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LYAPUNOV EXPONENT AND ALMOST SURE

ASYMPTOTIC STABILITY OF A STOCHASTIC SIRS

MODEL

Guoting Chen, Tiecheng Li, and Changjian Liu

Abstract: Epidemiological models with bilinear incidence rate usually have an

asymptotically stable trivial equilibrium corresponding to the disease-free state, or an

asymptotically stable nontrivial equilibrium (i.e. interior equilibrium) corresponding
to the endemic state. In this paper, we consider an epidemiological model, which is a

SIRS (susceptible-infected-removed-susceptible) model influenced by random pertur-

bations. We prove that the solutions of the system are positive for all positive initial
conditions and that the solutions are global, that is, there is no finite explosion time.

We present necessary and sufficient condition for the almost sure asymptotic stability

of the steady state of the stochastic system.
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1. Introduction

In the understanding of different scenarios for disease transmissions
and behavior of epidemics, many models in the literature represent dy-
namics of diseases by systems of ordinary differential equations. The dy-
namic behaviors of the SIRS models have been investigated by several au-
thors. In the 1920s, a Kermack–McKendrick epidemic SIRS (susceptible-
infected-removed-susceptible) model [9] was proposed, in which the total
population is assumed to be constant and there are infectives I(t), which
can pass on the disease to susceptibles S(t), and the remaining mem-
bers R(t) which have been infected and have become unable to transmit
the disease to others. Since then, many people have studied the SIRS
disease model (acquired immunity is permanent or acquired immunity
is temporary) with different variations in its incidence rate, at which
susceptibles become infectives, see [11, 12, 18].
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The deterministic SIRS model exhibiting loss of immunity is the fol-
lowing

S′(t) = −βS(t)I(t)− µS(t) + γR(t) + µ,

I ′(t) = βS(t)I(t)− (λ+ µ)I(t),

R′(t) = λI(t)− (µ+ γ)R(t),

where S(t) is the number of members of the population susceptible to the
disease, I(t) is the number of infective members and R(t) is the number
of members who have been removed from the possibility of infection
through full immunity. The population considered has a constant size N
which is normalized to 1, that is S(t) + I(t) +R(t) = 1 for all t ≥ 0. We
refer to [11] for details about this model.

Parameters in the system are as follows: µ represents the birth and
death rate, the constant λ represents the recovery rate of infected people,
β is the transmission rate and γ is the per capita rate of loss of immunity.
Of course, µ > 0, λ > 0, β > 0. We shall assume that γ ≥ 0, the case
where γ = 0 corresponds to the SIRS model. It is easy to see that
the above system always has a disease-free equilibrium (i.e. boundary
equilibrium) E0 = (1, 0, 0). One of the main issues in the study of the
behavior of epidemics is the analysis of the steady states of the model
and their stabilities.

A stochastic version of the present model (with or without delay) has
been considered in [13] for the stability of the disease free equilibrium.
The stability of the disease-free of a SIRS model has been studied in [17].
The stability of the endemic equilibrium for the SIRS model has been
studied in [5]. The method used in these papers is that of stochastic
Lyapunov functions. Sufficient conditions are given for the stabilities of
the corresponding equilibria. Most of the studies in the literature con-
cerning stabilities provide only sufficient conditions. One of the results
of the present paper is to give necessary and sufficient conditions for the
stability of a stochastic perturbation of the model.

The stochastic model considered in [13, 17] is the following

dS(t) = [−βS(t)I(t)− µS(t) + γR(t) + µ] dt− σS(t)I(t) dw(t),

dI(t) = [βS(t)I(t)− (λ+ µ)I(t)] dt+ σS(t)I(t) dw(t),

dR(t) = [λI(t)− (µ+ γ)R(t)] dt,

where w(t) is a one-dimensional standard Brownian motion defined on
a complete probability space (Ω,F , {Ft}t≥0, P ). One notices that there
is no white noise perturbation in the third equation.



Lyapunov Exponent of a Stochastic SIRS Model 155

For the case of a stochastic SIRS model, that is when γ = 0, sufficient

conditions (0 < β < min{λ+µ−σ2

2 , 2µ}) are given in [17] for the stability
of the disease free equilibrium. In [13], the stability is proved under the

condition 0 < β < λ+ µ− σ2

2 for the stochastic SIRS model. Numerical
simulations are also given in [13, 17] to support the conjecture that the
equilibrium of the model is still stable under the more general condition

0 < β < λ+µ+ σ2

2 . One of the aims of the present paper is to show this
conjecture for systems with more general type of noise perturbations,
namely systems of the form

dS(t) = [−βS(t)I(t)− µS(t) + γR(t) + µ] dt

− [σ1S(t)I(t) + σ2S(t)R(t)] dw(t),

dI(t) = [βS(t)I(t)− (λ+ µ)I(t)] dt+ σ1S(t)I(t) dw(t),

dR(t) = [λI(t)− (µ+ γ)R(t)] dt+ σ2S(t)R(t) dw(t),

(1)

where w(t) is as above, and σ1, σ2 ∈ R. We recover the systems studied
in [13, 17] with σ2 = 0. The white noises of this system depend on
two parameters while in the preceding one they depend only on one
parameter.

When dealing with a model for population, it is necessary to prove
that the solutions are positive and are defined globally for all t ≥ 0,
i.e. there is no finite explosion time. This question is not studied in the
papers cited above. We shall prove it for system (1), that is

Theorem 1. Let the initial data (ξ1, ξ2, ξ3) be a R3-valued F0-measur-
able random variable satisfying E

[
ξ21 + ξ22 + ξ23

]
< ∞ and ξ1 > 0, ξ2 >

0, ξ3 > 0 a.s. Then there is a unique solution (S(t, ω), I(t, ω), R(t, ω))
of system (1), defined for all t ≥ 0, verifying the initial conditions
S(0, ω) = ξ1, I(0, ω) = ξ2, R(0, ω) = ξ3, and the solution is positive
for all t ≥ 0 with probability 1, namely S(t, ω) > 0, I(t, ω) > 0 and
R(t, ω) > 0 for all t ≥ 0 a.s.

To study the stochastic stabilities of the above system, several def-
initions of stochastic stabilities could be used, where the convergence
of a stochastic sequence could be interpreted in different ways (see [1,
2, 6, 7, 10]). One of the most important definitions of stochastic sta-
bilities is the almost sure asymptotic stability, for which necessary and
sufficient conditions are always determined by the largest Lyapunov ex-
ponent (see [3, 4, 8, 15]). To the best of the authors’ knowledge, there is
no result in the study of the almost sure asymptotic stability of the SIRS
model. Our result concerning the stability of the trivial equilibrium of
system (1) is the following.
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Theorem 2. The trivial solution (1, 0, 0) of system (1) is almost surely

asymptotically stable if and only if 0 < β < λ+ µ+
σ2
1

2 .

In the following we shall prove Theorem 1 in Section 2 and Theorem 2
in Section 3.

2. Global and positive solutions

We now prove Theorem 1. Since the coefficients of system (1) are
locally Lipschitz continuous, for any given initial data (ξ1, ξ2, ξ3), which
is a R3-valued F0-measurable random variable satisfying

E
[
ξ21 + ξ22 + ξ23

]
<∞,

there is a unique maximal local solution (S(t, ω), I(t, ω)), R(t, ω)) on t ∈
[0, τe(ω)), that verifies the initial conditions S(0, ω) = ξ1, I(0, ω) = ξ2,
R(0, ω) = ξ3.

From now on we assume that ξ1 > 0, ξ2 > 0, ξ3 > 0 a.s. Firstly, we
show that S(t), I(t) and R(t) are positive for all t ∈ [0, τe(ω)) a.s. Define
the stopping time

t+ = sup
{
t ∈ (0, τe) : S|[0,t] > 0, I(t)|[0,t] > 0 and R|[0,t] > 0

}
.

We need to show that t+ = τe a.s.
We assume to the contrary that P{t+ < τe} > 0. Itô’s formula shows

that, for almost all ω ∈ {t+ < τe} and all t ∈ [0, t+),

lnS(t) + ln I(t) + lnR(t)− ln ξ1 − ln ξ2 − ln ξ3

=

∫ t

0

[
−βI(s)− (λ+ γ + 3µ) +

γR(s) + µ

S(s)
+ βS(s) +

λI(s)

R(s)

]
ds

− 1

2

∫ t

0

[
(σ1I(s) + σ2R(s))2 + (σ2

1 + σ2
2)S(s)2

]
ds

+

∫ t

0

[σ1S(s) + σ2S(s)− σ1I(s)− σ2R(s)] dw(s)

≥
∫ t

0

[
−βI(s)− (λ+ γ + 3µ)

]
ds

−
∫ t

0

1

2

[(
σ1I(s) + σ2R(s))2 + (σ2

1 + σ2
2)S(s)2

)]
ds

+

∫ t

0

[
σ1S(s) + σ2S(s)− σ1I(s)− σ2R(s)

]
dw(s).
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It is easy to see that, for almost all ω in {t+ < τe}, S(t), I(t) and R(t)
are positive on [0, t+) and S(t+)I(t+)R(t+) = 0, hence

lim
t↗t+

[lnS(t) + ln I(t) + lnR(t)] = −∞.

By the above inequality, one has

(2) −∞≥
∫ t+

0

[
σ1S(s)+σ2S(s)−σ1I(s)−σ2R(s)

]
dw(s)

−
∫ t+

0

(
βI(s)+λ+γ+3µ+

1

2
((σ1I(s)+σ2R(s))2+(σ2

1+σ2
2)S(s)2)

)
ds

which is a contradiction since the right hand side of the above inequality
is finite, so we must therefore have t+ = τe a.s.

Now we prove that τe =∞.
For each integer k such that k ≥ ξ1 + ξ2 + ξ3 a.s., define the stopping

time
τk = sup

{
t ∈ [0, τe) : (S + I +R)|[0,t] ≤ k

}
.

Clearly, τk is increasing as k → +∞. Set τ∞ = lim
k→+∞

τk, whence τ∞ ≤ τe
a.s. We claim that P{τ∞ 6= τe} = 0. To see this, we assume to the
contrary that P{τ∞ < τe} > 0. Itô’s formula shows that, for almost all
ω ∈ {τ∞ < τe},

eµτk(S(τk) + I(τk) +R(τk)) = ξ1 + ξ2 + ξ3 + eµτk − 1.

It follows from τ∞ < τe that S(τk) + I(τk) + R(τk) = k a.s. Letting
k → +∞ leads to

+∞ = ξ1 + ξ2 + ξ3 + eµτ∞ − 1,

which is a contradiction since the right hand side of the above inequality
is finite for almost all ω ∈ {τ∞ < τe}, so we must therefore have τ∞ = τe
a.s.

Next we prove that P{τe <∞, τ∞ <∞} = 0.
Let T > 0 be arbitrary. We have by Itô’s formula that

1{τe<∞}e
µ(τk∧T ) [S(τk ∧ T ) + I(τk ∧ T ) +R(τk ∧ T )]

= 1{τe<∞}

(
ξ1 + ξ2 + ξ3

)
+ 1{τe<∞}(e

µ(τk∧T ) − 1),

where 1{·} means the indicator function of the corresponding set. Taking
expectations, we obtain

(3) E
[
1{τe<∞}e

µ(τk∧T ) (S(τk ∧ T ) + I(τk ∧ T ) +R(τk ∧ T ))
]

≤ E [ξ1 + ξ2 + ξ3] + eµT .
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Obviously,

1{τe<∞}e
µ(τk∧T ) [S(τk ∧ T ) + I(τk ∧ T ) +R(τk ∧ T )]

≥ 1{τe<∞, τk≤T} [S(τk) + I(τk) +R(τk)] = 1{τe<∞, τk≤T}k.

Substituting these into (3) gives

kP{τe <∞, τk ≤ T} ≤ E [ξ1 + ξ2 + ξ3] + eµT .

Letting k → +∞ leads to lim
k→∞

P{τe <∞, τk ≤ T} = 0 and hence

P{τe <∞, τ∞ ≤ T} = 0.

Since T > 0 is arbitrary, we then have P{τe <∞, τ∞ <∞} = 0.
Now by using the relation

{τe <∞} = {τe <∞, τ∞ =∞} ∪ {τe <∞, τ∞ <∞}
⊆ {τ∞ 6= τe} ∪ {τe <∞, τ∞ <∞},

we obtain P{τe < ∞} = 0. Hence P{τe = ∞} = 1. This completes the
proof of Theorem 1.

3. Proof of Theorem 2

We first make changes of variables so that the origin will represent
the disease free equilibrium. Under the transformation

(4) u1 = S − 1, u2 = I, u3 = R,

system (1) has the following form

du1(t) = [−β(u1(t) + 1)u2(t)− µu1(t) + γu3(t)] dt

− (u1(t) + 1)(σ1u2(t) + σ2u3(t)) dw(t),

du2(t) = [β(u1(t) + 1)− λ− µ]u2(t) dt+ σ1(u1(t) + 1)u2(t) dw(t),

du3(t) = [λu2(t)− (µ+ γ)u3(t)] dt+ σ2(u1(t) + 1)u3(t) dw(t).

According to the Oseledec Multiplicative Ergodic Theorem, a necessary
and sufficient condition for the almost sure asymptotic stability of the
trivial solution of the system is that the largest Lyapunov exponent of the
linearized system is negative (see [8, 16]). We consider the corresponding
linearized system

du1(t) = [−βu2(t)− µu1(t)+γu3(t)] dt−(σ1u2(t) + σ2u3(t)) dw(t),

du2(t) = (β − λ− µ)u2(t) dt+ σ1u2(t) dw(t),

du3(t) = [λu2(t)− (µ+ γ)u3(t)] dt+ σ2u3(t) dw(t).

(5)

We denote by u(t, u0) the unique solution of the system verifying the
initial condition u(0) = u0 = (u10, u20, u30). We shall prove from now
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on: The largest Lyapunov exponent of system (5) is negative if and only

if 0 < β < λ+ µ+
σ2
1

2 . More precisely, we prove that, for any u0 ∈ Rn,
the solution u(t, u0) of system (5) satisfies the following

lim sup
t→+∞

1

t
log ‖u(t, u0)‖=max

{
β −

(
λ+ µ+

σ2
1

2

)
,−γ − µ− σ2

2

2
,−µ

}
.

The second equation in (5) is a scalar linear stochastic differential

equation. So one can solve it explicitly. Denoting a = λ + µ +
σ2
1

2 − β,

we then have a > 0, if and only if 0 < β < λ+ µ+
σ2
1

2 , and

u2(t) = u2(t, u20) = e−at+σ1w(t)u20.

It is clear that

lim sup
t→+∞

1

t
log |u2(t, u20)| = −a.

Substituting u2(t) in the first and third equations in system (5), we

obtain, by denoting U(t) =
(
u1(t)
u3(t)

)
, the following system

dU(t) =
(
FU(t) + f(t)

)
dt+

(
GU(t) + g(t)

)
dw(t),

where

F =

(
−µ γ
0 −µ− γ

)
, f(t) =

(
−βu2(t)
λu2(t)

)
,

G =

(
0 −σ2
0 σ2

)
, g(t) =

(
−σ1u2(t)

0

)
.

We use the variation of constants method to solve the above system (see
for example [14]). The corresponding homogeneous system is

dU(t) = FU(t) dt+GU(t) dw(t).

Since FG = GF , one can solve it to obtain a fundamental matrix solu-
tion Φ(t) which is given by

Φ(t) = e(F−
1
2G

2)t+Gw(t) = eHteGw(t),

where

H =

(
−µ γ + 1

2σ
2
2

0 −µ− γ − 1
2σ

2
2

)
.
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And consequently, since Gg(t) = ( 0
0 ), the solution of system (5) is

U = eHt+Gw(t)

[
U(0) +

∫ t

0

e−Hs−Gw(s)f(s) ds

+

∫ t

0

e−Hs−Gw(s)g(s) dw(s)

]
.

Let

P =

(
1 −1
0 1

)
.

Then

P−1HP =

(
−µ 0
0 −µ− γ − 1

2σ
2
2

)
.

Therefore, with a′ = µ+ γ + 1
2σ

2
2 > 0, one has

eHt = P

(
e−µt 0

0 e−a
′t

)
P−1 =

(
e−µt e−µt − e−a′t

0 e−a
′t

)
.

Similarly

eGw(t) =

(
1 1− eσ2w(t)

0 eσ2w(t)

)
.

Hence

eHt+Gw(t) =

(
e−µt e−µt − e−a′t+σ2w(t)

0 e−a
′t+σ2w(t)

)
.

Therefore∫ t

0

e−Hs−Gw(s)f(s) ds

=


∫ t

0

((λ− β)e(µ−a)s+σ1w(s) − λe(a
′−a)s+(σ1−σ2)w(s)) ds

λ

∫ t

0

e(a
′−a)s+(σ1−σ2)w(s) ds

u20

and∫ t

0

e−Hse−Gw(s)g(s) dw(s) =

−σ1 ∫ t

0

e(µ−a)s+σ1w(s) dw(s)

0

u20.
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Therefore

eHt+Gw(t)

∫ t

0
e−Hs−Gw(s)f(s) ds

=

(λ−β)e−µt
∫ t

0
e(µ−a)s+σ1w(s)ds−λe−a

′t+σ2w(t)

∫ t

0
e(a

′−a)s+(σ1−σ2)w(s)) ds

λe−a
′t+σ2w(t)

∫ t

0
e(a

′−a)s+(σ1−σ2)w(s) ds

u20,
and

eHt+Gw(t)

∫ t

0

e−Hs−Gw(s)g(s) dw(s)

=

−σ1e−µt ∫ t

0

e(µ−a)s+σ1w(s) dw(s)

0

u20.

We obtain finally

u1(t) = u10e
−µt + u30(e−µt − e−a

′t+σ2w(t))

+ u20(λ− β)e−µt
∫ t

0

e(µ−a)s+σ1w(s) ds

− u20λe−a
′t+σ2w(t)

∫ t

0

e(a
′−a)s+(σ1−σ2)w(s) ds

− u20σ1e−µt
∫ t

0

e(µ−a)s+σ1w(s) dw(s)

and

u3(t) = e−a
′t+σ2w(t)

(
u30 + u20λ

∫ t

0

e(a
′−a)s+(σ1−σ2)w(s) ds

)
.

By Itô’s formula one has

e(µ−a)t+σ1w(t) − 1 =

∫ t

0

(
µ− a+

1

2
σ2
1

)
e(µ−a)s+σ1w(s) ds

+ σ1

∫ t

0

e(µ−a)s+σ1w(s) dw(s).

Then

σ1

∫ t

0

e(µ−a)s+σ1w(s) dw(s) = e(µ−a)t+σ1w(t)

− 1−
(
µ− a+

1

2
σ2
1

)∫ t

0

e(µ−a)s+σ1w(s) ds.
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Since w(t) is a standard Wiener process, one has

|w(t)| ≤ c
√

2t| log(| log t|)| a.s. where c is a constant. Let µ′ = µ or a′,
and σ = σ1 or σ1 − σ2.

If a = µ′, then for t > e,

∫ t

0

e(µ
′−a)s+σw(s) ds =

∫ t

0

eσw(s) ds =

∫ e

0

eσw(s) ds+

∫ t

e

eσw(s) ds

≤
∫ e

0

eσw(s) ds+

∫ t

e

e|σ|c
√
2s log log s ds

≤
∫ e

0

eσw(s) ds+ (t− e)e|σ|c
√
2t log log t

≤
∫ e

0

eσw(s) ds+ te|σ|c
√
2t log log t.

If a 6= µ′, then for t > e,

∫ t

0

e(µ
′−a)s+σw(s) ds =

∫ e

0

e(µ
′−a)s+σw(s) ds+

∫ t

e

e(µ
′−a)s+σw(s) ds

≤
∫ e

0

e(µ
′−a)s+σw(s) ds+

∫ t

e

e(µ
′−a)s+|σ|c

√
2s log log s ds

≤
∫ e

0

e(µ
′−a)s+σw(s) ds+

∫ t

e

e(µ
′−a)s+|σ|c

√
2t log log t ds

=

∫ e

0

e(µ
′−a)s+σw(s) ds

+
e(µ

′−a)t − e(µ′−a)e

µ′ − a
e|σ1|c

√
2t log log t

≤
∫ e

0

e(µ
′−a)s+σw(s) ds+

e(µ
′−a)t

|µ′ − a|
e|σ|c

√
2t log log t

+
e(µ

′−a)e

|µ′ − a|
e|σ|c

√
2t log log t.



Lyapunov Exponent of a Stochastic SIRS Model 163

One then has for t ≥ e,

|u1(t)|≤C1e
−µt + C2e

−a′t+σ2w(t)

+C3

[
te−µt + e−at + e−µt

]
e|σ1|c

√
2t log log t

+C4

[
te−a

′t+σ2w(t)+e−at+σ2w(t)+e−a
′t+σ2w(t)

]
e|σ1−σ2|c

√
2t log log t

+C5e
−at+σ1w(t),

where the Cj are positive constants. Therefore

lim supt→+∞
1

t
log |u1(t)| = max{−µ,−a′,−a} < 0.

The assertion for u3(t) can be proved similarly. Therefore the Lya-
punov exponent of the system is Λ = max{−µ,−a′,−a} which is nega-

tive if and only if a = λ+ µ+
σ2
1

2 − β > 0. This completes the proof of
Theorem 2.

4. Conclusional discussions

Mathematically, σ2
1/2 can be regarded as the intensity of the environ-

mental stochastic perturbation on the transmission rate of the disease.
We see that, for σ1 = σ2 = 0, i.e., there is no environmental stochas-
tic perturbation for the transmission rate, β < β0 , λ + µ guarantees
the disappearance of the disease, which agrees well with the classical
results. Taken the environment noise into account, the introduction of
the noise in the deterministic SIRS model increase the deterministic sta-
bility threshold β0 of the disease-free equilibrium to β̂0 , λ + µ +

σ2
1

2 ,
under which the disease-free equilibrium is almost sure asymptotic stable
such that the disease cannot establish itself and it will disappear finally
leaving all the population susceptible.
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Moskov. Mat. Obšč. 19 (1968), 179–210.

[17] E. Tornatore, S. M. Buccellato, and P. Vetro, Stability of
a stochastic SIR system, Physica A: Statistical Mechanics and its
Applications 354 (2005), 111–126. DOI: 10.1016/j.physa.2005.02.

057.
[18] Y. Xiao, L. Chen, and F. ven den Bosch, Dynamical behav-

ior for a stage-structured SIR infectious disease model, Nonlinear
Anal. Real World Appl. 3(2) (2002), 175–190. DOI: 10.1016/S1468-

1218(01)00021-9.

Guoting Chen:

UFR de Mathématiques
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