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USING DETERMINACY TO INSCRIBE
COMPACT NON-σ-POROUS SETS INTO

NON-σ-POROUS PROJECTIVE SETS

Abstract

Under the assumption of projective determinacy, we show that one
can obtain non-σ-porous compact subsets for given projective non-σ-
porous sets, with respect to the regular and strong porosities for dimen-
sion zero compact metric spaces.

1 Introduction.

In Zaj́ıček’s 1987 survey on porosity and σ-porosity, the following question
was posted (Zaj́ıček [3], 4.20).

(Q) Let B be a Borel non-σ-porous subset of a metric space X. Does there
exists a closed non-σ-porous set F ⊂ B?

This question was answered positively by J. Pelant for complete metric
spaces, and (independently) by M. Zelený for compact metric spaces. They
wrote a joint paper (see Zelený-Pelant [7]) presenting a more accessible version
of Pelant’s proof, which in fact, proves the result for analytic sets. Later,
Zelený and Zaj́ıček [6] present Zelený’s non-constructive proof, in this paper
they make use of some concepts (introduced in Zaj́ıček-Zelený [4]) which allows
the theorem to be proved not just for regular porosity, but for other types of
porosities, though, not including strong porosity. In the words of Zaj́ıček, for
the strong porosity “the question remains open” (Zaj́ıček [6]). In the case of
strong porosity I do not know of any other partial answer (to this question)
than the one presented here.
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In this paper we present a different, direct method for proving Zelený’s and
Pelant’s result for dimension zero compact metric spaces (Proposition 3.1).
The method presented is based on a determinacy argument. It is because of
the nature of this argument that the proofs can be extended to obtain compact
non-σ-porous subsets for any projective non-σ-porous set (in dimension zero
compact metric spaces), under the assumption of projective determinacy of
course (Theorem 3.6). Also, by making subtle changes to the proofs of these
results (stated for the regular porosity) one can obtain the same type of results,
but for the strong porosity (Theorem 4.5). This way we give a positive partial
answer to the question just mentioned above.

2 Definitions and Lemmas.

We start this section by introducing the notions of metric porosity (This is
the regular porosity mentioned in the introduction.) and the more general
notion of abstract porosity. Then we give a characterization for compact zero
dimensional metric spaces. And finally, we will define a particular abstract
porosity called det-porosity and prove that the metric and det-porosities are
equivalent.

Definition 2.1. Given a metric space (X, d), A ⊂ X, x ∈ X and δ > 0. Let
Λ(A, x, δ) = sup{r > 0 : (∃Br(z) ⊂ Bδ(x))(Br(z) ∩A = ∅)}, and let

p(x,A) = lim sup
δ→0+

Λ(A, x, δ)
δ

where Br(z) denotes the open ball with center z and radius r.
Say that A is porous at x, if p(x,A) > 0. The set A is said to be porous

if it is porous at x for every x ∈ A. The ideal Im given by metric porosity is
the ideal σ-generated by the porous subsets of X. Finally, we say that a set
B ⊂ X is σ-porous if B ∈ Im.

Farah and Zapletal [1] generalized (for Polish spaces) the notion of porosity
to that of “abstract porosity.” Given a Polish space X, an abstract porosity is
an order preserving map porU : P(U) → B(X) (a ⊂ b ⇒ porV (a) ⊂ porV (b)),
where P(U) is the power set of U , B(X) is the set of all Borel subsets of X,
and U is a countable collection of B(X).

If porU is an abstract porosity, the U -porous sets are the sets A of the form
A ⊂ porV (a) \

⋃
a (for a ∈ U). The porosity ideal IU associated with porU is

the ideal σ-generated by the U -porous sets. As before, the σ-U -porous sets are
the elements of IU . As Farah and Zapletal pointed out, it is easy to see that
if 〈X, d〉 is a Polish space, then the metric porosity is an abstract porosity.
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From the following set of propositions we will be giving a characterization
of the compact metric spaces of dimension zero. This characterization will
be used in order to define a particular abstract porosity needed to establish
the results. The first of the propositions states a property that holds for any
compact metric space, it is given after the following basic definition.

Definition 2.2. Let (X, d) be a metric space, let ε > 0 and let x, y ∈ X. An
ε(x, y)-path is a finite subset of X of the form {x = x0, x1, . . . , xr = y} such
that for each i ∈ {0, . . . , r − 1}, d(xi, xi+1) < ε.

Proposition 2.3. Let (X, d) be a compact metric space. For each ε > 0, define
the equivalence ∼ε (in X) by: x ∼ε y if and only if there is an ε(x, y)-path.
Then, for each x ∈ X, [x]ε is clopen, and X/ ∼ε is finite.

Proof. If y ∈ [x]ε, then Bε(y) ⊂ [x]ε. On the other hand, if y is an accumula-
tion point of [x]ε, take z ∈ [x]ε such that d(z, y) < ε. Then y ∈ [z]ε = [x]ε. So
X/ ∼ε is an open covering of X of disjoint sets, but X is compact, therefore
X/ ∼ε must be finite.

Definition 2.4. Let (X, d) be a compact metric space. For each n ∈ ω define
the set Wn as the set X/ ∼1/n. That is to say, Wn = {[x]1/n : x ∈ X} where
[x]1/n is the equivalence class of x with respect to the relation ∼1/n defined
in Proposition 2.3. So, for each n ∈ ω, each class in Wn is partitioned into
finitely many classes of Wn+1.

By a topological space of dimension zero we mean a topological space
(X, τ) that has a clopen basis. This way, a metric space is dimension zero if
it has dimension zero as a topological space.

Lemma 2.5. If (X, d) is a compact dimension zero metric space, then for all
x, y ∈ X (x 6= y) there is a positive real ε such that there are no ε(x, y)-paths.

Proof. Assume the contrary. For each n ∈ ω let pn = {x = xn
0 , . . . , xn

in
= y}

be a (1/n)(x, y)-path. Since X is dimension zero, there is a clopen set A such
that y ∈ A and x /∈ A. Define P = (

⋃
n∈ω pn) ∩ Ac and P̂ = {z ∈ P : z =

xn
jn
⇒ xn

jn+1 ∈ A}. We claim that there must be a point ẑ ∈ Ac which is
an accumulation point of P̂ . Otherwise, for each z ∈ Ac, take Oz open such
that z ∈ Oz and Oz ∩ P̂ is finite. Since Ac is compact, we can extract a finite
sub-covering of Ac, which gives a contradiction. But also, ẑ should be an
accumulation point of the set {xn

jn+1 : xn
jn
∈ P̂} ⊂ A because one can always

find m ∈ ω large enough such that the pairs xm
jm+1, x

m
jm

and xm
jm

, ẑ are close
enough. Since A is also closed, we reach the contradiction, ẑ ∈ A ∩Ac.
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For each n ∈ ω, and for Wn as defined in Definition 2.4, let rn be defined
as rn = |Wn|, and let Tn

i (for i ≤ rn) denote the i-th element of Wn. (Observe
that for each n ∈ ω, rn ≤ rn+1.)

Remark 2.6. If a compact space (X, d) is dimension zero, then for each x ∈ X
there is a unique x̂ ∈ ωω such that x ∈ Tn

x̂(n) (for all n ∈ ω). For each a ∈ ωω
there is at most one x ∈ X such that x̂ = a. For each x ∈ X call x̂ the
description of x. Let X̂ be the subspace of the Baire space N formed by these
descriptions. Consider the 1-1 map x 7→ x̂ from X onto X̂. Observe that
the map is an homeomorphism. First, the map is continuous. A basic open
ball Ot := {x̂ ∈ X̂ : x̂ � m = t} (where t ∈ <ωω and m = dom(t)) in X̂,
comes from [x]1/m (with x such that x̂ ∈ Ot) under this map. Then, since X
is compact, the 1-1 continuous map x 7→ x̂ must be an homeomorphism. The
existence of this homeomorphism will often be exploited.

The next task is to define a particular ideal Id (for dimension zero compact
metric spaces). This will be the ideal σ-generated by the det-porous sets given
by the det-porosity. To define this abstract porosity for compact dimension
zero spaces (X, d), consider the countable basis V of X defined as follows.

For each k ∈ ω, let T k
i be the i-th element of Wk (i.e., the i-th ∼1/k class).

Let {B1/k2(z1), . . . B1/k2(zs)} be a finite sub-covering of {B1/k2(z) : z ∈ T k
i }

and let Rk
i = {B1/k(z1), . . . , B1/k(zs)}. This way, each z ∈ T k

i is within a
distance of 1/k2 from one of the centers zj . Finally, let Vk =

⋃
{Rk

i : i ≤ rk}
(where rk = |Wk|) and let V =

⋃
k Vk .

Define porV : P (V ) → B(X), the det-porosity of X, by x ∈ porV (a) if
and only if there is m ∈ ω, and a decreasing sequence of positive reals {δn}
converging to 0 such that for all n ∈ ω there is a ball tn in V such that:

1. tn ∈ a,

2. δn < m · rd(tn) (rd(t) denotes the radius of the ball t),

3. tn ⊂ Bδn
(x).

Let Id be the σ-ideal given by this type of porosity. We will refer to the
V -porous sets related to this type of porosity by the term det-porous sets.

The next and last property of this section states the equivalence between
the metric porosity and the det-porosity. In the proof of the results included
in the next sections we use this equivalence.

Proposition 2.7. Let (X, d) be a dimension zero compact metric space, let
Im be the ideal given by the metric porosity and let Id be the one given by the
det-porosity. Then, for all A ⊂ X, A is a porous set if and only if A is a
det-porous set. Therefore, Im = Id.
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Proof. Let A be a porous set. We show that A ⊂ porV (a) \
⋃

a, where
a = {t ∈ V : t ∩ A = ∅}. Fix x ∈ A, by definition of the metric porosity,
there is m ∈ ω and a sequence {δn} of positive reals that converges to 0 such
that limδn→0

Λ(A,x,δn)
δn

> 1/m. For all but finitely many n, there is an open
ball tn := Brn

(zn) (not necessarily in V ), such that tn is a subset of Bδn
(x),

tn ∩ A = ∅ and such that δn/m < rd(tn) ≤ Λ(A, x, δn). Re-enumerate the
sequence {δn, tn} in order to make sure that for all n ∈ ω the properties just
mentioned hold.

We show next that there is a sequence of balls t̂n ∈ V such that for each
n, t̂n ⊂ tn and limn→∞(r̂n/rn) = 1 (where r̂n = rd(t̂n) and rn = rd(tn)).
For each n, let kn ∈ ω be the least k ≥ 2 such that 1/(k − 1) ≤ rn. Let
ẑn ∈ X be such that d(zn, ẑn) ≤ 1/k2

n and such that B1/kn
(ẑn) ∈ Vkn

. (As we
pointed out during the construction of the Vk’s, this point ẑn exists.) Observe
that if we take t̂n = B1/kn

(ẑn), then t̂n ⊂ tn. If d(ẑn, y) < 1/kn, then
d(zn, y) ≤ d(zn, ẑn)+d(ẑn, y) < 1/k2

n+1/kn < 1/(kn−1). (This last inequality
is true for all k ≥ 2.) Now, since r̂n = 1/kn, and for kn ≥ 3, rn < 1/(kn − 2),

it follows that
kn − 2

kn
≤ r̂n

rn
< 1 and so it is clear that limn→∞(r̂n/rn) = 1.

The fact that limn→∞(r̂n/rn) = 1 together with limn→∞(rn/δn) ≥ 1/m,
implies that limn→∞(r̂n/δn) ≥ 1/m. So, for all but finitely many n, (r̂n/δn) >
1/2m; that is to say, for all but finitely many n, r̂n > δn/2m. Hence, this tail
of the sequence {t̂n} together with the corresponding tail of {δn} and together
with m̂ = 2m, verify that x ∈ porV (a) \

⋃
a.

For the other direction, let A ⊂ porV (b) \
⋃

b be a det-porous set. For
x ∈ A, let m, {δn} and {tn} be the witnesses of the fact that x ∈ porV (b).
Observe that tn∩A = ∅ for all n, since A ⊂ porV (b)\

⋃
b and tn ∈ b. Now, for

δ > 0 let n0 be such that 0 < δn0 < δ. Then, it clear that
Λ(A, x, δn0)

δn0

> 1/m

(because
Λ(A, x, δn0)

δn0

≥ rd(tn)
δn0

). Therefore A is porous.

3 Inscribing Compact Non-σ-Porous Sets.

In this section we present the “determinacy argument” that will allow us to
obtain the non-σ-porous compact subsets for given non-σ-porous projective
sets, for the two different types of porosities mentioned in section 1. This
argument is inspired by an example given in Farah-Zapletal [1].

Proposition 3.1. If (X, d) is a dimension zero compact metric space and let
Im be the ideal given by the metric porosity. Then every Im-positive Borel set
has an Im- positive compact subset.
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Proof. Considering the equivalence stated in Proposition 2.7, we prove the
proposition in terms of the ideal Id instead. For B ⊂ X, consider the two
player game (Eve and Adam) GB defined as follows. For her n-th move, Eve
plays the n-th step on the description of a point y in X; that is to say, she
plays the integer ŷ(n) such that y ∈ Tn

ŷ(n). Adam responds by playing pairs
〈t, k〉 such that:

• k ∈ n,

• t ∈ V̂n2 ≡def Vn2 ∪ Vn2+1 ∪ · · · ∪ V(n+1)2−1,

• t ⊂ Tn
ŷ(n).

Eve is building the description ŷ ∈ ωω of an element y in X. Adam is building a
sequence 〈ak ∈ P (V ) : k ∈ ω〉 at his n-th play, Adam is adding a finite number
of elements of ak for each k ∈ n. So for each k ∈ ω,

ak = {t ∈ V : ∃n(k ∈ n) and 〈t, k〉 was played at level n}.

Let A be the σ-det-porous set A =def

⋃
k(porV (ak) \

⋃
ak)). Then, Eve

wins if and only if y ∈ B \ A. So the payoff set of the game GB is the set
{〈ŷ, 〈ak : k ∈ ω〉〉 : y ∈ B \

⋃
k(porV (ak) \

⋃
ak)}.

The key fact of our proof is Lemma 3.3 below. In the proof of this lemma
we use the following observation.

Remark 3.2. Let a ∈ P (V ), let y ∈ porV (a) \
⋃

a and let m, {δn}, {tn}
witness this. For each n, let Nn ∈ ω be the unique N such that tn ∈ V̂N2 . For
all but finitely many n, δn < 1/Nn take n large enough such that Nn > m.
Then rd(tn) ≤ 1/(Nn)2 and δn < m · rd(tn) < Nn · rd(tn), so δn < Nn ·
1/(Nn)2 = 1/Nn.

Lemma 3.3. Let B ⊂ X. Then B ∈ Id if and only if Adam has a winning
strategy in the game GB.

Proof. ⇐). Let σ be a winning strategy for Adam. For each k ∈ ω let Bk

be the set of those y ∈ X such that if Eve plays ŷ against σ. Then Adam
(following σ) will produce ak(y) with the property y ∈ porV (ak(y)) \

⋃
ak(y).

(Observe that in this case B =
⋃

k Bk.)
We claim that for each k ∈ ω, Bk ∈ Id (and so B ∈ Id). Let bk = {t ∈

V : t ∩ Bk = ∅}. We show next that Bk ⊆ porV (bk) \
⋃

bk. Let y0 ∈ Bk.
Then y0 ∈ porV (ak(y0)) \

⋃
ak(y0), let m, {δn} and {tn} be witnesses of

this fact. Observe that for all but finitely many n, the sets tn belongs to
bk by Remark 3.2, for all but finitely many n, δn < 1/Nn, so if y ∈ tn,
then d(y0, y) < 1/Nn (since tn ⊂ Bδn

(y0) ⊂ B1/Nn
(y0)). This implies that
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for all s ≤ Nn, ŷ0(s) = ŷ(s). So, at level Nn of the game, when Eve has
played ŷ � (Nn + 1), σ will tell Adam to play tn ∈ ak(y). Now, the fact that
y ∈ tn ∈ ak(y) makes it impossible for y to be in Bk. Therefore tn∩Bk = ∅, and
so tn ∈ bk. This implies that the same witnesses of y0 ∈ porV (ak(y0))\

⋃
ak(y0)

also witness the fact that y0 ∈ porV (bk) \
⋃

bk.
⇒) Say that B ⊂

⋃
k porV (ak)\

⋃
ak. The strategy for Adam will say that

at his Nth move, Adam will play all those 〈t, k〉 such that k ∈ N , t ∈ V̂N2 ,
t ⊂ TN

ŷ(N) and t ∈ ak. That is to say, let Adam play all the legal 〈t, k〉 such
that t ∈ ak. This process produces a sequence 〈âk : k ∈ ω〉 (âk ⊂ ak) and a set
A =

⋃
k porV (âk) \

⋃
âk. The claim is that B ⊆ A; therefore it is not possible

for Eve to play in B \ A. To prove this claim, let y ∈ B, k fixed such that
y ∈ porV (ak)\

⋃
ak, and let m, {δn} and {tn} be witnesses of this. By Remark

3.2, for all but finitely many n, δn < 1/Nn. So tn ⊂ Bδn(y) ⊂ B1/Nn
(y).

Therefore, since y ∈ TNn

ŷ(Nn), B1/Nn
(y) ⊂ TNn

ŷ(Nn), so tn ⊂ TNn

ŷ(Nn). That is to
say, it is legal for Adam to play tn at level Nn. Therefore, if Adam plays
following the strategy described above when Eve plays y, it must be true that
tn ∈ âk. So the same witnesses will give that y ∈ porV (âk) \

⋃
âk ⊂ A.

To complete the proof of Proposition 3.1, it has to be observed first that
if B ⊂ X is Borel, then the payoff set for GB is also Borel. Let T be the tree
of all legal plays in the game GB and let

P = {〈ŷ, 〈ak : k ∈ ω〉〉 ∈ [T ] : y ∈ B \
⋃
k

(porV (ak) \
⋃

ak)}

be the payoff set of GB . To conclude that P is Borel, it is enough to show
that the following sets are Borel:

1. B = {〈ŷ, 〈ak : k ∈ ω〉〉 ∈ [T ] : y ∈ B},

2. Ak = {〈ŷ, 〈ak : k ∈ ω〉〉 ∈ [T ] : y ∈
⋃

ak} (for each k ∈ ω),

3. Pk = {〈ŷ, 〈ak : k ∈ ω〉〉 ∈ [T ] : y ∈ por(ak)} (for each k ∈ ω).

The set B is the pre-image of the set B ⊂ X under the map π : [T ] → X
defined by π(〈ŷ, 〈ak〉k〉) = y. This map π is the composition of the projection
〈ŷ, 〈ak〉k〉 7→ ŷ, with the homeomorphism: ŷ 7→ y. So π is continuous.

To show that Ak is Borel (for arbitrary k ∈ ω), simply observe that for
each pair of integers n, m (such that n + k < m) the set An,m

k = {〈ŷ, 〈ak〉k〉 ∈
[T ] : Tm

y(m) ⊂ ak(n)} (Here, ak(n) represents the n-th member of ak, played
by Adam at level n + k.) is open, if t = 〈ŷ, 〈ak〉k〉 ∈ An,m

k , then the set
Ot�m+1 := {t′ ∈ [T ] : t′ � m = t � m} is a subset of An,m

k . Any t′ ∈ Ot�m+1
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is such that Tm
ŷ′(m) = Tm

ŷ(m) ⊂ ak(n) = a′k(n) (m > n + k). It should be clear
also that Ak =

⋃
m>n+k

⋃
n An,m

k . If t ∈ Ak, then there exists n such that
t ∈ ak(n). By the discussions in Remark 2.6, there exists m > n+ k such that
Tm

ŷ(m) ⊂ ak(n).
Finally, the sets Pk are Borel. Simply observe that the sets Pk can be

expressed as the set of those 〈ŷ, 〈ak〉k〉 in [T ] such that

∃m∀n∃q∃s(ak(s) ⊂ Bq(y) ∧ q < min{1/n, m · rd(ak(s))}).

Now, let B be a Borel I-positive set. Since the payoff set of the game GB

is also Borel, the game is determined. But B 6∈ I; hence Eve has a winning
strategy σ. Let K be the space of all counterplays of Adam, this space is
compact as it is a finite branching tree. If Ĉ ⊂ X̂ is the image of K under σ
(That is to say, Ĉ is the set of all ŷ which are runs according to σ.), then Ĉ is
a compact subset of X̂ (because is σ is continuous). Finally, let C ⊂ X be the
image of Ĉ under the homeomorphism ŷ 7→ y. So C ⊂ X is also compact. But
also C /∈ I, as σ is still a winning strategy for Eve in the game GC . Finally,
since σ is winning for Eve in GC , we conclude C ⊂ B.

As we said in the introduction, Proposition 3.1 states a known result which
holds for any compact space and in fact is true not just for Borel, but for ana-
lytic sets. The “determinacy” nature of our proof makes it possible to extend
the result not just to analytic sets, but to projective sets (under the assump-
tion of projective determinacy). The next result by Farah and Zapletal [1]
allows the extension of Proposition 3.1 for analytic sets without losing the
“determinacy” nature of the proof.

Lemma 3.4. (Farah-Zapletal [1]) If (X, d) is a compact metric space and I
is the ideal given by the metric porosity, then every I-positive analytic set has
an I- positive Borel subset.

Corollary 3.5. If (X, d) is a dimension zero compact metric space and I is
the ideal given by the metric porosity. Then every I-positive analytic set has
an I- positive compact subset.

The last result of this section states that, under the assumption projective
determinacy, Proposition 3.1 holds for projective sets in general.

If P is a projective set, since Lemma 3.3 is stated for any set B ⊂ X, the
lemma holds for P . By assumption, the game GP is determined, and the same
argument follows, so we can state the following.

Theorem 3.6. (PD) If (X, d) is a dimension zero compact metric space and
I is the ideal given by the metric porosity. Then every I-positive projective set
has an I-positive compact subset.
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4 The Strong Porosity Case.

In this section we define the “accepted” notion of strong porosity and an equiv-
alent abstract porosity. Then, we state the corresponding results (to the pre-
vious section) for the strong porosity.

These results answer positively the question stated in Zaj́ıček-Zelený [6] (in
the case of zero-dimensional compact spaces) mentioned in the introduction.
Just as in the case of the regular porosity, under projective determinacy, the
property holds for projective sets.

In Zaj́ıček [3] the definition of strong porosity says that A is strongly porous
at x if

lim sup
δ→0+

Λ(A, x, δ)
δ

≥ 1/2

(with Λ(A, x, δ) as in Definition 2.1.) Now, the lim sup defined above could be
strictly greater that 1/2 and this could happen in a way in which the “holes”
near x that make this lim sup grater that 1/2 are not really “close” to x. This
observation is made in Mena et al [2], they propose and alternative definition
of strong porosity, which I think represents better the idea of “having big
holes near a point”. The notion of strong porosity that they propose is the
following.

Definition 4.1. Given a metric space (X, d), A ⊂ X, x ∈ X and δ > 0. Let
Λ〈A, x, δ〉 = sup{r > 0 : ∃Br(z)(Br(z) ∩A = ∅) ∧ d(x, z) + r ≤ δ}, and let

p〈x,A〉 = lim sup
δ→0+

Λ〈A, x, δ〉
δ

Say that A is strongly porous at x, if x /∈ A or p〈x, A〉 = 1/2. The set A is said
to be strongly porous if it is strongly porous at x for every x ∈ A. The ideal
Is given by the strong porosity is the ideal σ-generated by the strongly porous
subsets of X. Finally, we say that a set B ⊂ X is σ-strongly porous if B ∈ IS .

Mena et al [2] give an example of a set which is strongly porous at a point
according to the old definition of Zaj́ıček [3], but it is not strongly porous at
that same point according to Definition 4.1. They also make the following
remark about this definition of strong porosity.

Remark 4.2. Let (X, d) be a metric space, A ⊂ X and x ∈ A. Then A is
strongly porous at x if and only if there are sequences {zn} ⊂ X and {rn} ⊂ R
such that:

1. limn→∞ zn = x
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2. limn→∞
rn

d(x,zn) = 1

3. Brn
(zn) ∩A = ∅.

To see that the remark holds, take a sequence {Brn(zn)} as above and
δn = 2d(x, zn), we get that d(x, zn) + rn < δn and limn→∞

rn

δn
= 1/2. On the

other hand, if A is strongly porous at x and {δn}, {Brn
(zn)} are sequences

such that Brn
(zn) ∩ A = ∅, d(x, zn) + rn < δn and limn→∞

rn

δn
= 1/2. Then,

it must be true that limn→∞
d(x, zn)

δn
= 1/2 (2rn < d(x, zn) + rn < δn).

Therefore, limn→∞
rn

d(x, zn)
= 1.

In his 2005 survey on σ-porosity [5], Zaj́ıček proposes this alternative def-
inition of strong porosity (the one just given in the previous remark) as the
suitable and natural definition of strong porosity for general metric spaces.

We use this definition of Remark 4.2 as an inspiration for the definition
of an equivalent abstract porosity which is defined on subsets of V (where V
is the countable basis defined in the previous sections). The reason for using
this alternative definition should be obvious at this point. In fact we can take
the balls Brn(zn) to be inside V (as we show in Proposition 4.3).

Define ˆporV : P (V ) → B(X), to be the d̂et-porosity of X, defined by
x ∈ ˆporV (a) if and only if there is a sequence of balls {Brn

(zn)} ⊂ V such
that:

1. for each n ∈ ω, Brn
(zn) ∈ a

2. limn→∞ zn = x

3. limn→∞
rn

d(x,zn) = 1.

Proposition 4.3. Let (X, d) be a dimension zero compact metric space, let
Is be the ideal given by the strong porosity and let Î be the one given by the
d̂et-porosity. Then, for all A ⊂ X, A is a strongly porous set if and only if A
is a d̂et-porous set. Therefore, Is = Î.

Proof. It is clear that for any a ∈ P(V ), the set A := ˆporV (a) \
⋃

a is
strongly porous: if x ∈ A and {tn} ⊂ V is a witness for this, we just have to
check that tn ∩A = ∅ (for each n), but as each tn ∈ a and A∩ (

⋃
a) = ∅, this

holds.
For the other direction, let A ⊂ X be a strongly porous set and let a =

{t ∈ V : t ∩ A = ∅}, we show next that A ⊂ ˆporV (a) \
⋃

a. Let x ∈ A and
let {tn = Brn

(zn)} be a witness for the strong porosity of A at x. As in the
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proof of Proposition 2.7, let {t̂n = Br̂n(ẑn)} ⊂ V be such that t̂n ⊂ tn and
limn→∞ r̂n/rn = 1.

We claim that {t̂n} witnesses the fact that x ∈ ˆporV (a) \
⋃

a. Since
t̂n ⊂ tn, it is clear that for each n, t̂n ∩ A = ∅ (so t̂n ∈ a). Now, re-
call that (as in the proof of Proposition 2.7) the sequence {t̂n} was chosen
such that r̂n = 1/kn and d(zn, ẑn) ≤ 1/k2

n (where kn is the least k such
that 1/(k − 1) ≤ rn), so it is also clear that limn→∞ ẑn = x. Finally,

to show that limn→∞
r̂n

d(x, ẑn)
= 1 observe that since d(zn, ẑn)/d(x, zn) ≤

(kn − 1)/k2
n, it is true that limn→∞[d(zn, ẑn)/d(x, zn)] = 0. This implies that

limn→∞[d(x, ẑn)/d(x, zn)] = 1. (d(x, zn) − d(zn, ẑn) ≤ d(x, ẑn) ≤ d(x, zn) +
d(zn, ẑn). Divide by d(x, zn) and take limits.) Therefore

lim
n→∞

[d(x, ẑn)/d(x, zn)] = 1 = lim
n→∞

[d(x, zn)/d(x, ẑn)].

From here we may conclude that

lim
n→∞

r̂n

d(x, ẑn)
= lim

n→∞

r̂n

rn
· rn

d(x, zn)
· d(x, zn)
d(x, ẑn)

= 1.

Remark 4.4. For y ∈ ˆpor(a) \
⋃

a with {Brn
(zn)} as a witness, if Nn is such

that Brn
(zn) ∈ V̂N2

n
, then for all but finitely many n, d(y, zn) < 1/(2Nn) for

otherwise, there would be infinitely many n such that
rn

d(y, zn)
≤ 2

Nn
. This

subsequence would converge to zero, which is impossible.
The proof of the next theorem follows the same steps as the proof of

Proposition 3.1. The proof of the key lemma (the one corresponding to
Lemma 3.3) uses Remark 4.4 above instead of Remark 3.2. We use the remark
twice (as before), essentially to show that if {tn = Brn

(zn)} is a witness for
y ∈ ˆporV (a) \

⋃
a, then for all but finitely many n, tn ⊂ B1/Nn

(y). If x ∈ tn,
then d(x, y) ≤ d(x, zn) + d(zn, y) ≤ 1/N2

n + 1/2Nn < 1/Nn (for Nn > 2).

Theorem 4.5. If (X, d) is a dimension zero compact metric space and Is is
the ideal given by the strong porosity. Then:

• Every Is-positive analytic set has an Is-positive compact subset.

• (PD) Every Is-positive Projective set has an Is-positive compact subset.
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