Zbigniew Grande, Institute of Mathematics, Bydgoszcz Academy, Plac Weyssenhoffa 11, 85-072 Bydgoszcz, Poland. e-mail: grande@ab-byd.edu.pl

ON THE SUMS OF FUNCTIONS SATISFYING THE CONDITION (s_1)

Abstract

A function $f: \mathbb{R} \to \mathbb{R}$ satisfies the condition (s_1) if for each real r > 0, for each x, and for each set $U \ni x$ belonging to the density topology there is an open interval I such that $C(f) \supset I \cap U \neq \emptyset$ and $f(U \cap I) \subset (f(x) - r, f(x) + r)$. (C(f) denotes the set of all continuity points of f). In this article we investigate the sums of two Darboux functions satisfying the condition (s_1) .

Let \mathbb{R} be the set of all reals. Let μ denote Lebesgue measure on \mathbb{R} and let μ_e denote Lebesgue outer measure on \mathbb{R} . For a set $A \subset \mathbb{R}$ and a point x we define the upper (lower) outer density $D_u(A,x)$ ($D_l(A,x)$) of the set A at the point x as

$$\begin{split} &\limsup_{h\to 0^+} \frac{\mu_e\big(A\cap [x-h,x+h]\big)}{2h} \\ &\liminf_{h\to 0^+} \frac{\mu_e\big(A\cap [x-h,x+h]\big)}{2h} \ \ \text{respectively}. \end{split}$$

A point x is said to be an outer density point (a density point) of a set A if $D_l(A, x) = 1$ (if there is a Lebesgue measurable set $B \subset A$ such that $D_l(B, x) = 1$). The family T_d of all sets A for which the implication $x \in A \Longrightarrow x$ is a density point of A holds, is a topology called the density topology ([1, 3]). The sets $A \in T_d$ are Lebesgue measurable [1, 3].

In [2] the following properties are investigated.

A function $f: \mathbb{R} \to \mathbb{R}$ has property (s_1) at a point x $(f \in s_1(x))$ if for each positive real r and for each set $U \in T_d$ containing x there is an open interval I such that $\emptyset \neq I \cap U \subset C(f)$, where C(f) denotes the set of all continuity points of f, and |f(t) - f(x)| < r for all points $t \in I \cap U$. A function f has property (s_1) if $f \in s_1(x)$ for every point $x \in \mathbb{R}$.

Key Words: Density topology, condition (s_1) , condition (s_2) , continuity. Mathematical Reviews subject classification: 26A05, 26A15 Received by the editors October 21, 2001

A function $f: \mathbb{R} \to \mathbb{R}$ has property (s_2) if for each nonempty set $U \in T_d$ there is an open interval I such that $\emptyset \neq I \cap U \subset C(f)$.

Evidently each function f having property (s_1) also has property (s_2) and for each function f having property (s_2) the set $D(f) = \mathbb{R} \setminus C(f)$ is nowhere dense and of Lebesgue measure 0. But the closure $\operatorname{cl}(D(f))$ for some functions f having property (s_1) may be of positive measure. For example, if $A \subset [0,1]$ is a Cantor set of positive measure and (I_n) is a sequence of the components of the set $\mathbb{R} \setminus A$ such that $I_n \neq I_m$ for $n \neq m$, then the function

$$f(x) = \begin{cases} \frac{1}{n} & \text{for } x \in \text{cl}(I_n) \text{ for } n = 1, 2, \dots \\ 0 & \text{otherwise} \end{cases}$$

has property (s_1) but $\mu(\operatorname{cl}(D(f))) > 0$.

Obviously the sum of two functions having property (s_2) also has property (s_2) and the sum of a continuous function and a function having property (s_2) has property (s_2) . We will prove that every function having property (s_2) is the sum of two functions having property (s_1) .

Theorem 1. If a function $f : \mathbb{R} \to \mathbb{R}$ is the sum of two functions g and h having property (s_1) , then there are two Darboux functions ϕ and ψ having property (s_1) such that $f = \phi + \psi$.

PROOF. The sets D(g) and D(h) of all discontinuity points of g and h respectively are no where dense and of measure zero; so the union $A = D(g) \cup D(h)$ is the same. Without loss of the generality we can suppose that the set A is nonempty.

We start from the case where $\mu(\operatorname{cl}(A)) = 0$. If $(a, b), a, b \in \mathbb{R}$, is a bounded component of the complement $\mathbb{R} \setminus \operatorname{cl}(A)$, then we find two monotone sequences of points

$$a < \cdots < a_{n+1} < a_n < \cdots < a_1 < b_1 < \cdots < b_n < b_{n+1} < \cdots < b$$

such that $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$, and

$$\lim_{n \to \infty} \frac{b_{n+1} - b_n}{b - b_{n+1}} = \lim_{n \to \infty} \frac{a_{n+1} - a_n}{a - a_{n+1}} = 0.$$
 (1)

In each interval (a_{n+1}, a_n) $((b_n, b_{n+1}))$ we find disjoint nondegenerate closed intervals $I_{n,1}, I_{n,2} \subset (a_{n+1}, a_n)$ $(J_{n,1}, J_{n,2} \subset (b_n, b_{n+1}))$ such that for i = 1, 2 we have

$$\frac{d(I_{n,i})}{a_n - a_{n+1}} < \frac{1}{2n} \quad \left(\frac{d(J_{n,i})}{b_{n+1} - b_n} < \frac{1}{2n}\right),\tag{2}$$

and

$$\mu\Big(\cup_{n=1}^{\infty}\cup_{i=1}^{2}(I_{n,i}\cup J_{n,i})\Big)<(b-a)^{2}$$
(3)

where $d(I_{n,i})$ denotes the length of $I_{n,i}$. If (a,b) is an unbounded component of the complement $\mathbb{R} \setminus \operatorname{cl}(A)$; i.e., $a = -\infty$ or $b = \infty$, then we find only two sequences $(J_{n,i})$, i = 1, 2 or respectively $(I_{n,i})$ satisfying the above conditions.

For i=1,2 let $g_{n,i}:I_{n,i}\to\mathbb{R}$ and $h_{n,i}:J_{n,i}\to\mathbb{R}$ be continuous functions such that $g_{n,i}(x)=0$ if x is an endpoint of $I_{n,i},h_{n,i}(y)=0$ if y is an endpoint of $J_{n,i}$ and

$$(g+g_{n,1})(I_{n,1})\cap (h+h_{n,1})(J_{n,1})\cap (g+h_{n,2})(J_{n,2})\cap (h+g_{n,2})(I_{n,2})\supset [-n,n].$$

If (a,b) is a bounded component of the complement $\mathbb{R} \setminus \operatorname{cl}(A)$, then we put

$$g_{(a,b)}(x) = \begin{cases} g(x) + g_{n,1}(x) & \text{for } x \in I_{n,1} \\ g(x) + h_{n,2}(x) & \text{for } x \in J_{n,2} \\ g(x) - h_{n,1}(x) & \text{for } x \in J_{n,1} \\ g(x) - g_{n,2}(x) & \text{for } x \in I_{n,2} \\ g(x) & \text{otherwise on } (a,b) \end{cases}$$

and

$$h_{(a,b)}(x) = \begin{cases} h(x) + h_{n,1}(x) & \text{for } x \in J_{n,1} \\ h(x) + g_{n,2}(x) & \text{for } x \in I_{n,2} \\ h(x) - g_{n,1}(x) & \text{for } x \in I_{n,1} \\ h(x) - h_{n,2}(x) & \text{for } x \in J_{n,2} \\ h(x) & \text{otherwise on } (a,b) \end{cases}$$

Similarly we define the functions $g_{(a,b)}$ and $h_{(a,b)}$ on unbounded components (a,b) of the set $\mathbb{R} \setminus \operatorname{cl}(A)$.

Putting $\phi(x) = g_{(a,b)}(x)$ and $\psi(x) = h_{(a,b)}(x)$ on every component (a,b) of the complement $\mathbb{R} \setminus \operatorname{cl}(A)$ and $\phi(x) = g(x)$ and $\psi(x) = h(x)$ on $\operatorname{cl}(A)$ we obtain Darboux functions ϕ and ψ with $\phi + \psi = g + h = f$.

If a point $x \in \mathbb{R} \setminus \operatorname{cl}(A)$, then the functions ϕ and ψ are continuous at some open neighborhood of x and consequently they have property (s_1) at the point x. So we fix a point $x \in \operatorname{cl}(A)$, a set $U \in T_d$ containing x and a positive real r. Since the function g has property (s_1) and $\phi(x) = g(x)$ and by (2) and (3) the upper density $D_u(\{u \in \mathbb{R}; \phi(u) \neq g(u)\}, x) = 0$, there is an open interval $I \subset \mathbb{R} \setminus \operatorname{cl}(A) \setminus \{u; \phi(u) \neq g(u)\}$ such that

$$\emptyset \neq I \cap U \ \text{ and } \ \phi(I \cap U) = g(I \cap U) \subset (g(x) - r, g(x) + r) = (\phi(x) - r, \phi(x) + r).$$

So the function ϕ has property (s_1) at x. Similarly we can show that the function ψ has property (s_1) at x.

Now we will consider the case, where $\mu(\operatorname{cl}(A)) > 0$. In this case there are positive numbers $c_1 > c_2 > \cdots > c_n \to 0^+$ such that $\sum_n c_n < \infty$ and the sets $E_1 = \{x; \operatorname{osc} g(x) \geq c_1\} \cup \{x; \operatorname{osc} h(x) \geq c_1\}$ and $E_{n+1} = \{x; c_n > \operatorname{osc} g(x) \geq c_{n+1}\} \cup \{x; c_n > h(x) \geq c_{n+1}\}$ are nonempty for $n \geq 1$.

In the first step, as in the case $\mu(\operatorname{cl}(A)) = 0$, we construct functions ϕ_1 , ψ_1 continuous at each point $x \in \mathbb{R} \setminus \operatorname{cl}(A)$, having property (s_1) at each point $x \in E_1$ and such that $\phi_1(x) = g(x)$ and $\psi_1(x) = h(x)$ for $x \in \operatorname{cl}(A)$, $\phi_1 + \psi_1 = g + h$ everywhere on \mathbb{R} , the sets $H_1 = \{x; \phi_1(x) \neq g(x)\}$ and $M_1 = \{x; \psi_1(x) \neq h(x)\}$ are contained in countable unions of pairwise disjoint non-degenerate closed intervals $I_{1,k}$ and respectively $J_{1,k}$, $k \geq 1$,

$$cl(H_1 \cup M_1) = \bigcup_k (I_{1,k} \cup J_{1,k}) \cup E_1,$$

and for each point $x \in E_1$, each nondegenerate closed interval $I \ni x$ and each positive integer m, the density $D_u(\operatorname{cl}(H_1 \cup M_1), x) = 0$, and there are intervals I_{1,k_1} and J_{1,k_2} such that $\phi_1(I_{1,k_1}) \cap \psi_1(J_{1,k_2}) \supset [-m,m]$. For the construction of such functions ϕ_1 , ψ_1 and intervals $I_{1,k}$ and $J_{1,k}$ we consider the components (a,b) of the set $\mathbb{R} \setminus \operatorname{cl}(A)$ and repeat the reasoning from the case $\mu(\operatorname{cl}(A)) = 0$ for the set E_1 .

As in the second step above, we find pairwise disjoint nondegenerate closed intervals

$$I_{2,k,i} \subset \mathbb{R} \setminus \operatorname{cl}(A) \setminus \bigcup_{k} (I_{1,k} \cup J_{1,k}), \quad i = 1, 2 \text{ and } k \ge 1,$$

such that $\max(\operatorname{osc}_{I_{2,k,i}}g,\operatorname{osc}_{I_{2,k,i}}h) < c_1, \lim_{k \to \infty}\operatorname{dist}(I_{2,k,i},E_2) = 0, \text{ for } i = 1,2, \text{ where }\operatorname{dist}(I_{2,k,i},E_2) = \inf\{|x-y|; x \in I_{2,k,i}, \ y \in E_2\},$

$$E_2 \subset \operatorname{cl}(\bigcup_k I_{2,k,i}) \subset \bigcup_k I_{2,k,i} \cup E_1 \cup E_2, \text{ for } i = 1, 2,$$

$$D_u(\bigcup_{k,i} I_{2,k,i}, x) = 0 \text{ for } x \in E_2,$$

for each point $x \in E_2$ and for each nondegenerate closed interval $I \ni x$ there are intervals $I_{2,k_1,i}$, i=1,2, contained in I and such that $\operatorname{osc}_{I_{2,k_1,i}} g < c_1$ and $\operatorname{osc}_{I_{2,k_1,i}} h < c_1$ for i=1,2. For each pair (k,i), where $k \ge 1$ and i=1,2 denote by $K_{2,k,i}$ $(L_{2,k,i})$ the closed interval of the length $3c_1$ and having the same center as $g(I_{2,k,i})$ $(h(I_{2,k,i}))$ and define continuous functions

$$g_{2,k,1}: I_{2,k,1} \to K_{2,k,1}$$
 and $h_{2,k,2}: I_{2,k,2} \to L_{2,k,2}$

such that $g_{2,k,1}(I_{2,k,1}) = K_{2,k,1}$, $h_{2,k,2}(I_{2,k,2}) = L_{2,k,2}$ and $g_{2,k,1}(x) = g(x)$ at the endpoints of $I_{2,k,1}$ and $h_{2,k,2}(x) = h(x)$ at the endpoints of $I_{2,k,2}$.

Let

$$\phi_2(x) = \begin{cases} g_{2,k,1}(x) & \text{for } x \in I_{2,k,1} \\ g(x) - h_{2,k,2}(x) + h(x) & \text{for } x \in I_{2,k,2} \\ \phi_1(x) & \text{otherwise on } \mathbb{R} \end{cases}$$

and

$$\psi_2(x) = \begin{cases} h(x) - g_{2,k,1}(x) + g(x) & \text{for } x \in I_{2,k,1} \\ h_{2,k,2}(x) & \text{for } x \in I_{2,k,2}, \\ \psi_1(x) & \text{otherwise on } \mathbb{R}. \end{cases}$$

Then $|\phi_2 - \phi_1| \le 2c_1$, $|\psi_2 - \psi_1| \le 2c_1$ and $\phi_2 + \psi_2 = \phi_1 + \psi_1 = g + h$.

For the construction of such functions ϕ_2 , ψ_2 and of intervals $I_{2,k,i}$ we consider the components (a,b) of the set

$$(\mathbb{R} \setminus \operatorname{cl}(A)) \setminus \bigcup_{k} (I_{1,k} \cup J_{1,k})$$

and analogously as in the proof of the case $\mu(\operatorname{cl}(A)) = 0$ we take intervals $I_{2,k,i}$ satisfying all requirements. Next we repeat the reasoning from the case $\mu(\operatorname{cl}(A)) = 0$ and construct functions ϕ_2 and ψ_2 satisfying our required conditions.

In step m>2 we construct similarly two functions ϕ_m , ψ_m which are continuous on $\mathbb{R}\setminus \operatorname{cl}(A)$ and such that $\operatorname{cl}(\{x;\phi_m(x)\neq g(x)\})\cap\operatorname{cl}(\{x;\phi_i(x)\neq g(x)\})\cap\operatorname{cl}(\{x;\phi_i(x)\neq g(x)\})\cap\operatorname{cl}(\{x;\psi_m(x)\neq h(x)\})\cap\operatorname{cl}(\{x;\psi_i(x)\neq h(x)\})\subset E_1\cup\ldots\cup E_m$ for i< m, $\phi_m+\psi_m=g+h$ and $\max(|\phi_m-\phi_{m-1}|,|\psi_m-\psi_{m-1}|)\leq 2c_{m-1}$, the sets $H_m=\{x;\phi_m(x)\neq \phi_{m-1}(x)\}$ and $M_m=\{x;\psi_m(x)\neq \psi_{m-1}(x)\}$ are contained in the countable unions of pairwise disjoint nondegenerate closed intervals $I_{m,n}$ and respectively $J_{m,n},\ n\geq 1$, contained in

$$\mathbb{R} \setminus \mathrm{cl}(A) \setminus \bigcup_{k < m} \bigcup_{n} (I_{k,n} \cup J_{k,n})$$

for which $\max(\operatorname{osc}_{I_{m,n}} g, \operatorname{osc}_{I_{m,n}} h, \operatorname{osc}_{J_{m,n}} g, \operatorname{osc}_{J_{m,n}} h) < c_{m-1},$

$$E_m \subset \operatorname{cl}(\bigcup_{m,n} (I_{m,n} \cup J_{m,n}) \subset \bigcup_{m,n} (I_{m,n} \cup J_{m,n}) \cup E_1 \cup \ldots \cup E_m,$$

$$\lim_{n \to \infty} \operatorname{dist}(I_{m,n}, E_m) = 0, \lim_{n \to \infty} \operatorname{dist}(J_{m,n}, E_m) = 0,$$

$$D_u(\bigcup_n (I_{m,n} \cup J_{m,n}), x) = 0 \text{ for each } x \in E_m$$

and for each point $x \in E_m$ and each nondegenerate closed interval $I \ni x$ there are intervals $I_{m,n_1}, J_{m,n_2} \subset I \setminus \operatorname{cl}(A)$ for which $\max(d(g(I_{m,n_1})), d(h(J_{m,n_2}))) < c_{m-1}$ and $g(I_{m,n_1}) \subset \phi_m(I_{m,n_1}), \quad h(J_{m,n_2}) \subset \psi_m(J_{m,n_2})$ and $d(\phi_m(I_{m,n_1})) = d(\psi_m(J_{m,n_2}) = 3c_{m-1}.$

The sequences (ϕ_n) and (ψ_n) uniformly converge to functions ϕ and ψ respectively. Observe that $\phi + \psi = \lim_{n \to \infty} (\phi_n + \psi_n) = g + f$. As the uniform limits the functions ϕ and ψ are continuous at each point of the set $\mathbb{R} \setminus A$. So they have property (s_1) at the points $x \in \mathbb{R} \setminus \operatorname{cl}(A)$. We will prove that these functions have also property (s_1) at other points. For this fix a point $x \in \operatorname{cl}(A)$, a real r > 0 and a set $U \in T_d$ containing x. Let j be an integer such that $|\phi_j - \phi| < \frac{r}{3}$. Since the function g has property (s_1) and $D_u(\{u; \phi_j(u) \neq g(u)\}, x) = 0$, there is an open interval $I \subset \{u; \phi_j(u) = g(u)\}$ such that

$$I \cap U \neq \emptyset$$
 and $g(I \cap U) = \phi_j(I \cap U) \subset (g(x) - \frac{r}{3}, g(x) + \frac{r}{3}).$

Consequently, for $u \in I \cap U$ we have

$$|\phi(u) - \phi(x)| \le |\phi(u) - \phi_j(u)| + |\phi_j(u) - \phi_j(x)| + |\phi_j(x) - \phi(x)| < \frac{r}{3} + \frac{r}{3} + \frac{r}{3} = r.$$

So the function ϕ has property (s_1) . The same we can check that ψ has property (s_1) .

Now we will prove that the function ϕ has property of Darboux. Assume to the contrary that it has not the Darboux property. Then there are points a, b with a < b and $\phi(a) \neq \phi(b)$ and a real $c \in K = (\min(\phi(a), \phi(b)), \max(\phi(a), \phi(b))$ such that $\phi^{-1}(c) \cap [a, b] \neq \emptyset$. If there is a point $x \in E_1 \cap [a, b]$, there is a nondegenerate closed interval $I \subset [a, b]$ with $\phi(I) = \phi_1(I) \supset K \ni c$, a contradiction. So $E_1 \cap [a, b] = \emptyset$. Fix a point

$$z \in [a, b] \cap \text{cl}(\{u; \phi(u) < c\}) \cap \text{cl}(\{u; \phi(u) > c\}).$$

Then $z \in A$ and there is an integer m > 1 with $z \in E_m$. So $\operatorname{osc} g(z) < c_{m-1}$ and there is an open interval $I \ni z$ such that $\operatorname{osc}_I g < c_{m-1}$. We have either $\phi(z) = g(z) < c$ or $\phi(z) = g(z) > c$. Suppose that g(z) < z. Then there is a point $t \in I \cap [a,b]$ with g(t) > c. Since $t \in I$, we have $g(t) - g(z) < c_{m-1}$ and consequently $c - g(z) < c_{m-1}$. From the construction of ϕ_m follows that there is a nondegenerate closed interval $J \subset [a,b] \cap I$ such that $\phi_m(J) \supset [g(z),g(t)] \ni c$, a contradiction. So the function ϕ has Darboux property. If g(z) > c the reasoning is similar. The same we can show that the function ψ has Darboux property.

Lemma 1. If $A \subset \mathbb{R}$ is a nonempty compact set of Lebesgue measure zero, $U \supset A$ is a bounded open set and $E \subset U \setminus A$ is a dense set in U, then there is a

family $K_{i,j}$, i, j = 1, 2, ..., of pairwise disjoint nondegenerate closed intervals $K_{i,j} \subset U \setminus A$ with the endpoints belonging to E such that for each positive integer i and each point $x \in A$ the upper density $D_u(\bigcup_{j=1}^{\infty} K_{i,j}, x) = 1$ and for each positive real r the set of pairs (i,j) for which $\operatorname{dist}(K_{i,j}, A) \geq r$ is empty or finite.

PROOF. Since the set A is compact, there are pairwise disjoint open intervals

$$I_{1,1}, I_{1,2}, \dots, I_{1,i(1)} \subset U \cap \bigcup_{x \in A} (x - 1, x + 1)$$

such that $A \subset U_1 = I_{1,1} \cup \ldots \cup I_{1,i(1)}$ and $I_{1,i} \cap A \neq \emptyset$ for $i \leq i(1)$. There are pairwise disjoint nondegenerate closed intervals $L_{1,1}, \ldots, L_{1,k(1)} \subset U_1 \setminus A$ with the endpoints belonging to E such that for every positive integer $j \leq i(1)$ the inequality

$$\frac{\mu(I_{1,j} \cap \bigcup_{i \le k(1)} L_{1,i})}{\mu(I_{1,j})} > \frac{1}{2}$$

is true.

In the second step put

$$r_2 = \frac{\inf\{|x-y|; x \in A, \ y \in \bigcup_{i \le k(1)} L_{1,i}\}}{2}.$$

There are pairwise disjoint open intervals

$$I_{2,1}, I_{2,2}, \dots, I_{2,i(2)} \subset U \cap \bigcup_{x \in A} (x - r_2, x + r_2)$$

such that $A \subset U_2 = I_{2,1} \cup \ldots \cup I_{2,i(2)}$ and $I_{2,j} \cap A \neq \emptyset$ for $j \leq i(2)$. Now we find pairwise disjoint nondegenerate closed intervals $L_{2,1}, \ldots, L_{2,k(2)} \subset U_2 \setminus A$ with the endpoints belonging to E such that for every positive integer $j \leq i(2)$ the inequality

$$\frac{\mu(I_{2,j} \cap \bigcup_{i \le k(2)} L_{2,i})}{\mu(I_{2,j})} > 1 - \frac{1}{2^2}$$

is true.

In general in n^{th} step we define the positive real

$$r_n = \frac{\inf\{|x - y|; x \in A, \ y \in \bigcup_{i \le k(n-1)} L_{n-1,i}\}}{2},$$

pairwise disjoint open intervals $I_{n,1}, I_{n,2}, \ldots, I_{n,i(n)} \subset U \cap \bigcup_{x \in A} (x-r_n, x+r_n)$ such that $A \subset U_n = I_{n,1} \cup \ldots \cup I_{n,i(n)}$ and $I_{n,j} \cap A \neq \emptyset$ for $j \leq i(n)$, and

pairwise disjoint nondegenerate closed intervals $L_{n,1}, \ldots, L_{n,k(n)} \subset U_n \setminus A$ with the endpoints belonging to E such that for each positive integer $j \leq i(n)$ the inequality

$$\frac{\mu(I_{n,j} \cap \bigcup_{i \le k(n)} L_{n,i})}{\mu(I_{n,j})} > 1 - \frac{1}{2^n}$$

holds.

Let $N_1, N_2, \ldots, N_m, \ldots$ be a sequence of pairwise disjoint infinite subsets of positive integers and let $N_k = \{n_{k,1}, n_{k,2}, \ldots\}$, where $n_{k,i} < n_{k,j}$ for i < j. For $i = 1, 2, \ldots$ let

$$(K_{i,j})_j = (L_{n_{i-1},1}, \ldots, L_{n_{i-1},k(n_{i-1})}, L_{n_{i-2},1}, \ldots, L_{n_{i-2},k(n_{i-2})}, \ldots).$$

We will prove that the family $\{K_{i,j}; i, j=1,2,\ldots\}$ satisfies all requirements. From the construction follows immediately that the intervals $K_{i,j} \subset U \setminus A$ are pairwise disjoint and their endpoints belong to E. Fix a positive real r. There is an integer k such that $r_n < r$ for $n \ge k$. Observe that for $L_{n,j}$ with $n \ge k$ we obtain $\operatorname{dist}(A, L_{n,j}) < r_n < r$. So the set of all pairs (i,j) for which $\operatorname{dist}(A, K_{i,j}) \ge r$ is empty or finite. Now fix an integer i and a point $x \in A$. For each integer $n_{i,j}$ there is an open interval $I_{n_{i,j},l_{i,j}} \ni x$, where $l_{i,j} \le i(n_{i,j})$. Evidently $\lim_{j\to\infty} d(I_{n_{i,j},l_{i,j}}) = 0$. Since

$$\frac{\mu(I_{n_{i,j},l_{i,j}} \cap \bigcup_{m \le k(n_{i,j})} L_{n_{i,j},m})}{\mu(I_{n_{i,j},l_{i,j}})} > 1 - \frac{1}{2^{n_{i,j}}}$$

and all intervals $L_{n_{i,j},m}$ occur in the sequence $(K_{i,j})$, we have

$$D_u(\bigcup_{j=1}^{\infty} K_{i,j}, x) = 1.$$

Theorem 2. If the function $f : \mathbb{R} \to \mathbb{R}$ has property (s_2) , then there are functions $g, h : \mathbb{R} \to \mathbb{R}$ having the property (s_1) such that f = g + h.

PROOF. At first suppose that the set D(f) of all discontinuity points is bounded. Then $\operatorname{cl}(D(f))$ is a compact set. If $\mu(\operatorname{cl}(D(f)))=0$, then by Lemma 1 there is a family $K_{i,j}$ of pairwise disjoint nondegenerate closed intervals $K_{i,j} \subset \mathbb{R} \setminus \operatorname{cl}(D(f))$, $i,j \geq 1$ such that for each positive real r the set of pairs (i,j) for which $\operatorname{dist}(K_{i,j},\operatorname{cl}(D(f))) \geq r$ is empty or finite and such that for each integer i and each point $x \in \operatorname{cl}(D(f))$ the upper density $D_u(\bigcup_{j=1}^{\infty} K_{i,j}, x) = 1$. Let (w_i) be a sequence of all rationals and let

$$g(x) = \begin{cases} w_i & \text{for } x \in K_{2i-1,j} \\ f(x) - w_i & \text{for } x \in K_{2i,j} \\ f(x) & \text{otherwise on } \mathbb{R} \end{cases}$$

and

$$h(x) = \begin{cases} f(x) - w_i & \text{for } x \in K_{2i-1,j} \\ w_i & \text{for } x \in K_{2i,j} \\ 0 & \text{otherwise on } \mathbb{R}. \end{cases}$$

Evidently, g+h=f. If $x\in\mathbb{R}\setminus\operatorname{cl}(D(f))$, then g and h are continuous on some interval $[x,x+s)\subset\mathbb{R}\setminus\operatorname{cl}(D(f))$ or $(x-s,x]\subset\mathbb{R}\setminus\operatorname{cl}(D(f))$, where s>0 and consequently they have property (s_1) at x.

If $x \in \operatorname{cl}(D(f))$, $x \in U \in T_d$ and r > 0, then there is an index k with $|f(x) - w_k| < r$. Since $D_u(\bigcup_{j=1}^\infty K_{2k-1,j}, x) = 1$, there is an index m such that $\emptyset \neq \operatorname{int}(K_{2k-1,m}) \cap U$. For $u \in K_{2k-1,m} \cap U$ we have $|g(u) - g(x)| = |w_k - f(x)| < r$, thus the function g has property (s_1) at x. Similarly we can check that the function h has property (s_1) at $x \in \operatorname{cl}(D(f))$. So the proof in the case, where $\mu(\operatorname{cl}(D(f))) = 0$ (and D(f) is bounded) is finished.

So suppose that $\mu(\operatorname{cl}(D(f)) > 0$. Then there is a sequence (a_n) of positive reals such that $a_{n+1} < a_n$ for ≥ 1 and $\sum_{k=1}^{\infty} a_k < \infty$, and $A_{n+1} \setminus A_n \neq \emptyset$ for $n=1,2,\ldots$, where $A_n=\{x;\operatorname{osc} f(x)\geq a_n\}$. Every set A_n is closed of measure zero and for the set D(f) of all discontinuity points of f the equality $D(f)=\bigcup_{n=1}^{\infty} A_n$ is true. By Lemma 1 there is a family of pairwise disjoint closed intervals

$$K_{1,i,j} \subset \mathbb{R} \setminus A_1, \quad i,j=1,2,\ldots,$$

with the endpoints belonging to C(f) such that for each i = 1, 2, ... and for each $x \in A_1$ the upper density $D_u(\bigcup_{j=1}^{\infty} K_{1,i,j}, x) = 1$ and for each positive real r the set of pairs (i,j) for which $\operatorname{dist}(K_{1,i,j},A_1) \geq r$ is empty or finite.

In the interiors $\operatorname{int}(K_{1,i,j})$ we find closed intervals $I_{1,i,j} \subset \operatorname{int}(K_{1,i,j})$ such that for each point $x \in A_1$ and for each integer i = 1, 2, ... the upper density

$$D_u(\bigcup_{i=1}^{\infty} I_{1,i,j}, x) = 1.$$

Let $w_{1,i}$ be a sequence of all rationals and let $g_1, h_1 : \mathbb{R} \to \mathbb{R}$ be defined as follows

$$g_1(x) = \begin{cases} w_{1,i} & \text{for } x \in I_{1,2i,j}, \ i, j = 1, 2, \dots \\ f(x) & \text{for } x \in \mathbb{R} \setminus \bigcup_{i,j=1}^{\infty} \text{int}(K_{1,2i,j}), \end{cases}$$

 g_1 is linear on all components of the sets $K_{1,2i,j} \setminus \operatorname{int}(I_{1,2i,j}), i, j = 1, 2, ...,$ and $h_1(x) = f(x) - g_1(x)$ for $x \in \mathbb{R}$.

In the second step we consider the set $A_2 \setminus A_1 = A_2 \cap (\mathbb{R} \setminus A_1)$. There are pairwise disjoint open intervals $P_{2,k} \subset \mathbb{R} \setminus A_1$, $k \geq 1$, with the centers

belonging to C(f) such that every set $A_2 \cap P_{2,k}$ is nonempty and compact and

$$A_2 \setminus A_1 = \bigcup_k (A_2 \cap P_{2,k}).$$

A construction of such intervals $P_{2,k}$ may be the following.w We find a bounded open set $G \supset A_2$ and divide each component of the set $G \setminus A_1$ by points belonging to C(f) into open intervals. As $P_{2,k}$ we take all from the above intervals which have common points with A_2 .

If $x \in (A_2 \cap \text{int}(K_{1,2i,j})) \setminus A_1$ for some pair (i,j), then g_1 is continuous at x, and consequently $\cos g_1(x) = 0$ and $\cos h_1(x) = \cos f(x) < a_1$. If

$$x \in A_2 \setminus A_1 \setminus \bigcup_{i,j \ge 1} K_{1,2i,j}$$

then $g_1(t)=f(t)$ and $h_1(t)=0$ on an open interval containing x and contained in $\mathbb{R}\setminus A_1$. So $\operatorname{osc} g_1(x)=\operatorname{osc} f(x)< a_1$ and $\operatorname{osc} h_1(x)=0$. Similarly we show that $\max(\operatorname{osc} g_1(x),\operatorname{osc} h_1(x))< a_1$ if $x\in A_2\setminus A_1$ is an endpoint of some $K_{1,2i,j}$. So for each integer k and each point $x\in A_2\cap P_{2,k}$ there is an open interval $J_{2,k}(x)\subset P_{2,k}$ containing x such that on the interval $J_{2,k}(x)$ the oscillation $\operatorname{osc}_{J_{2,k}(x)}g_1< a_1$ and $\operatorname{osc}_{J_{2,k}(x)}h_1< a_1$. Since the set $A_2\cap P_{2,k}$ is compact there are points $x_1,x_2,\ldots,x_{j(k)}$ such that $A_2\cap P_{2,k}\subset J_{2,k}(x_1)\cup\ldots\cup J_{2,k}(x_{j(k)})$. Without loss of the generality we can assume that the above intervals $J_{2,k}(x_j),\ j\leq j(k)$, are pairwise disjoint. For each pair of positive integers (i,j) such that $A_2\cap K_{1,i,j}\neq\emptyset$ we find an open set $U(K_{1,i,j})\subset \operatorname{int}(K_{1,i,j})$ such that $A_2\cap K_{1,i,j}\subset U(K_{1,i,j})$ and

$$\frac{\mu(\operatorname{cl}(U(K_{1,i,j})))}{\mu(K_{1,i,j})} < \frac{1}{4^{1+i+j}}.$$

If for some integers i_1, j_1, j_2 the intersection $A_2 \cap \operatorname{int}(K_{1,i_1,j_1}) \cap J_{2,k}(x_{j_2}) \neq \emptyset$ then, by Lemma 1, we find pairwise disjoint nondegenerate closed intervals

$$K_{2,i,j}(K_{1,i_1,j_1},J_{2,k}(x_{j_2})) \subset U(K_{1,i_1,j_1}) \cap J_{2,k}(x_{j_2})$$

with the endpoints belonging to C(f) such that for every positive integer i and every point $x \in A_2 \cap J_{2,k}(x_{j_2}) \cap K_{1,i_1,j_1}$ the upper density

$$D_u(\bigcup_{i=1}^{\infty} K_{2,i,j}(K_{1,i_1,j_1},J_{2,k}(x_{j_2})),x)=1$$

and for every positive real r the set of all pairs (i, j) for which

$$\operatorname{dist}(A_2 \cap J_{2,k}(x_{j_2}) \cap K_{1,i_1,j_1}, K_{2,i,j}(K_{1,i_1,j_1}, J_{2,k}(x_{j_2}))) > r$$

is empty or finite. In every interval $\operatorname{int}(K_{2,i,j}(K_{1,i_1,j_1},J_{2,k}(x_{j_2})))$ we find a closed interval $I_{2,i,j}(K_{2,i,j}(K_{1,i_1,j_1},J_{2,k}(x_{j_2})))$ such that for every integer i and for every point $x \in A_2 \cap J_{2,k}(x_{j_2}) \cap K_{1,i_1,j_1}$ the upper density

$$D_u(\bigcup_{j=1}^{\infty} I_{2,i,j}(K_{2,i,j}(K_{1,i_1,j_1},J_{2,k}(x_{j_2}))),x) = 1.$$
(4)

For each positive integer $j \leq j(k)$ let $(w_i(x_j))$ be an enumeration of all rationals in $(y_j - \frac{a_1}{2}, y_j + \frac{a_1}{2})$, where y_j is the center of the interval

$$[\inf_{A_2\cap J_{2,k}(x_j)}g_1,\sup_{A_2\cap J_{2,k}(x_j)}g_1],$$

and let $(u_i(x_j))$ be an enumeration of all rationals in $(z_j - \frac{a_1}{2}, z_j + \frac{a_1}{2})$, where z_j is the center of the interval $[\inf_{A_2 \cap J_{2,k}(x_j)} h_1, \sup_{A_2 \cap J_{2,k}(x_j)} h_1]$. Put

$$g_2(x) = \begin{cases} w_i(x_{j_2}) & \text{for } x \in I_{2,2i,j}(K_{1,i_1,j_1}, J_{2,k}(x_{j_2})), \\ j_2 \leq j(k), & i, j = 1, 2, \dots \\ f(x) - h_2(x) & \text{for } x \in I_{2,2i-1,j}(K_{1,i_1,j_1}J_{2,k}(x_{j_2})) \\ & j_2 \leq j(k), & i, j = 1, 2, \dots, \\ g_1(x) & \text{for } x \in K_{1,i_1,j_1} \setminus \bigcup_{j_2 \leq j(k)} \bigcup_{i,j=1}^{\infty} K_{2,i,j}(K_{1,i_1,j_1}, J_{2,k}(x_{j_2})), \end{cases}$$

and

$$h_2(x) = \begin{cases} f(x) - g_2(x) & \text{for } x \in I_{2,2i,j}(K_{1,i_1,j_1}, J_{2,k}(x_{j_2})), \\ j_2 \leq j(k), & i, j = 1, 2, \dots \\ u_i(x_{j_2}) & \text{for } x \in I_{2,2i-1,j}(K_{1,i_1,j_1}J_{2,k}(x_{j_2})) \\ & j_2 \leq j(k), & i, j = 1, 2, \dots, \\ h_1(x) & \text{for } x \in K_{1,i_1,j_1} \backslash \bigcup_{j_2 \leq j(k)} \bigcup_{i,j=1}^{\infty} K_{2,i,j}(K_{1,i_1,j_1}, J_{2,k}(x_{j_2})), \end{cases}$$

and assume that the function g_2 is linear and $h_2 = f - g_2$ on the components of the sets $K_{2,i,j}(K_{1,i_1,j_1},J_{2,k}(x_{j_2})) \setminus I_{2,i,j}(K_{1,i_1,j_1},J_{2,k}(x_{j_2}))$.

Similarly, modifying the values of g_1 and h_1 on respectively constructed closed intervals we define the functions g_2 and h_2 on components $L_{2,m}$ of the set $P_{2,k} \setminus A_1 \setminus \bigcup_{i,j=1}^{\infty} K_{1,i,j}$ for which $L_{2,m} \cap A_2 \neq \emptyset$. Put $g_2(x) = g_1(x)$ and $h_2(x) = h_1(x)$ otherwise on \mathbb{R} . Observe that if the function f is continuous

ZBIGNIEW GRANDE

at a point x, then from the constructions of g_1 and g_2 follows that $x \in \mathbb{R} \setminus A_2$, and g_1 and g_2 are continuous at x. Consequently the functions h_1 and h_2 as the differences of functions continuous at x are also continuous at this point. So $C(f) \subset C(g_2) \cap C(h_2)$. Observe that

$$|g_2 - g_1| \le a_1$$
, $|h_2 - h_1| \le a_1$ and $g_2 + h_2 = f$.

We will show that $g_2, h_2 \in s_1(x)$ for $x \in A_2$. For this fix a point $x \in A_2$, a set $U \ni x$ belonging to T_d and a real r > 0.

If $x \in A_1$, then we find a rational $w_{1,k}$ with $|g_1(x) - w_{1,k}| < r$. Since

$$D_u(\bigcup_{j=1}^{\infty} I_{1,2k,j}, x) = 1 \text{ and } \frac{\mu(\operatorname{cl}(U(K_{1,2k,j})))}{\mu(K_{1,2k,j})} < \frac{1}{4^{1+2k+j}},$$

we obtain

$$D_u((g_1)^{-1}(w_{1,k}) \cap \bigcup_{j=1}^{\infty} I_{1,2k,j}, x) = 1$$

and consequently there is an integer m and an open interval $I \subset I_{1,2k,m} \setminus \operatorname{cl}(U(K_{1,2k,m}))$ such that $\emptyset \neq I \cap U$. But $g_2(u) = w_{1,k}$ for $u \in I \cap U$; so $I \cap U \subset C(g_2)$. Moreover for $u \in I \cap U$ we have $|g_2(u) - g_2(x)| = |w_{1,k} - g_2(x)| < r$. So $g_2 \in s_1(x)$ for $x \in A_1$. Similarly we show that $h_2 \in s_1(x)$ for $x \in A_1$.

Using (4) by similar reasoning we can show that $g_2, h_2 \in s_1(x)$ for $x \in A_2 \setminus A_1$. Let $(K_{2,i,j})$ be a double sequence of all closed intervals on which we have modified the functions g_1 and h_1 for the obtaining of g_2 and h_2 . Similarly in n^{th} step we change the functions g_{n-1} and h_{n-1} on respectively taken closed intervals $K_{n,2i,j}$ and $K_{n,2i-1,j}$ and define functions g_n and h_n such that g_n (and resp. h_n) has constant rational values on respective closed intervals $I_{n,2i,j} \subset \operatorname{int}(K_{n,2i,j})$ (resp. on $I_{n,2i-1,j}$), $C(f) \subset C(g_n) \cap C(h_n)$, $g_n, h_n \in s_1(x)$ for $x \in A_n$,

$$|g_n - g_{n-1}| \le a_{n-1}, |h_n - h_{n-1}| \le a_{n-1}, \text{ and } g_n + h_n = f.$$

Moreover, we suppose that for every triple (k, i_1, j_1) , where k < n and $i_1, j_1 = 1, 2, \ldots$, the inequality

$$\frac{\mu(K_{k,i_1,j_1} \setminus \bigcup_{i,j=1}^{\infty} K_{n,i,j})}{\mu(K_{k,i_1,j_1})} > 1 - \frac{1}{4^{n+i+j}}$$
 (5)

is true. Let $g = \lim_{n \to \infty} g_n$ and $h = \lim_{n \to \infty} h_n$. Evidently, g + h = f. Since the above convergence is uniform, $C(f) \subset C(g) \cap C(h)$, and consequently the functions g, h have property (s_2) . We will prove that the functions g, h have

property (s_1) . For this, fix a positive real r, a point $x \in \mathbb{R}$ and a set $U \in T_d$ containing x. If $x \in C(f)$, then g is continuous at x and there is a positive real s such that |g(t) - g(x)| < r for $t \in (x - s, x + s)$. But g has property (s_2) , there are an open interval $J \subset (x - s, x + s)$ such that $C(g) \supset J \cap U \neq \emptyset$. Since |g(t) - g(x)| < r for $t \in J \cap U$, we obtain $g \in s_1(x)$. Similarly we can prove that $h \in s_1(x)$.

In the case where x is a discontinuity point of g the point x is also a discontinuity point of f and there is a positive integer n such that $x \in A_n \setminus A_{n-1}$ (we assume that $A_0 = \emptyset$). Let k > n be a positive integer such that $\sum_{i=k+1}^{\infty} a_i < \frac{r}{3}$. There is a rational value w of the function g_n such that $|g_n(x) - w| < \frac{r}{3}$ and $D_u((g_n)^{-1}(w), x) = 1$. By condition (5) the upper density

$$D_u((g_n)^{-1}(w) \setminus \bigcup_{m>n} \bigcup_{l,j=1}^{\infty} K_{m,l,j}, x) = 1.$$

So

$$D_u((g_n)^{-1}(w) \setminus \bigcup_{m=n+1}^{k-1} \bigcup_{l,j=1}^{\infty} K_{m,l,j}, x) = 1,$$

and by the construction of g_n and $K_{m,l,j}$ also

$$D_u(\text{int}((g_n)^{-1}(w) \setminus \bigcup_{m=n+1}^{k-1} \bigcup_{l,j=1}^{\infty} K_{m,l,j}), x) = 1.$$

Since $x \in U \in T_d$, we have

$$D_u(U \cap \operatorname{int}((g_n)^{-1}(w) \setminus \bigcup_{m=n+1}^{k-1} \bigcup_{l,j=1}^{\infty} K_{m,l,j}), x) = 1.$$

Consequently, there is an open interval

$$I \subset \operatorname{int}((g_n)^{-1}(w) \setminus \bigcup_{m=n+1}^{k-1} \bigcup_{l,j=1}^{\infty} K_{m,l,j}) \setminus A_k$$

such that $I \cap U \neq \emptyset$. Evidently, $\emptyset \neq I \cap U \subset C(f) \subset C(g)$. For $t \in I \cap U$ we obtain $g_n(t) = g_k(t)$ and

$$|g(t) - g(x)| = |g(t) - g_k(t) + w - g_n(x)| \le \sum_{i=k+1}^{\infty} a_i + \frac{r}{3} < \frac{2r}{3} < r.$$

So $g \in s_1(x)$. The proof that $h \in s_1(x)$ is analogous.

Up to now we have supposed that the set D(f) is bounded. Now we consider the general case. Since the closure cl(D(f)) is a nowhere dense set, there are points $x_k \in \mathbb{R} \setminus cl(D(f))$, $k = 0, 1, -1, 2, -2, \ldots$ such that

$$\lim_{k \to -\infty} x_k = -\infty, \quad \lim_{k \to \infty} x_k = \infty, \text{ and } x_k < x_{k+1} \text{ for all integers } k.$$

Then $\mathbb{R} = \bigcup_{k=-\infty}^{\infty} [x_k, x_{k+1}]$. Every restricted function $f_k = f/[x_k, x_{k+1}]$ is the sum of two functions $g_k, h_k : [x_k, x_{k+1}] \to \mathbb{R}$ having property (s_1) and continuous at the points x_k and x_{k+1} . Let

$$g(x) = \begin{cases} g_k(x) - (a_1 + \dots + a_k) & \text{for } x \in [x_k, x_{k+1}] \\ g_0(x) & \text{for } x \in [0, 1] \\ g_k(x) + (a_0 + a_{-1} + \dots + a_{k+1}) & \text{for } x \in [x_k, x_{k+1}] \end{cases}$$

where $a_k = g_k(k) - g_{k-1}(k)$ for $k = 0, -1, 1, -2, 2, \ldots$, and h(x) = f(x) - g(x) for $x \in \mathbb{R}$. Observe that the functions g, h have property (s_1) and f = g + h.

Acknowledgment I am grateful to the Referee for the trouble he has taken to correct my paper.

References

- [1] A. M. Bruckner, *Differentiation of real functions*, Lectures Notes in Math. 659, Springer-Verlag, Berlin 1978.
- [2] Z. Grande, On some special notions of approximate quasi-continuity, Real Anal. Exch., 24, No. 1 (1998–1999), 171–184.
- [3] F. D. Tall, The density topology, Pacific J. Math., 62 (1976), 275–284.