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SOME OBSERVATIONS ON THE
SYMMETRICAL QUASICONTINUITY OF

PIOTROWSKI AND VALLIN

Abstract

In this article I investigate the measurability of symmetrically qua-
sicontinuous (in the sense of Piotrowski and Vallin [8]) functions and
symmetrically cliquish functions f : R2 → R with respect to the Eu-
clidean topology and with respect to the density topology Td × Td.

If (X, TX) and (Y, TY ) are topological spaces and (Z, ρ) is a metric space,
then a function f : X × Y → Z is said to be:

1. quasicontinuous (resp. cliquish) at a point (x, y) ∈ X × Y , if for every
set U×V ∈ TX×TY containing (x, y), and for each positive real η, there
are nonempty sets U ′ ∈ TX contained in U and V ′ ∈ TY contained in V
such that f(U ′ × V ′) ⊂ K(f(x, y), η) = {t ∈ Z : ρ(t, f(x, y)) < η} (resp.
diam(f(U ′ × V ′)) = sup{ρ(f(t, t′), f(u, u′)) : t, u ∈ U ′ and t′, u′ ∈ V ′} <
η) ([6, 7]);

2. quasicontinuous at (x, y) with respect to x (alternatively y), if for every
set U×V ∈ TX×TY containing (x, y), and for each positive real η, there
are nonempty sets U ′ ∈ TX contained in U and V ′ ∈ TY contained in V
such that x ∈ U ′ (alternatively y ∈ V ′) and f(U ′ × V ′) ⊂ K(f(x, y), η)
([8]);

3. cliquish at (x, y) with respect to x (alternatively y), if for every set
U × V ∈ TX × TY containing (x, y), and for each positive real η, there
are nonempty sets U ′ ∈ TX contained in U and V ′ ∈ TY contained in V
such that x ∈ U ′ (alternatively y ∈ V ′) and diam(f(U ′ × V ′)) < η;
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4. symmetrically quasicontinuous (resp. symmetrically cliquish) at (x, y),
if it is quasicontinuous (resp. cliquish) at (x, y) with respect to x and
simultaneously with respect to y;

5. separately continuous if the sections fx(t) = f(x, t) and fy(u) = f(u, y),
where x, u ∈ X and y, t ∈ Y, are continuous.

Evidently, each quasicontinuous function is cliquish, and each symmetri-
cally quasicontinuous function is quasicontinuous and symmetrically cliquish.
Moreover, each symmetrically cliquish function is also cliquish. But there are
quasicontinuous functions which are not symmetrically cliquish. For example,
the function

f(x, y) = 0 for x < 0 and f(x, y) = 1 otherwise on R2,

is quasicontinuous (with respect to the Euclidean topology Te × Te), but it is
not symmetrically cliquish at any point (0, y), where y ∈ R.

Let X = Y = Z = R, and TX = TY = Te, where Te denotes the Euclidean
topology in R, and let ρ(z1, z2) = |z1−z2| for z1, z2 ∈ Z. Then each separately
continuous function f : R2 → R is symmetrically quasicontinuous. It is well
known that each separately continuous function f : R2 → R is of the first class
of Baire ([9]), and there are quasicontinuous functions from R2 → R which are
not Lebesgue measurable ([7]). We will prove the following:

Theorem 1. Let X = Y = Z = R, and TX = TY = Te, where Te denotes the
Euclidean topology in R, and let ρ(z1, z2) = |z1 − z2| for z1, z2 ∈ Z. There is
a symmetrically quasicontinuous function f : R2 → R which is not Lebesgue
measurable.

Proof. Let C ⊂ [0, 1] be a Cantor set of positive measure such that 0, 1 ∈ C.
Enumerate all components of the set [0, 1] \ C in a sequence (In) such that
In ∩ Im = ∅ for n 6= m. In each interval In, we find two nondegenerate closed
intervals Jn and Kn, such that Kn ⊂ int(Jn) ⊂ Jn ⊂ In (int(Jn) denotes the
interior of Jn). Now, by induction, we will define two sequences of sets.

Step 1. For n = 1, let M1,1 = [0, 1], and let L1,1 be a closed interval
such that M1,1 ⊂ int(L1,1) ⊂ (− 1

2 , 1 + 1
2 ). Moreover, let M1,2 and L1,2 be the

unions of two disjoint nondegenerate closed intervals such that

C ⊂ M1,2 ⊂ int(L1,2) ⊂ L1,2 ⊂ (−1
2
, 1 +

1
2
) \ J1.

Put

P1,1 = K1 ×M1,1, Q1,1 = J1 ×L1,1, P1,2 = M1,2 ×K1 and Q1,2 = L1,2 × J1.
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Step 2. For n = 2, let M2,1 and L2,1 be the unions of two disjoint nonde-
generate closed intervals such that

C ⊂ M2,1 ⊂ int(L2,1) ⊂ L2,1 ⊂ (−1
4
, 1 +

1
4
) \ J1.

Similarly, let M2,2 and L2,2 be the unions of three disjoint nondegenerate
closed intervals such that

C ⊂ M2,2 ⊂ int(L2,2) ⊂ L2,2 ⊂ (−1
4
, 1 +

1
4
) \ (J1 ∪ J2).

Put

P2,1 = K2 ×M2,1, Q2,1 = J2 × L2,1, P2,2 = M2,2 ×K2 and Q2,2 = L2,2 × J2.

Step n. Next, for n > 2, let Mn,1 and Ln,1 be the unions of n disjoint
nondegenerate closed intervals such that

C ⊂ Mn,1 ⊂ int(Ln,1) ⊂ Ln,1 ⊂ (− 1
2n

, 1 +
1
2n

) \ (J1 ∪ . . . ∪ Jn−1).

Similarly, let Mn,2 and Ln,2 be the unions of n + 1 disjoint nondegenerate
closed intervals such that

C ⊂ Mn,2 ⊂ int(Ln,2) ⊂ Ln,2 ⊂ (− 1
2n

, 1 +
1
2n

) \ (J1 ∪ . . . ∪ Jn).

Put

Pn,1 = Kn×Mn,1, Qn,1 = Jn×Ln,1, Pn,2 = Mn,2×Kn, and Qn,2 = Ln,2×Jn.

For n ≥ 1, let fn,1 : Qn,1 → [0, 1] be a continuous function such that

fn,1(Pn,1) = 1, and fn,1(Qn,1 \ int(Qn,1)) = 0,

and let gn,2 : Qn,2 → [0, 1] be a continuous function such that

gn,2(Pn,2) = 1, and gn,2(Qn,2 \ int(Qn,2)) = 0.

Let E ⊂ C × C be a nonmeasurable (in the sense of Lebesgue) set. Put

f(x) =


fn,1(x) for x ∈ Qn,1 n ≥ 1
gn,2(x) for x ∈ Qn,2 n ≥ 1
1 for x ∈ E

0 otherwise on R2.
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Since f is continuous at all points (x, y) ∈ R2 \ (C × C), it is also sym-
metrically quasicontinuous there. Fix a point (x, y) ∈ C × C, and open sets
U 3 x and V 3 y, and a positive real η. Assume that (x, y) ∈ E. There are
indices n, k with In ⊂ U and Ik ⊂ V . Since x ∈ Mk,2, the points (x, v) ∈ Pk,2

for v ∈ Kk. Fix a point v ∈ Kk, and observe that, from the continuity of
f at (x, v), there are open intervals V ′ ⊂ Jk ⊂ V and U ′ ⊂ Lk,2 ∩ U such
that x ∈ U ′ and f(U ′ × V ′) ⊂ (1 − η, 1]. This proves that in this case f
is quasicontinuous at (x, y) with respect to x. Similarly, we can prove that
in this case f is quasicontinuous at (x, y) with respect to y. In the case
(x, y) ∈ (C × C) \ E the reasoning is similar. So f is symmetrically quasi-
continuous. Since f−1(1) ∩ (C × C) = E, and E is a nonmeasurable set, the
function f is nonmeasurable in the sense of Lebesgue. This finishes the proof.

Now we will consider the case of the density topology Td in R. Let µ denote
the Lebesgue measure in R. Recall that a point x ∈ R is a density point of a
Lebesgue measurable set A ⊂ R if

lim
h→0+

µ(A ∩ [x− h, x + h])
2h

= 1,

and that the family Td of all Lebesgue measurable subsets A ⊂ R for which
the implication

x ∈ A =⇒ x is a density point of A

is true, is a topology called the density topology ([2, 10]).
In [11], W. Wilczyński proves that there is a Lebesgue nonmeasurable

(Td × Td)-quasicontinuous function f : R2 → R. We will prove the following:

Theorem 2. Let X = Y = Z = R, TX = TY = Td, and ρ(z1, z2) = |z1 − z2|
for z1, z2 ∈ Z. If at each point (x, y) a function f : R2 → R is cliquish with
respect to x or with respect to y, then f is Lebesgue measurable.

Proof. By a Lemma of Davies from [3] and [4], it suffices to prove that, for
each real η > 0 and for each Lebesgue measurable subset A ⊂ R2 of positive
measure, there is a Lebesgue measurable subset B ⊂ A of positive measure
with diam(f(B)) < η. Fix a real η > 0 and a measurable set A ⊂ R2 of
positive measure. There is a nonempty Lebesgue measurable subset E ⊂ A
such that the sections

Ex = {v ∈ R; (x, v) ∈ E}

and
Ey = {u ∈ R; (u, y) ∈ E},
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for x, y ∈ R, belong to Td ([4]). Fix a point (x, y) ∈ E. Let U = Ey ∩ (x −
1, x + 1) and V = Ex ∩ (y − 1, y + 1). Assume that f is cliquish at (x, y)
with respect to x. Then there are nonempty open sets U ′, V ′ ∈ Td such that
x ∈ U ′ ⊂ U , V ′ ⊂ V and diam(f(U ′×V ′)) < η. Since x ∈ U ′, for each v ∈ V ′

the point (x, v) ∈ E, and consequently, x ∈ Ev ∩ U ′. But Ev ∩ U ′ ∈ Td, so
µ(Ev ∩ U ′) > 0 for v ∈ V ′. Thus, by Fubini’s theorem, the measurable set
E ∩ (U ′×V ′) is of positive measure. Since E ∩ (U ′×V ′) ⊂ U ′×V ′, it follows
that

diam(f(E ∩ (U ′ × V ′))) < η.

If f is cliquish at (x, y) only with respect to y, the reasoning is analogous.
This completes the proof.

Corollary 1. Let X = Y = Z = R, TX = TY = Td, and ρ(z1, z2) = |z1 − z2|
for z1, z2 ∈ Z. If f : R2 → R is a symmetrically cliquish function, then f is
Lebesgue measurable.

Remark 1. In the diagram in [8], the authors write that the separate continu-
ity of functions f : X × Y → Z implies the symmetrical quasicontinuity. This
is true for X = Y = Z = R and the Euclidean topologies, but is not true for
general cases. For example, in [5] (Example 4), it is proved that there exists
a function f : R2 → R for which all sections fx and fy are Td-continuous,
and which is not (Td × Td)-quasicontinuous (so it is not also symmetrically
(Td × Td)-quasicontinuous).

It is well known that the limit of a pointwise convergent sequence (fn) of
quasicontinuous functions from R2 to R is a cliquish function ([7, 1]). This is
not true for the symmetrical quasicontinuity and cliquishness. For example,
the function

f(x, y) = 0, if x < 0, and f(x, y) = 1 otherwise on R2,

is of the first class of Baire (so it is the limit of a pointwise convergent sequence
of continuous functions), but it is not cliquish at (0, y) with respect to x for
y ∈ R.
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[11] W. Wilczyński, A non-measurable d× d quasi-continuous function, Bull.
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