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Abstract

We show that the class SZ of Sierpinski-Zygmund functions has a
nonempty intersection with the class Ext of all uniform limits of se-
quences of extendable connectivity functions f, : R — R. We reconsider
the idea of f-negligible sets this time with respect to f € Ext. We also
show that under MA, SZ N Ext cannot be characterized by preimages
of sets.

1 Introduction

The class SZ of Sierpinski-Zygmund functions consists of all functions g : R —
R which are discontinuous on each subset of R of cardinality of the continuum.
A member f: R — R of the class Fxt is called an eztendable connectivity (or
extendable) function, which means that there exists F' : R x [0,1] — R such
that F(z,0) = f(z) for all x € R and F'|; is connected for all connected
subsets J of R x [0,1]. As was pointed out in [5] and [1], SZ N Ext =
because by [11], f € Ext = 3 a Cantor set C such that F'[¢ is continuous.
However, we show that SZ N Ext # ()
For A, B C P(R), which is the power set of R, define

Can=1{fcR®:VAc A, f(A) € B} and
Cils={feR*:vBeB, f71(B) e A}

A family F of real functions can be characterized by images (preimages) of
sets if F = Cap (F = C;LIB) for some A, B ¢ P(R). In [5], Ciesielski and
Natkaniec show that SZ can be characterized by neither images nor preimages
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of sets. We show that under Martin’s Axiom, the same is still true for SZNExt
with regard to preimages. With D being the class of Darboux functions, they
ask in [5] whether SZ N D, under the assumption it is nonempty, can be
characterized by images or preimages. The following example illustrates the
definition about images and preimages.

Example 1. According to [3], the class D of all uniform limits of sequences of
real Darboux functions is the same as the class U of functions f : R — R with
the property that for every interval J = [a, b] and every set F of cardinality < c,
f(J\ F) is dense in the (possibly degenerate) closed interval with endpoints
f(a) and f(b). It easily follows that D is characterized by images of sets with

A={ACR:Va,be A s5a < b,card([a,b] \ A) < ¢}

and
B={BCR:Va,be Bsa<b,B is dense in [a,b]}.

The proof given for case 1 of Theorem 2.2 in [5] shows that D is not charac-
terized by preimages.

2  Sierpinski-Zygmund Functions

We modify the transfinite construction Sierpinski and Zygmund give in [12]
and use their result that if E C R and f : E — R is continuous, then there
exist a G set I' containing F and a continuous function g : I' — R such that
f(z) =g(z) for all x € E.

Theorem 1. SZ N Ext # ().

PROOF. Let h: R — R be an extendable function whose graph is dense in R?
[6], [10]. By [9], there exists a dense G subset Ay of R that is h-negligible with
respect to Ext. This means that every real-valued function on R that agrees
with h off of Ag must also be extendable. Then R\ Ag = A;UAsU. .., where the
sets A,, n > 1, are pairwise disjoint and nowhere dense in R. Let {z, : a < ¢}
be a one-to-one enumeration of R and {g, : @ < ¢} be an enumeration of all
continuous functions defined on G subsets of R. Define a function f: R — R
by induction on a < ¢ this way: f(z4) € R\ {ge(za) : £ < a}, and whenever

To € A, for some n > 0, we can require |f(zq) — h(zq)| < R Then
n

A
ho = {f on o belongs to Ext because Ag is h-negligible. For n > 1,
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hn—l on R \ An
hn—1-negligible. Therefore f € Faxt since f is the uniform limit of h,. Also
f € SZ since for each & < ¢, {x : f(z) = ge(2)} C {za : @ < &}, which has
cardinality < . O

A
h, = {f on Zn belongs to Ext because the nowhere dense set A,, is

3 Negligible Sets

Negligibility of sets has been studied for the classes of connectivity functions
[2], almost continuous functions [7], and extendable functions [9]. Now we
consider it for the class Ext. Given a class F of real-valued functions on R
and given f € F, we say a subset A of R is f-negligible with respect to F if
whenever g : R — R and f =g on R\ A, then g € F, too [2].

Theorem 2. If f : R — R has a graph dense in R? and f € Ext, then
there exists a dense G5 subset A of R that is f-negligible with respect to Ext.
Moreover, every nowhere dense subset M of R is f-negligible with respect to
Ext.

PRrROOF. Sincef € Ext and it has a dense graph in R?, f is the uniform
limit of a sequence of extendable functions f, : R — R with dense graphs in
R?. According to [9], for each n, there is a dense G4 subset A,, of R that is
fn-negligible with respect to Ext; moreover, every nowhere dense subset M
of R is f,-negligible with respect to Ext. By the Baire Category Theorem,

A = N2, A, is a dense Gy subset of R. Let B € {A, M}, and suppose
B
g:R—Rand g = fonR\B. For each n, define g,, = g.oon Then
fn on R\ B.

g is the uniform limit of g,,, and each g,, € Ext because B is f,-negligible with
respect to Fxt. Therefore g € Fxt, and so B is f-negligible with respect to
Ext. O

4 Preimages

Our next result assumes that if A C R and card A < ¢, then A is first category.
Martin’s Axiom implies this assumption according to Theorem 8.2.6 in [4]. We
show how to extend the argument Ciesielski and Natkaniec use in [5, Thm 3.1]
when they prove SZ is not characterized by preimages of sets.

Theorem 3. Under MA, SZ N Ext cannot be characterized by preimages of
sets.
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PROOF. Assume SZ N Ext = C;}B for some A, B C P(R). As in the proof of
Theorem 1, let h : R — R be an extendable function with dense graph in R? |
and let G be a dense Gy, h-negligible subset of R. Then R\ Gq is meager in
R. Also let {z4 : @ < ¢} be a one-to-one enumeration of R and {g, : & < ¢}
be an enumeration of all continuous functions on G subsets of R. As shown
in [5], B¢ {0,R}. Let B € B\ {0} and pick € B. In showing B € A, we
consider four cases for B.

Case 1: Suppose card B < .

We claim in this case that A4 contains each subset A of cardinality < c.
Suppose A has cardinality < ¢, and so, under MA, A is first category. It
follows from Lemma 3 of [8] that there exists a homeomorphism hg : R — R
such that (R\ Go) Nho(A) = 0; ie., A C hy'(Gp). According to Corollary
1 and Lemma 2 (which hold for R in place of intervals I and J there) in
8], h o hg is extendable and hy'(Go) is h o ho-negligible. So A is h o he-

A
negligible, too. Therefore fy = v on is in Ext. Let Ay be
hohy onR\ A

a dense Gs, fo-negligible set and R\ Ay = A; U Ay U ..., where the A,
n > 1, are pairwise disjoint, nowhere dense subsets of R. Define the values
f(zo) by induction on a < ¢ by letting f(A) = {z} and if z, € R\ A
by choosing f(z4) € R\ (B U {g¢(za) : £ < a}),extendable and whenever

1
To € Ay for some n > 0, we can require |f(z,) — fo(za)| < . For
n
! on A, 1 . —_—
n>1 f,= is extendable. Then f € SZ N Ext and

fnfl on R \ Anfl
A = f7YB) € A. Now if every nonempty B € B has card < ¢, then the
identity i obeys i"1(B) = B € A. Therefore i € C;t,le a contradiction. So
there exists a member of B of cardinality c.

Case 2: Suppose B = {b, : @ < ¢} is nowhere c-dense in R.

This means that if B contains an interval, then some subinterval meets B in
less than c-many points. Then B is first category and R\ B is c-dense in R. As
shown above, if h; : R — R is a homeomorphism such that (R\Go)Nhy(B) = 0,
then B is h o hi-negligible. Define a dense extendable function fy : R — R
by fo = hohs on R\ B and fo(by) € B\ {ge(bs) : € < a} on B. Let A
be a dense Gy, fo-negligible set and R\ Ay = A; U Ay U ..., where the A,
n > 1, are pairwise disjoint and nowhere dense in R. Define f(z,) = fo(za)
if zo € B, and define f(z,) € R\ {ge(za) : £ < a} if zo € R\ B, but
whenever z, € A, \ B for some n > 0, we can require f(z,) € R\ B and

1 N
|f(za)—fo(za)| < T because R\ B is c-dense in R. It follows that f € Ext,
n
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and f € SZ because {x : f(z) = ge(2)} C {za:a <E}U{by : a < &} for each
¢ < ¢ . Therefore B = f~(B) € A. Similarly, one can show () = g~(B) € A,
where g € SZ N Ext is such that g(R) C R\ B.

Case 3: Suppose each of B and R\ B is somewhere c¢-dense in R.

Then B contains an interval (a,b) such that B N (a,b) is c-dense in (a,b),
and R\ B contains an interval (¢, d) such that (R\ B)N(c, d) is ¢-dense in (¢, d).
t

It can be shown there exists ¢ € SZ N Ext such that ¢(R) € BN (a,b) C B
Therefore R = ¢~(B) € A. Also it can be shown there exists ¢ € SZ N Ext
such that ¢¥(R) C (R\ B) N (c,d) C R\ B. Therefore ) = ¢y~1(B) € A
But §, R € A implies the constant functions belong to SZ N Ext = C;‘}B, a
contradiction. Therefore this case cannot occur.

Case 4: Suppose B is somewhere c¢-dense and R\ B is nowhere ¢-dense in
R. Then based on Case 2, there exists a function f € SZ N Ext such that
f~Y(R\ B) =R\ B. But then B= f"1(B) € A.

According to the above cases, B\ {#} C A, and so the identity ¢ obeys
i~1(B) = B € A for every nonempty set B € B. Assume ) € B. Then for
any f € SZNExt, ) = f~1(0) € A, and so i obeys i 1(}}) = 0 € A, too.
Therefore 7 € C;l,lB’ a contradiction. Finally, assume () ¢ B. Then this same
contradiction that ¢ € C;‘,IB is reached because according to the definition of
C;}B, when () ¢ B, i~1() = 0 is not required to belong to A in order for i to

belong to CZ}B. O
Problem 1. Can SZ N Ext be characterized by images of sets?
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