proved exactly as in the unweighted case (see [2]). First of all, we
mention the following simple corollary of Theorem 1.1.
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Lemma 3.4. For any weight w and any f € L} (w),

loc
2 (@) < 8ML(ME _f)(). (16)

PRrROOF. Integrating (5) yields

Anw(Q) w(Q)
[ @@= [T (onmdes [ (o)
Q 0 Anw(Q)
w(@)

2AnW(Q)
<2 / (ME L F)Xa) () di +2 / (FXQ) (1) dt
0 AW/W(Q)

<2 [ M S @hole) dr + 20(Q)YQ) (@)
Thus, for any constant c,

/ (@) — foulw(@) dz <2 / (@) - clul(e) de
Q Q

§4/ Mtwf(x)w(x) dx
Q

+4w(Q)((f — Xq) ,(Auw(Q)).

Taking the infimum over all ¢, we obtain
[ 170~ faulola) o
Q
<4 /Q ME L f () (@) dr + 40(Q)inf ((f — Xq),(An(@)
<4 /Q ME L (@)e(e) do +40(@) inf M S (2
< 8/ Mfiwf(:c)w(m) dz,
Q

which proves (16). O

We now define the maximal function my ., f by
mawf(z) = sup (), ((Q). (0 <A<1),
ST

and note that Lemma 3.3 immediately implies

ME f(@) < enmi, oM, 1)(2). (17)
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Lemma 3.5. Let w satisfy the doubling condition. Then for any f € L}, (w)
and all x € R",

Mo(maof)(@) € EMuf(s) (0< A< 1),
PROOF. It follows from the definition of the rearrangement that for all a > 0,
{z:myuf(x) > a} C{x: MuX{f5ay(z) > A}
Hence, by the weak type (1, 1) property of M,

w{z :mruflz) >a} < %w{az S| f(2)] > al,

and so

Il < o (18)

Let @ be any cube containing . For all y € Q) we get

mx,wf(y)=ma><( sup (fXor)., (w(@)), sup (X)), (Aw(@ )))

Q'C3Q QC3Q’
S max (mk,w(fXZiQ)(y), m)\/cb,wf(x))

< (fXa0)(y) + SEM.F (@),

From this and (18) we obtain

/mwf )y < g7 o(Pag)lhe + EMLI )

= /\w(Q) /SQ FW)lwly >dy+7“’wa( z) < TWM (). -

Combining (16), (17) and the last lemma yields

I3 (@) <8Mu (MY, f)(@)
<8¢, M, (mAn/2,w(M1#;27wf))(x) < meM (Ml#;Q wf)($)7

and therefore the theorem is proved.

Remark 3.1. We note that our main results, namely Theorems 1.1 and 1.2
hold under a more general assumption on the measure w. As in [6, 8], we can
assume only that w(L) = 0 for every hyperplane L, orthogonal to one of the
coordinate axes.
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