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ON NATURAL FUNCTIONS AND
LIPSCHITZ FUNCTIONS

Abstract
We give certain characterizations of the so-called natural functions
introduced by Chistyakov. We show that the set of natural functions
from [a,b] into a normed space X is small in the porosity sense in the
set of uniform Lipschitz 1 functions with the norm inherited from the
space of BV functions. The sizes of other classes of Lipschitz functions
in BV are also established.

1 Some Characterizations of Natural Functions

We use the following notation: £ C R is a non-empty bounded set; for t € E
weput B, = {se€ E|s<tland B/ ={s€ E|t< s} forabcE
(a <b)let EL = {s € E|a < s <b}; X is a metric space with metric d,
and X% is the set of all functions from F into X. If f € X, we denote by
w(f, E) =sup{d(f(t), f(s)) | t,s € E} the diameter of the image f(E), called
the oscillation of f on E. Let N={1,2,...} and let Q stand for the set of all
rationals.

Let T(E) ={T ={ti}"o CE|meN, t,;_1 <t;, i=1,...,m} be the
set of all partitions of E by finite ordered collections of points in E. For a
function f: E — X and a partition T' = {¢;}/", € T (E), we set

V(§,T) = D _d(f(t:), (i)

and we extend this definition to the entire set E by the formula
V(f,E) =sup{V(f,T) | T € T(E)}.

We call the quantity V(f, E) € [0,00] the total variation (in the sense of
Jordan) of the function f on E. If V(f, E) is finite, then we call f a function
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of bounded variation on E. We denote the set of all functions of bounded
variation on E by BV (E). Functions of the class BV (E) were considered by
V. V. Chistyakov in [1], [2] and [3]. He called a function g: E — X natural
if V(g,E®) =b—afor all a,b € E, a < b. Obviously a natural function is a
Lipschitz function and Lip(g), the smallest Lipschitz constant for g, equals 1.
Chistyakov proved the following.

Theorem 1. [1, Thm 3.1] A function f: E — X has bounded variation if
and only if there exists a mon-decreasing bounded function p: E — R and a
natural function g: o(E) — X such that f =go on E.

Let us recall some properties of variation.
Proposition 1. [1, Prop 2.1] For an arbitrary function f: E — X we have:
(V1) ift,s € E, then d(f(t), f(s)) <w(f,E) <V(f, E);
(V2) ift € E, then V(f, E) =V (f,E;)+ V(f, E});
(V8) V(f,E) = sup{V(f, EY) | a,b € E,a < b};
(V4) if ACBCE, thenT(A) CT(B) and V(f,A) <V(f,B).
Let us start with the following simple characterization.
Proposition 2. Let f: E — X. The following conditions are equivalent:
(a) f is a natural function;
(b) V(f,E;)=x+c, v € E, where c= —inf(E);

(c) f is a Lipschitz function such that Lip(f) <1 and V(f, E) = sup(E) —
inf(E).

PROOF. (a) = (b) By property (V3) in Proposition 1 and (a) we obtain

V(f,E) =sup{V(f,E®) | a,b € E,a < b}
=sup{(b—a) | a,b € E,a <b} =sup(E) — inf(E).

So we have V(f,E; ) =« — inf(F) = x + ¢, where ¢ = —inf(F).
(b) = (c) By (b) we get V(f, E) = sup(F) — inf(E). We will show that f is a

Lipschitz function such that Lip(f) < 1. Let 2,y € E, z <y. By (V1), (V2)
in Proposition 1 and (b), we have

d(f(;l:),f(y))SV(f,E;{):V(f,E;)—V(f,E;):y—|—c—x—c:y—x
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Consequently, f is a Lipschitz function and Lip(f) < 1.

(¢) = (a) Suppose that f is not a natural function. Then there exist z,y €
E, z <y, such that V(f, EY) < y — z. Thus by condition (V2) we have

sup(E) — inf(E) =V (f,E) = V(. E,; ) + V(f, E}) + V(f, E)
<z —inf(E) + V(f,EY) +sup(E) — y
<z —inf(E) +y—z+sup(E) —y
=sup(F) — inf(FE).

This contradiction completes the proof. O

We put VP f = V(f, [a,b]). The set of all real-valued absolutely continuous
functions on [a, b] will be written as AC.

Corollary 1. Let f: [a,b] — R. Then f is a natural function if and only if
f€AC and |f'(x)] =1 a.e. on [a,b].

PROOF. We assume that f is a natural function. Then f € AC and by [4,
Thm 8.14] we have (V*f) = |f'(z)| a.e. on [a,b]. From this and Proposition
2 it follows that |f'(z)] = (VZf) = (x —a) = 1 ae. on [a,b]. Now, we
assume that f € AC and |f'(z)| = 1 a.e. on [a,b]. By [4, Thm 8.14] we get
Vrif= f; |f'| = « — a. Applying Proposition 2 completes the proof. O

From now on, we assume that X # {0} is a normed space over R, with the
norm | - |.

Theorem 2. Let f: [a,b] — X be a function with 0 < V2f < oo. The
following conditions are equivalent:

(a) f/a is a natural function, where a = V2 f /(b — a);

(b) f is continuous at points a and b, and there exists a set D dense in [a, D]
such that

(Vt,s,p,q € D) (t <s, p<gq, s—tgq_p):>%5f§‘/;)qf;

(c) (Vt,s,p,q€[ab]) (t<s, p<q, s—t=q—p) =V f=Vif

PRrROOF. (a) = (b) This results from the definition of a natural function and
(V4) in Proposition 1.

(b) = (c) First, we will show that f is continuous on [a, b]. Assume to the
contrary that zo € (a,b) is a discontinuity point of f. (By assumption (b) we
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know that f is continuous at points a and b.) Let z),,z, € D be such that
xl, < xg <z for all n € N and z!, — xg, x!] — x. Since f is discontinuous
at xg, we have sup, w(f,[z,,z']) = & > 0. Thus from Proposition 1 (V1) it
follows that V;,iif > ¢ for all n. On the other hand, since f € BV([a,b])
and D is dense in [a, b], there exist points x1,z2 € D such that x; < x5 and
V2 f < e. Choosing n such that x;, —z;, <z — 21, we obtain a contradiction
to (b). From now on f is assumed continuous on [a, b].

Let t,s,p,q € (a,b) and t < s, p < q, s —t = ¢ — p. Pick numbers
ttr sl st ol ol g, g in D so that

n»'nr n) Tn’

ty<t<ty<s, <s<sp p,<p<p,<q,<q<qy,

= “n
! " / 1 / !/ ! 1
by =t 6y =t 8y — 8, 8y =8, Dy =D, P =Py G — G5 Gy — G-

We may additionally assume that all sequences {t,'}, ..., {g,”} are monotonic
and that we have s,,” —t/, > ¢/, —pll > 0 and ¢/ —p,, > s/, —t!" > 0 for all n.
By (b), it follows that qu,élf < V;Ziwlf and VZ,;’f < V;,ff. Since f is continuous,
we have VIf <V f < VJIf. Consequently, Vf =V]If.

Let t,s,p,q € [a,b] and t < 5, p < ¢q, s —t = q —p. Choose € € (0,s — t).
By the first part of the proof we have V{r; f= qu;%% f- Since f is continuous,
taking € — 0 we obtain V° f = V1 f.

(c) = (a) Put a = Vf/(b—a). Let n be a positive integer and let ) =

n

Tk—1 Tk—1

a+k(b—a)/nfork=0,...,n. SinceZVr’“ f=Vifand V2 f=Vil f
1

k=
for any k,j € {1,...,n}, we have V;’* f = a(b—a)/n = a(xy — x3_1) for
every k. Observe that the function ®(z) = V*f is continuous on [a,b]. Let
x € [a,b), € > 0. Choose a positive integer n such that a(b—a)/n < e. Pick
Zg—1, 2 such that x € [xx_1,xy). For each t € [z, x) we have
(1) — Dla)| = Vif —VEf = VIf < VI f=a(b—a)/n <e.

Hence f is continuous from the right at x. Analogously, f is continuous from
the left at each point © € (a,b]. Theset D = {a+k(b—a)/n |n € Nk €
{0,...,n}} is dense in [a,b]. Let x € [a,b] and pick a sequence ), € D,
kE €N, 2 — z. We have ®(z) = limy_,o a(zr — a) = a(z — a). Hence
VE(f/a) = (VZf)/a = x — a. By Proposition 2 we deduce that f/a is a
natural function. O

Remarks. 1. The assumption E = [a,b] is essential in Theorem 2. Indeed,
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let E =1{0,1,3}, and let a function f: F — R be given by

0 ifz=0
flz)=41 ifz=1
4 if x = 3.

Then f satisfies the assumptions (b) and (c) in Theorem 2, but f/« is not a
natural function for any o > 0.

2. We may write “for every set D dense in [a,b]” instead of “there exists
a set D dense in [a,b]” in Theorem 2(b).

3. The assumption that f is continuous at points a and b is essential in
Theorem 2(b). Indeed, let f: [1,v/2] — R be given by

Ja ifze1,V2)
f(w){l ifz =2

and put D = QN [1,v/2]. Then f/a is not a natural function (f is not
continuous) but the final condition in the statement (b) is satisfied.

4. We can replace the statement (b) in Theorem 2 by the following. There
exists a set D dense in [a, b] with a,b € D and such that

(Vt,s,p,qGD) (t<53p<% S*tSQ7p):>V;ISf§VZ?f

2 Porosity Sizes of Some Classes of Lipschitz Functions

Recall the definition of a strongly porous set [5]. Let P be a metric space. The
open ball with center z € P and radius r > 0 will be denoted by B(z,r). Let
M C P,z € Pand R > 0. Then we denote by v(x, R, M) the supremum of the
set of all » > 0 for which there exists z € P such that B(z,r) C B(z,R)\ M.

y(z, R, M)

The number p(M,z) = 2 - limsupp_, g+ is called the porosity of

M at x. The set M is called porous (strongly porous) at x if p(M,z) > 0
(p(M,z) =1). The set M is (strongly) porous if it is (strongly) porous at each
of its points. Obviously, a porous set is nowhere dense.

If one puts ||f|| = V2f + |f(a)| for f: [a,b] — X, f € BV([a,b]), then
I - II: BV(la,b]) — [0,00) is a norm on BV ([a,b]). In fact BV([a,b]) is a
Banach space provided X is a Banach space [3]. We will consider various
subsets of the space BV ([a,b]). We will study their sizes in the language of
porosity or Baire category.

In the sequel, we denote the set consisting of all natural functions from [a, b]
to X by N. We write aN = {f: [a,b] — X | (f/a) € N'} for &« > 0. Functions
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from N will be called a-natural on [a,b]. We denote the set consisting of all
Lipschitz functions from [a,b] to X, with Lip(f) = « by Lip(a), and the
set consisting of all Lipschitz functions by Lip. We say that f: [a,b] — X
satisfies the uniform Lipschitz condition with constant o if Lip(f|i..q)) = a for
all ¢,d € [a,b],c < d. We denote by u-Lip(a) the set of all functions which
satisfy the uniform Lipschitz condition with constant c.

Lemma 1. If a > 0, then aN C u-Lip(a).
PROOF. Let f € aN and o > 0. By (V1) in Proposition 1 we have
[f@&) = f(9) <Vef=a(s—t) forallt,sea,b],t<s.

Hence Lip(f) < a.
Let ¢,d € [a,b] and ¢ < d. For a partition T = {t;}, of [¢,d], ¢ < tp <
<o <ty < d, we have

m

V(f,T) :Z |f(t:) = f(tim1)| < Zﬁip(ﬂ[c,d])(ti —ti—1)

i=1
<Lip(flie,a))(d = ¢) < ald = c).
Hence
a(d—c) = VI < Lip(fle.a)(d - ¢) < ald—c).
Thus we obtain Lip(f|c,q) = a and aN C u-Lip(a). O
By a Cantor set in [a,b] we mean any perfect nowhere dense subset C' of
[a,b] with a,b e C.

Lemma 2. Let 8 > 0 and v: [a,b] — X, v € Uycp<p Lip(a). Let C be a
Cantor set in [a,b]. Let g: [a,b] — X be a function equal to v(z) for x € C,
and defined on a component (c,d) of C° = [a,b]\C as follows. Fizr z € X with

|z| = 1. Put
wo? if v(c) = v(d)
A\ mEe i (o) # v(d)
i +d [o(d) — (o)
¢ v(d) —v(c
=5+ TR
Define

B(d—z)w+v(d) ifz e (s,d).

Then g € u-Lip(B). Moreover, if v is constant on [a,b] and u(C) > 0, then
Vg = Bu(Ce).

o) = {6(3@ —cw+wv(e) ifx € (e



ON NATURAL FUNCTIONS AND LIPSCHITZ FUNCTIONS 255

PROOF. Let (c,d) be a component of C°. The function gl 4 is 3-natural on
[¢, d] which results from the definition of g. Let z,y € [a,b], < y. Then there
exist ¢,d € [x,y], c < d, such that (c,d) C C°. Observe that Lip(g|z,,) > B
We will show that |g(y) — g(z)| < B(y — ). If z,y € C, then by the definition
of g we obtain |g(y) — g(x)| = |v(y) — v(z)| < B(y — ). Now, let z € C and
y € C°. Pick the component (c,,d,) of C° such that y € (cy,d,). We obtain
19(y) —9(2)| < |9(y) —g(cy)|+1g9(cy) —g(z)] < By —cy) +B(cy —x) = By — ).
Now, let x and y belong to different components (¢c;,d,) and (cy,d,) of C°.
Pick p € C such that d, < p < ¢,. By the previous part of the proof we have
l9(y) — 9(@)| < lg(y) — 9(p)| +19(p) — 9(x)| < Bly —p) + Blp —x) = Bly — x).
Hence Lip(g|(z,y) = B and thus g € u-Lip(s3).

Now, assume that v is constant on [a,b] and p(C) > 0. Let (¢;,d;),i € N,
be all components of C¢. Since g is constant on C' and (g/f3)|[c, 4, is natural
for all i € N, we have Vg = 332 (d; — ¢;) = Bu(C®). O

Remark 5. If 4(C) = 0 and v is constant in the Lemma 2, then g € SN.
This results from p(C') = 0 and the definition of g.

Theorem 3. Let () # I C (0,00). Then J,c; o is strongly porous in
Uaer u-Lip(a).

PrROOF. By Lemma 1 we get |J,c; aN C U,y u-Lip(a). Let f e U e; oN;
i.e., there exists g € I such that f € apN. Let 0 < R < ap(b — a). Define
a function v: [a,b] — X by v(z) = f(b — 52) for all € [a,b]. Consider a

2(10

Cantor set in [b — %,b] with p(C) = % - %ao, where n € N is chosen so
that % > % Let g: [b— %,b] — X be a function defined as in Lemma 2,

with 8 = a. Consider a function h: [a,b] — X given by

: R
flz) fzxze [a,b—m)
glz) ifze [b—%,b].
From the definition of A it follows that h € J,c; u-Lip(a) \ Upe; oN. We
will show that h € B(f, R). By Lemma 2 and the definition of e we have

| h=F 1=V o (= D)+ (= D@ SV w h+ Vi e f

Zag

Now, we will show that B(h, % — l) C B(f,R). Let z € B(h, g _ l). We

have " R 1 1 R "
+ — =R.

_ < _ _ I
l2= Ul z =R+ b= fll< g ==+ 4+ 3
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The ball B(h, % — 1) does not contain functions from (J,.; aN. Indeed, let

B3>0 and z € BN. First, we assume that 3 > «g. We obtain
I z=hl[=Ve(z =) + |(z = h)(a)] > Vbb_%(z —h)

R 1 R 1
> b — b =D— — — —_ - —.
7%_%2 %_%h '82@0 n - 2 n

If 0 < 8 < «p, then
| z=h|=V2(z=h) +|(z = h)(a)| = V(= = h)
b— 2
=Va " (z=h)+ V. & (2—h)
2aq
R R 1
> _ _ =
=(a0 = B)(b 2a a)+ﬁ2a0 n
R R R 1

R R 1
= —b+ — b———a)— —.
Bla + ao) + o 209 @) n
Since (a — b+ a%) < 0, the sum G(a—b+ O%) +ap(b— % —a)— % is minimal
for B = ag and its minimal value equals % — }L Hence, we have

R 1 4. R
'Y(f’R7aL€JIaN) ZSUP{E—g\nEN, n > E}:f'
Consequently, p(Uye; o, f) > 2052 = 1. 0

Corollary 2. The set N is strongly porous in u-Lip(1).
Finally, we will compare the porous sizes of sets u-Lip(3), Lip(«) and Lip.

Lemma 3. Let 8 > 0 and ¢,d € [a,b], ¢ < d. Then B = {f: [a,b] —
X | Lip(flie,q) < B} is closed.

PROOF. Let f, € B for all n € N and f,, — f. Hence V?(f, — f) — 0. Let
7,y € [c,d] and € > 0. Pick an n € N such that V(f,, — f) < e. By (V1) in
Proposition 1 we have

((fa = )W) = (fa = HW <V (fn = f) <e.
Hence
f(y) = f(@)| <e+|fuly) = ful2)].

Because f,, € B, we conclude that |f(y) — f(z)| < e+ Bly — z|. Taking e — 0
we obtain | f(y) — f(z)| < Bly — xl. O
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Theorem 4. Let 3 > 0. Then the set u-Lip(3) is a dense Gs (thus nonporous
and residual) set in the closed subspace | Jy< <z Lip(a) of BV ([a,b]).

PRrROOF. From Lemma 3 it follows that (J,<,<4 Lip(c) is a closed subspace of
BV ([a,b]). First, we will prove that u-Lip(B) is dense. Let v € y< <5 Lip(a)
and € > 0. Consider a Cantor set in [a, b] with u(C) =b—a— L, wheren € N
is chosen such that + < 25- Let g € u-Lip(3) denote the function defined
in Lemma 2. We have (v — g)(z) = 0 for all € C and the both v, g are
Lipschitz functions such that Lip(v) < 3, Lip(g) = 8. Hence Lip(v—g) < 2.

Let (¢;,d;), i € N, denote the components of C¢ = [a,b] \ C. Then
[v=gll=Vy(w—9)+|(v—-g)(a) =V (v—g)

<253 (d: — ex) = 200(C) =26 <<

i=1

Hence u-Lip(B3) is dense in Jj< <5 Lip(a).

Now, we will show that u-Lip(3) is G5. Let Q* = ([a,b] N Q) U {a, b}.
List all pairs (¢,d) € Q" x Q* with ¢ < d as (¢;,d;) for i € N. We let
A =A{f:[a,b] = X | Lip(flic, q,) = B} for all i € N. It is easy to prove that
u-Lip(B) = ;= A;. Finally, we will show that A4; are of type Gy for all i € N.
Choose ng € N such that g — % > 0. We let

Bi ={f: [a,b] = X'| Lip(f
Ci ={f: la,0] — X | Lip(f

[Ci,di]) S /8},
lendi]) < B},

1

for all i € N and n > ng, n € N. We have C; = Uzozno C7. Thus by Lemma
3, the set C; is F,,. Then we have

4 =B\Ci=( |J Lin@)\c)nB,
0<a<p
which shows that A; is Gs. Consequently u-Lip(3) is Gs. O

Corollary 3. Let A C (0,00) be an unbounded and countable set. Then
Upea u-Lip(B) is a dense Gs, (thus nonporous) set in the Iy, subspace Lip of
BV ([a,b]).

On the other hand, we have the following assertion.

Theorem 5. Let 8> 0. The set Uogagﬁ Lip(a) is strongly porous in Lip.
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PrOOF. Let f € Uycp<p Lip(a), 0 < R < B(b—a) and n € N,n > 3. Define
g:la,b] = X by

o(2) {f(x() ifze [a,b—ﬂ%)
=\ (Bnz-b+R Ry _ R
Sy + Vb= 70) = ifwelb— g0

It is easy to show that g € Lip \ U<, <5 Lip(a). As in the proof of Theorem 3

we obtain g € B(f, R) and B(g, g — %) C B(f, R). The ball B(g, g — %) does
not contain functions from [Jo< <5 Lip(@). Indeed, let v € Uyc,<p Lip(a).
Then - o

lg—wv ||2V27b, r(g—v)> Vbb,&g - VZLLU

Bn pn Bn
gnR R _R R
— 2 fn 6n 2 n
As in the proof of Theorem 3 we obtain p(Uy<,<s Lip(a), f) > 1. O
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