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Abstract: Quadruples (a, b, c, d) of positive integers a < b < c < d with the property

that the product of any two of them is one more than a perfect square are studied.

Improved lower and upper bounds for the entries b and c are established. As an
application of these results, a bound for the number of such quadruples is obtained.
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1. Introduction

A set of positive integers is called D(−1)-set if the product of any two
distinct elements of it is one more than a perfect square. Dujella and
Fuchs [7] proved that there exists no D(−1)-set with more than four el-
ements. It is also known [6] that there are finitely many D(−1)-quadru-
ples. This is the best available result towards the conjecture [4] that
there exists none.

As far as we know, the best result in this direction is due to Filipin and
Fujita [10], who prove that there exist at most 10356 D(−1)-quadruples.
One of the results obtained in the present paper is the following absolute
bound for the number of D(−1)-quadruples.

Theorem 1.1. The number of D(−1)-quadruples is less than 4 · 1070.

The proof idea already appeared in [5]: consider an initial subse-
quence of a D(−1)-quadruple and estimate the number of possibilities
to extend it without loosing the defining property. The novelty here is
the systematic use of the fact that, with the exception of the first en-
try, all entries have only odd prime divisors congruent to 1 mod 4. All
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integers of the form x2 + 1 have in common this property, along with
another useful property —they are either odd or twice an odd number.

In the course of the proof there are needed estimates for the entries
of a D(−1)-triple (a, b, c) supposedly extendable to a D(−1)-quadruple.
According to the best published ones, one has a = 1, 101 ≤ b < c <
min{11 b6, 10491}. Moreover, the absolute upper bound for the third
entry can be substantially smaller if c is between smaller powers of b
(see [6, Theorem 1]). We improve on this result by examining a finer
stratification of the search space for c.

Theorem 1.2. Let (1, b, c, d) with 1 < b < c < d be a D(−1)-quadruple.
Then b > 1.024 · 1013 and max{1014b, b1.16} < c < min{2.5 b6, 10148}.
More precisely:

i) If b5 ≤ c < 2.5 b6 then c < 10100.

ii) If b4 ≤ c < b5 then c < 1082.

iii) If b3.5 ≤ c < b4 then c < 1066.

iv) If b3 ≤ c < b3.5 then c < 1057.

v) If b2 ≤ c < b3 then c < 10111.

vi) If b1.5 ≤ c < b2 then c < 10109.

vii) If b1.4 ≤ c < b1.5 then c < 10128.

viii) If b1.3 ≤ c < b1.4 then c < 10148.

ix) If b1.2 ≤ c < b1.3 then c < 10133.

x) If b1.16 ≤ c < b1.2 then c < 10107.

The statement is an illustration of one of our guiding paradigms,
smoothification. At first sight, this means cutting the search domain in
many fine slices. More important aspects of the idea will be discussed in
Section 3, when all the relevant definitions and notation will be available.

The proof of Theorem 1.2 is based on a study of the system of three
generalized Pell equations attached to a hypothetical D(−1)-quadruple
(1, b, c, d) (see equations (3) to (5) in Section 2). The positive solutions of
each individual equation are expressed in terms of the fundamental ones
in the usual way. This gives rise, on the one hand, to linear forms in the
logarithms of three algebraic numbers and, on the other hand, to linear
recurrent sequences. Each of these objects provide useful information
on the quadruple under scrutiny. In order to deal with sequences of
the type encountered below in equations (8) and (9), Dujella and Pethő
introduced the congruence method in [8]. The idea is to consider the
recurrent relations modulo c2 and prove that, under suitable hypotheses,
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such congruences turn into equalities. We adopt a different standpoint
and use a variant of this idea. Details are found also in Section 3.

A third source of improvements in comparison to published results is
the heavy use of computer-aided calculations. The goal is to eliminate
small values of various parameters attached to a hypothetical D(−1)-
quadruple.

The outcome of some large-scale computations is reported in Sec-
tion 2, where a variety of necessary conditions that must be satisfied by
a D(−1)-quadruple are tightened by either rising the lower bounds or
lowering the upper bounds. Section 3 contains the proof of a variant of
Theorem 1.2. Here we use the linear form in logarithms corresponding
to the pair of generalized Pell equations involving the third component
of a putative D(−1)-quadruple. The proof of Theorem 1.2 is completed
in Section 4 with the help of an other linear form in three logarithms
generated from the system of generalized Pell equations attached to the
D(−1)-quadruple under study. Theorem 1.2 is applied in the proof of
Theorem 1.1, which is given in the final section of the paper.

Acknowledgements. We would like to thank the anonymous referee
for suggestions incorporated in the final version of the paper.

2. Preparations for the proofs of the main results

The aim of this section is to slightly improve published results on
hypothetical D(−1)-quadruples. Our strategy consists in strengthening
of necessary conditions that must be satisfied by such a quadruple. The
combined use of several tools results in higher lower bounds for several
parameters naturally attached to the object of study and in more precise
information on them.

Below (a, b, c, d) is a D(−1)-quadruple with a < b < c < d. Then
a = 1 (see [7]) and b > 100 by results proved in [1], [3], [11], and [16].
Moreover, one also knows that c < 11 b6 (see [6]). Combining a very
recent result of He and Togbé [12] with Lemma 7 in [7] one obtains that
c > 3b. Our first contribution is a slight improvement of the gap between
the second and third entries of a hypothetic D(−1)-quadruple.

The setting is as follows. To a putative D(−1)-quadruple (1, b, c, d)
with 1 < b < c < d and c < 11 b6 one associates positive integers r, s, t,
x, y, z defined by

b− 1 = r2, c− 1 = s2, bc− 1 = t2,(1)

d− 1 = x2, bd− 1 = y2, cd− 1 = z2.(2)
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Eliminating d in equation (2), one obtains a system of three general-
ized Pell equations

z2 − cx2 = c− 1,(3)

bz2 − cy2 = c− b,(4)

y2 − bx2 = b− 1.(5)

The positive integer solutions of each of these equations are respectively
given by

z + x
√
c = (z0 + x0

√
c)(s+

√
c)2m, m ≥ 0,

z
√
b+ y

√
c = (z1

√
b+ y1

√
c)(t+

√
bc)2n, n ≥ 0,

y + x
√
b = (y2 + x2

√
b)(r +

√
b)2l, l ≥ 0,

for suitable integers 0 < z0 < c, |x0| < s, 0 < z1 < bc, |y1| < t,
0 < y2 < b, |x2| < r. In [6] it is shown that for c < b9 one has
x0 = 0, z0 = z1 = s, y1 = ρr for a fixed ρ ∈ {−1, 1}. Therefore, the
solutions (x, y, z) satisfy

(6) z = vm = wn,

where m, n are positive integers such that

(7) m ≡ n (mod 2), n ≤ m ≤ 2n,

and the integer sequences (vp)p≥0, (wp)p≥0 are given by explicit formulæ

(8) vp =
s

2

(
(s+

√
c)2p + (s−

√
c)2p

)
and respectively

(9) wp =
s
√
b+ ρr

√
c

2
√
b

(t+
√
bc)2p +

s
√
b− ρr

√
c

2
√
b

(t−
√
bc)2p.

All these assertions are established in [6].
Equation (6) gives rise to a linear form in the logarithms of three

algebraic numbers

(10) Λ = 2n log(t+
√
bc)− 2m log(s+

√
c) + log

s
√
b+ ρr

√
c

s
√
b

,

which plays an important role all over the paper.
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2.1. Gap principle. Our work uses the next improved gap principle.

Lemma 2.1. Let (1, b, c, d) be a D(−1)-quadruple with 1 < b < c < d.

Then c > (7 + 3
√

5)b > 13.7 b.

Proof: Put f = t−rs, g = bs−rt, h = st−cr, and e = 2bc−2rst−c−b−1.
Then it is routine to verify that f , g, h are positive, e is nonnegative,
and

e+ 1 = f2, be+ 1 = g2, ce+ 1 = h2,

c = 1 + b+ (2b− 1)e+ 2rfg.

Therefore, if e = 0 then f = g = 1 and c = 1 + b + 2r. Having in view
equation (1), it results s = r + 1. However, He and Togbé have just
proved [12] that there is no D(−1)-quadruple with s = r + 1. Hence,
f ≥ 2, whence e ≥ 3 and

c ≥ 1 + b+ 3(2b− 1) + 4
√

(b− 1)(3b+ 1) > (7 + 3
√

5)b > 13.7 b.

2.2. Improved relative upper bound on c. A close look at Fujita’s
paper [11] suffices to squeeze a little bit the numerical coefficient in the
inequality c < 11b6. This has already been noticed by Tamura [16].
Since this work is not published yet, we prefer to sketch the argument.

Lemma 2.2. Let b and N be integers with b ≥ 101 and N ≥ 2.39b7.
Then the numbers

θ1 =

√
1 +

1− b
N

and θ2 =

√
1 +

1

N

satisfy

max

{∣∣∣∣θ1 − p1
q

∣∣∣∣ , ∣∣∣∣θ2 − p2
q

∣∣∣∣} >

{
32.001

b2(b− 1)2

2b− 1
N

}−1
q−1−λ

for all integers p1, p2, q with q > 0, where

λ =
log 16.0005 b2(b−1)2N

2b−1

log 3.3749N2

b2(b−1)2
.

Proof: In the notation introduced in the proof of Lemma 3.6 of [11], one
has

DP = 2b2(b− 1)2
8

2b− 1

(
1 +

3

2N

)
<

16.0005 b2(b− 1)2N

2b− 1
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and

2pDP <
32.001 b2(b− 1)2N

2b− 1
,

L

D
=

27

4
·
(
1− b−1

N

)2
N2

2b2(b− 1)2N
≥ 3.3749N2

b2(b− 1)2
.

The rest of the proof goes as in loc.cit.

It is easy to prove the following estimate (see [11, Lemma 3.7]): Let
N = t2 and θ1, θ2 as above, then all the solutions (x, y, z) of the simul-
taneous Pell-Fermat equations{

z2 − cx2 = c− 1,

bz2 − cy2 = c− b

satisfy

max

{∣∣∣∣θ1 − bsx

ty

∣∣∣∣ , ∣∣∣∣θ2 − bz

ty

∣∣∣∣} <
b− 1

y2
.

These inequalities are employed as in the proof of Theorem 3.5
from [11] to conclude an upper bound on y.

Proposition 2.1. If b ≥ 101 and c ≥ 2.4b6 then

log y <
2 log 1.8371 c

b−1 · log(16.001 b6c2)

log 0.4135 c
b6

.

Proof: On noting that c ≥ 2.4 b6 implies N = t2 = bc−1 > 2.39 b7, from
the above study applied for p1 = bsx, b2 = bz, and q = ty we get{

32.001
b2(b− 1)2

2b− 1
t2
}−1

(ty)−1−λ <
b− 1

y2
.

Since λ < 1, this implies

y1−λ < 32.001
b2(b− 1)3

2b− 1
t3+λ < 32.001

b2(b− 1)3(bc− 1)2

2b− 1
.

Hence,

log y <
log 3.3749 (bc−1)2

b2(b−1)2 · log 32.001 b2(b−1)3(bc−1)2
2b−1

log 3.3749 (2b−1)(bc−1)
16.0005 b4(b−1)4

.

Notice that

log
3.3749 (bc− 1)2

b2(b− 1)2
< 2 log

1.8371 c

b− 1
,

log
32.001 b2(b− 1)3(bc− 1)2

2b− 1
< log(16.001 b6c2),
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and

log
3.3749 (2b− 1)(bc− 1)

16.0005 b4(b− 1)4
> log

0.4135 c

b4(b− 1)2
> log

0.4135 c

b6
.

From Lemma 2.3 below we get a lower bound on log y

m log(4c− 3) < log y

we shall compare with the upper bound just obtained.
Suppose c = µb6, with µ ≥ 2.4. Then, using the inequality n >√

3(
√
µc)1/6 we shall shortly prove, we get

√
3(
√
µc )1/6 log(4c− 3) <

2 log 1.8371 c
b−1 · log(16.001 b6c2)

log 0.4135 c
b6

.

After some tiny simplifications, this is

f(c) :=
2 log 0.0184 c · log(16.001 c3/µ)

log(0.4135µ)
−
√

3µ1/6c1/6 log(4c− 3) > 0.

Then a computer verification shows that the previous inequality does
not hold for c ≥ 1016 and µ = 2.5.

Thus we have proved the following result.

Theorem 2.1. If (1, b, c, d) is a D(−1)-quadruple with 100 < b < c < d
then

c < 2.5 b6.

Lemma 2.3. Keep the notation introduced in the proof of Proposi-
tion 2.1. Then m log(4c− 3) < log y.

Proof: There is nothing to prove for m = 0, so assume m is positive.
From

x =
s

2
√
c

(
(s+

√
c)2m − (s−

√
c)2m

)
and y2 − bx2 = r2 it results

y > x
√
b =

s
√
b

2
√
c

(
(s+

√
c)2m − (s−

√
c)2m

)
>

10s

2
√
c

(
(s+

√
c)2m − (s−

√
c)2m

)
>

9s(s+
√
c)2m

2
√
c

> (s+
√
c)2m > (4c− 3)m.

Lemma 2.4. If c ≥ max{µb6, 3
√

3µ1/4b3} then n >
√

3µ1/12c1/6.
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Proof: We reason by reduction to absurd. From [7, Lemma 2 iii)] we
have

s(bn2 −m2) ≡ ρrtn (mod 4c).

Assuming n ≤
√

3µ1/12c1/6, we get

|s(bn2 −m2)| ≤ s(b− 1)n2 < 3sbµ1/6c1/3 < 3c1/2+1/6+1/3 = 3c,

rtn < b1/2 · (bc)1/2 ·
√

3µ1/12c1/6 =
√

3µ1/12 b c2/3 ≤ c.
It results s(bn2 −m2) = rtn, whence (b − 1)(bc − 1)n2 = (c − 1)(bn2 −
m2)2 ≥ (c − 1)(b − 4)2n4. Since n ≥ 3 by [7, Lemma 6], this readily
leads to the contradiction b < 9.

2.3. Inequalities for m and n. Next we consider the inequalities
relating m and n. It is known that n ≤ m ≤ 2n. Our study is based on
manipulations of the linear form

Λ = 2d log(s+
√
c)− 2n log

(s+
√
c)2

t+
√
bc

+ log θ, d := 2n−m.

We first examine the consequences of the equality m = 2n. It is
proved in [7] that m and n are of the same parity and that v4 6= w2,
thus we suppose n ≥ 4 and even. Then the linear form becomes

Λ = log θ − 2n log
(s+

√
c)2

t+
√
bc

.

Since (s +
√
c)2 > 7(t +

√
bc) and Λ is positive (see Lemma 2.6 below),

one arrives at the conclusion that n < 1, a contradiction that shows that
one has m < 2n. This inequality can be strengthened as follows.

Lemma 2.5. The indices m and n satisfy

2m− 1

2n
<

log(t+
√
bc)

log(s+
√
c)

<
log(4bc)

log(3.996c)
.

Proof: From Λ positive we deduce

2n log(t+
√
bc)−(2m−1) log(s+

√
c)> Λ + log(s+

√
c)− log θ

> log
s
√
b(s+

√
c)

s
√
b+ r

√
c
> log s>0.

The next result provides not only the information (positivity of Λ)
already used in the above proof, but also a tight upper bound for the
linear form in logarithms associated to a hypothetic D(−1)-quadruple.

Lemma 2.6. 0 < Λ < 0.04 (t+
√
bc)−2n.
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Proof: First of all rewrite the equality vm = wn in the equivalent form
P + (c− 1)P−1 = Q+ c−b

b Q−1, with

P := s(s+
√
c)2m, Q :=

s
√
b+ ρr

√
c√

b
(t+
√
bc)2n.

From

P ≥ s(2c− 1 + 2s
√
c) > 4s(c− 1)

and

Q ≥ s
√
b− r

√
c√

b
(2bc− 1 + 2t

√
bc) ≥ 2c,

we get

Q− P = (c− 1)P−1 − c− b
b

Q−1 > (c− 1)(P−1 −Q−1)

= (c− 1)(Q− P )P−1Q−1.

Therefore,

0 < Q− P < (c− 1)P−1 <
1

4s
.

We use the elementary inequality − log(1−x) < 1.01x valid for 0 < x <
1/101 to conclude

0 < Λ = log
Q

P
< 1.01

(
Q− P
Q

)
<

1.01

4sQ

≤ 1.01
√
b

4s
· (t+

√
bc)−2n

s
√
b− r

√
c

<
1.01
√
b

4s
· (t+

√
bc)−2n

c− b
· 2s
√
b < 0.04 (t+

√
bc)−2n.

In the last inequality in this chain we have invoked the gap principle
given in Lemma 2.1.

We now focus on the inequality m ≥ n. It can be refined as follows.

Lemma 2.7. The indices m and n satisfy

m

n
>

log(bc− 1)

log(4c)
.
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Proof: The claim is obtained by noticing that

m

n
=

1

log(s+
√
c)

(
log(t+

√
bc)− Λ

2n
+

1

2n
log

(
1 +

ρr
√
c

s
√
b

))

>
log
√
bc− 1

log(2
√
c)

=
log(bc− 1)

log(4c)
.

Since c < 2.5 b6 and b ≥ 101, this implies the following result.

Lemma 2.8. The indices m and n satisfy

m

n
>

log(2.49 b7)

log(10 b6)
> 1.1075.

2.4. Small values of n. In [7] it is proved that there is no solution
of wn = vm for n = 1 and n = 2. We want to extend this result up
to n = 6. Indeed, we verify the following.

Proposition 2.2. There is no solution of wn = vm for 1 ≤ n ≤ 6.

Proof: We know that n > 2
3c

1/12 for c > b3 (this is essentially proved
in [6, Lemma 12], where the coefficient is not correct). Similar inequal-
ities relate n and certain powers of c with small positive exponent for
b1.1 < c < b3 and c < b1.1. (We shall prove stronger results of this
kind in Section 3.) We also know that c < 2.5 b6, so assuming n ≤ 6
we get relatively small absolute upper bounds on c, and an elementary
numerical study of the linear form Λ gives much tighter estimates for b
and c. It follows that we only have to consider the range 10 ≤ r ≤ 20000
(since b ≥ 101). The verification took around 20 minutes on a personal
computer.

2.5. A lower bound on b. It is known that there is no D(−1)-quadru-
ple (1, b, c, d) with 1 < b < c < d for b < 100. Here we extend this result
up to r ≤ 32 · 105.

Proposition 2.3. There is no D(−1)-quadruple (1, b, c, d) with 1 < b <
c < d and b < 1.024 · 1013.

The result up to b < 100 was proved by several authors. We follow
their strategy, using the previous lower bound n > 6, consequence of
the relation wn = vm. The method is to apply the Baker-Davenport
lemma [2] (or a variant of it, like the one from [8]) to the linear form Λ.
For each fixed r such that b = r2 + 1 we search all the values s which
are solutions of the Pell-Fermat equation

t2 − bs2 = r2
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and satisfy c = s2 + 1 < 3b6. To find all the solutions (u, v) of the
equation

(11) u2 − bv2 = r2

we follow a method due to Nagell, also presented in Mollin’s book [14]. A
solution for which gcd(u, v) = 1 is called primitive. Two solutions (u, v)
and (u′, v′) are said to be in the same class if there exist x and y such

that x2 − by2 = 1 and u′ + v′
√
b = (x + y

√
b)(u + v

√
b). Moreover, the

primitive solution (u, v) such that u is non-negative and least possible
in its class is called fundamental. Fundamental solutions sit in a domain
described by the following well-known result. We denote indifferently a
solution as (u, v) or u+ v

√
b.

Lemma 2.9. Let D be a positive integer which is not a square and N
a positive integer. Suppose that β0 = u0 + v0

√
D is the fundamental

solution of the equation u2 − Dv2 = 1 and α0 = x0 + y0
√
D is the

fundamental solution in its class of the equation x2 −Dy2 = N . Then

0 < |x0| ≤
√

(u0 + 1)N/2 and 0 ≤ |y0| ≤
v0
√
N√

2(u0 + 1)
.

When x2 −Dy2 = N with gcd(x, y) = δ > 1 then δ2 divides N and
if we put x′ = x/δ, y′ = y/δ, and N ′ = N/δ2 then (x′, y′) is a primitive
solution of the equation x2 − Dy2 = N ′, to which the previous lemma
applies. We see that any solution of an equation x2 −Dy2 = N , where
N is positive, is of the form βm0 (x0 + y0

√
D) for some integers x0 and y0

such that

0 < |x0| ≤
√

(u0 + 1)N/2 and 0 ≤ |y0| ≤
v0
√
N√

2(u0 + 1)
.

From this result it follows that, up to a power of the fundamental
unit 2b − 1 + 2r

√
b, there is a solution (u, v) to equation (11) which

satisfies

0 ≤ |v| < r.

Then we find all the possible values of c=s2 + 1 in the range 13.7b<
c<3b6, and for each pair (r, s) we apply Baker-Davenport lemma to the
linear form Λ. The computer verification for b<1010 took about 24 hours
on a personal computer (the code employed for this verification is avail-
able at http://mat.uab.cat/pubmat). To finish the computations we
had to employ a network of 6 computers for roughly three months. All
computations were performed by using the package PARI/GP [15].

http://mat.uab.cat/pubmat/fitxers/download/FileType:other/FolderName:./FileName:ondquadru.gp
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3. Bounds for the size of D(−1)-quadruples

In this section we prove a weaker version of Theorem 1.2. We refine
the strategy which proved successful in previous work, particularly [7],
from which we borrow several results and arguments. The reader is
referred to this paper for further details and precise references.

As mentioned in the introduction, the proof is based on the following
congruences.

Lemma 3.1. For n ≥ 2 one has

vn ≡ (−1)n
(

2

3
(n4 − n2)c2s− 2n2cs+ s

)
(mod 32c3),(12)

wn ≡ (−1)n
(

2

3
(n4 − n2)b2s+

4

3
(n3 − n)bρtr

)
c2(13)

− (−1)n(2n2bs+ 2ρtrn)c+ (−1)ns (mod 32c3).

In particular,

vn ≡ (−1)n(−2n2cs+ s) (mod 8c2),(14)

wn ≡ − (−1)n(2n2bs+ 2ρtrn)c+ (−1)ns (mod 8c2).(15)

Another tool intensively utilized in this section is the linear form Λ
introduced in equation (10). A lower bound for Λ is obtained by the
next particular case of [13, Theorem 2.1].

Lemma 3.2. Let Λ be a linear form in logarithms of l multiplicatively in-
dependent totally real algebraic numbers α1, . . . , αl with rational integer
coefficients b1, . . . , bl (bl 6= 0). Let h(αj) denote the absolute logarithmic
height of αj, 1 ≤ j ≤ l. Choose numbers B, D, Aj, 1 ≤ j ≤ l, such that
D = [Q(α1, . . . , αl) : Q],

Aj ≥ max{D h(αj), | logαj |},

B ≥ max

{
|bj |Aj
Al

: 1 ≤ j ≤ l
}
.

Then

log |Λ| > −C(l)C0W0D
2A1 · · ·Al,

where

C(l) =
8

(l − 1)!
(l + 2)(2l + 3) (4e(l + 1))

l+1
,

C0 = log
(
e4.4l+7l5.5D2 log(eD)

)
, W0 = log (1.5eBD log(eD)) .
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In our case we have l=3, α1 =s+
√
c, α2 = t+

√
bc, α3 = s

√
b+ρr
√
c

s
√
b

, D = 4,

h(α1)= 1
2 logα1, h(α2)= 1

2 logα2, h(α3)= 1
2

(
log b(c− 1) + log s

√
b+r
√
c

s
√
b

)
.

We therefore may take

A1 = 2 logα1, A2 = 2 logα2, A3 = 2 log
(
s
√
b(s
√
b+ r

√
c)
)
,

(16) B =
2mA2

A3
.

Combining Lemma 2.6 and Matveev’s theorem, we obtain an upper
bound for n in terms of b and c.

Lemma 3.3. In the above notation one has

n < 6.16 · 1011 log

(
77.84

n log(4c)

log(1.99bc)

)
log(4c) log(2bc).

Proof: Compare the expressions bounding Λ and take into account that
m < 2n to get

n < 3.08 · 1011 log(39.92B)A1A3.

We obtain the announced bound by noticing that A1 < log(4c), A2 <
log(4bc), A3 < 2 log(2bc) and

A3 > 2 log (b(c− 1) + (b− 1)(c− 1)) > 2 log(1.99bc)

because b > 1013, so we may put instead of B from equation (16) the
bigger quantity

2n log(4c)

log(1.99bc)
.

The proof of Theorem 1.2 proceeds by comparison of n and c, which
results in an absolute bound for c. The basic idea of [7] is to show that
the congruence

(17) s(m2 − bn2) ≡ ρtrn (mod 4c),

which is derived from Lemma 3.1 with the help of equations (14) and (15),
turns into an equality. Following the proof of [6, Lemma 14], we consider
the integers

(18) A = 2bc− 2rst− c, B = 2bc+ 2rst− c.
This choice is motivated by the fact that multiplying both sides of (17)
by 2s results in

(19) 2(bn2 −m2) ≡ −ρAn (mod c),

and the goal is to show that this congruence, in fact, implies the equality
2(bn2 −m2) = An.
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A key ingredient of our work is provided by the next result.

Lemma 3.4. The positive integer A introduced in equation (18) satisfies

b+
1

4.002

(
b− 1

c− 1
+
c− 1

b− 1

)
+

1

2.001
< A < b+

1

4

(
b− 1

c− 1
+
c− 1

b− 1

)
+

1

2
.

In particular,

max

{
c− 5

4b
+ b, b+

1

4.002

(
b

c
+
c

b

)
+

1

2.001

}
< A <

1

3.999

(c
b

+ 4b
)
.

Moreover, for c < b2.75 one also has

A <
( c

4b
+ b
)(

1 +
1

b

)
.

Proof: The term A is given by the formulæ

A=2bc−2rst−c=2(r2+1)(s2+1)−2rst−s2−1=2r2s2+2r2+s2+1−2rst.

For 0 < u < 10−4, we use the estimates

1 +
1

2
u− 1

8
u2 < (1 + u)1/2 < 1 +

1

2
u− 1

8.001
u2.

The term t satisfies

t2 + 1 = bc = (r2 + 1)(s2 + 1),

hence

t = rs(1 + u)1/2, where u = r−2 + s−2 < 10−4.

Combining the above information, after some easy simplification we ob-
tain

r2 + 1 +
1

4.002

(
r2

s2
+
s2

r2

)
+

1

2.001
< A < r2 + 1 +

1

4

(
r2

s2
+
s2

r2

)
+

1

2
.

In terms of b and c, this is

b+
1

4.002

(
b− 1

c− 1
+
c− 1

b− 1

)
+

1

2.001
< A < b+

1

4

(
b− 1

c− 1
+
c− 1

b− 1

)
+

1

2
,

which readily implies

b+
1

4.002

(
b

c
+
c

b

)
+

1

2.001
< A <

1

3.999

(c
b

+ 4b
)
.

To prove the other lower bound for A, notice that B = (2b−1)c+2rst
satisfies AB = c2 + 4b2c− 4c− 4b+ 4 and B < 4bc. Therefore,

A >
c2 + 4b2c− 4c− 4b

4bc
> b+

c− 5

4b
>

c

4b
.



On D(−1)-Quadruples 293

The last upper bound for A is consequence of the inequality

b− 1

4(c− 1)
+

c− 1

4(b− 1)
<

c

4b
+

c

4b2
+
b

2
,

or equivalently c2−(2b3−b2+1)c+b4 < 0. When b2 ≤ c this follows from
2c2−(2b3−b2+1)c < 0, which is true because c < b2.75. In case b2 > c it
suffices to note that our gap principle implies 2b4−(2b3−b2+1)c < 0.

The next lemmas point out applications of the inequalities just proved.

Lemma 3.5. For a putative D(−1)-quadruple (1, b, c, d) with 1 < b <
c < d put b− 1 = r2, c− 1 = s2, bc− 1 = t2, and f = t− rs, where r, s,
t are positive. Then one has c > 4 f2(b− 1)− 2.1 b and s > 2 fr− 2r/f .
In particular, c > 3.999f2b > 3.999 · 1014b.

Proof: Notice that A = e + b + 1 = f2 + b, with e and f the integers
introduced in the proof of the gap principle Lemma 2.1. The first two
of the above estimates easily follow from the previous lemma, while the
last one is an experimental result —explicit computations provided no
D(−1)-quadruple for which f ≤ 107.

We are now in a position to bound from below n by powers of c with
much larger exponents than those available in the literature. Such a
result allows one to get an absolute upper bound for c via Lemma 2.6.
Introducing subsequently this upper bound in Matveev’s theorem, n is
also bounded from above by a huge constant. This kind of result is
obtained by an approach described in the introduction as smoothifica-
tion. The basic idea is to bound from below n by an expression depend-
ing continuously on parameters naturally present in the solution to our
problem, and to use such inequalities in conjunction with a stratification
with many layers of the search space.

Lemma 3.6. Suppose vm = wn, where n ≥ 7. Then for c ≥ 0.0576 b3

one has

n > min{3.99 b, 0.03
√
c/b}.

In particular,

a) if b5 ≤ c < 2.5 b6 then n > 3.42 c1/6,

b) if b4 ≤ c < b5 then n > 3.99 c1/5,

c) if b3.5 ≤ c < b4 then n > 3.99 c1/4,

d) if 1332b3 ≤ c < b3.5 then n > 3.99 c2/7.
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Proof: We argue by reduction to absurd. Assuming n ≤ min{3.99b,

0.03
√
c/b}, from c ≥ 0.0576 b3 > 15992 b2 one obtains the two inequali-

ties

0 < An <
1

3.999

(c
b

+ 4b
)
n <

1

3.998

cn

b
< 0.998c

and

0 < 2(bn2 −m2) < 2bn2 < 0.002b(c/b) = 0.002c.

From congruence (19) one concludes that 2(bn2 −m2) = An. Hence,

A < 2bn ≤ 0.06
√
bc.

Lemma 3.4 yields

A >
c

4b

which contradicts the previous inequality.
We treat the case a). Since 0.03

√
c/b > 3.99 b for c > 1332 b3, one

has

n > 3.99 b > 3.99 (c/2.5)1/6 > 3.42 c1/6.

Thus part a) holds.

The others parts are obtained similarly.

We now provide a proof for all parts of a weaker version of Theorem 1.2
referring to large D(−1)-quadruples. While in [6] it is obtained that in
this range one has c < 10238, we succeed to lower the bound to less
than 10107. In the proofs we use a simple observation: for any positive
constant C, a function of the type x 7→ x/(log x + C) is increasing
for x > 3.

Proposition 3.1. Let (1, b, c, d) be a D(−1)-quadruple with 1013 < b <
c < d.

a) If b5 ≤ c < 2.5 b6 then c < 1.66 · 10106.

b) If b4 ≤ c < b5 then c < 5.41 · 1087.

c) If b3.5 ≤ c < b4 then c < 2.71 · 1069.

d) If b3 ≤ c < b3.5 then c < 2.32 · 1060.

Proof: Each interval bM ≤ c < bN has been divided into subintervals
bmj ≤ c < bnj , with mj = M + (j − 1)∆, nj = mj + ∆ for j =
1, 2, . . . , (N − M)/∆, where ∆ = 0.05 or 0.1. On each subinterval,
Lemma 3.3 and the previous lemma yield an upper bound on c. The
proof is obtained by computing the maximum in each interval.
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The most difficult part of the proof covers the range b1.1 ≤ c < b3.
The absolute bound for such c obtained in [6] is 10491. We succeed to
improve on this estimate by considering a stratification with seven layers
of the range of variation for c.

In order to obtain relative lower bounds on n for the medium size
D(−1)-quadruples we study the relation

(20) 2(bn2 −m2) + ρAn = jc.

The congruence method essentially consists of an attempt to find
hypotheses under which one can conclude that one has j = 0. We
adopt a different point of view. Our idea is to study what happens
for nonzero values of j. As a result of such a study, inequalities of the
type n > f(b, c, j) will emerge.

We start with a result whose proof is easy.

Lemma 3.7. If 15992 b2 ≤ c < b3 then n > 0.125 c/b2.

Proof: Assuming n ≤ 0.125 c/b2, one gets

An <
1

3.999

(c
b

+ 4b
)
n <

1

3.998

cn

b
< 0.032c2/b3,

2bn2 < 0.032c2/b3,

so that An = 2bn2 − 2m2. Hence,
c

4b
< A < 2bn ≤ c

4b
,

a blatant contradiction.

For other D(−1)-quadruples of medium size, a relative lower bound
on n is provided by the following analogue of Lemma 3.6.

Lemma 3.8. Suppose vm = wn, with n ≥ 7 and c < b2.75.

a) If ρ = 1 then n > 0.5
√
jc/b ≥ 0.5

√
c/b.

b) Let ρ = −1. Then j is nonnegative. If j is positive then n >

0.5
√

2jc/b ≥ 0.5
√

2c/b. If j = 0 then c > 51.99b2 and

n >

{
c2/11 for c ≥ max{b2.5, 1050},

0.214(c/b)1/3 for c < b2.5.

Proof: a) Notice that the integer j is positive when ρ = 1, so that
max{2bn2, An} ≥ jc/2. If the maximum is 2bn2, the desired conclusion
is obvious. In the opposite case one has 2An ≥ c, and Lemma 3.4 yields

n ≥ 2b2c

(b+ 1)(c+ 4b2)
=

2(b− 1)c

c+ 4b2
+

2c

(b+ 1)(c+ 4b2)
.
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The right hand side is greater than b − 1 when c ≥ 4b2, and greater
than 0.249c/b when c < 4b2. We use this information in relations
0.251(4b + c/b) > A > 2bn and arrive to either 0.251c > b2n ≥ b3

or 4×0.251b > bn, both of which being impossible under the hypotheses
in force.

b) Now there are three cases to examine.

If j < 0, Lemma 3.4 entails

2(bn2 −m2) + c ≤ An <
( c

4b
+ b
)(

1 +
1

b

)
n.

For c ≥ 4b2 this readily implies n > 1.998b, whence

1.001c

2b
> A > 1.999 bn > 3.994 b2,

so that c > b3, contradiction. For c < 4b2 one gets 4n > 0.499c/b, which
in turn implies

2.002 b > A > 1.999 bn,

another contradiction. Thus, equation (20) can not hold for j negative.

If j > 0 then 2(bn2 −m2) ≥ jc+An, whence 2bn2 > jc.

It remains to consider the case j = 0, that is, A = 2bn − k, where
k := 2m2/n. From n ≥ 7, b > 1013, 2n < k < 8n, and Lemma 3.4 it
follows

13.999 b < 2(b− 4)n < A < 1.0001
( c

4b
+ b
)
,

so that c > 51.99 b2.
Assume c ≥ 1050 and b2.5 ≤ c < b2.75. If n ≤ c2/11 then

c

4b
< A < 2bn =⇒ c < 8 b2n < 8 c4/5+2/11,

so that c1/55 < 8, in contradiction with c ≥ 1050.
For c < b2.5, denote D := 4b2(2n− 1)− c, E := 4bA− c− 4b2. From

4(b− 1) ≡ A2 = 4b2n2 − 4bkn+ k2 (mod c)

one gets

(21) Dn2 ≡ 4(2n− 1)b2n2 ≡ (2n− 1)[4(b− 1) + 4bnk − k2] (mod c).

On noticing that D = E+4bk > 8bn−5 > 0, k < 8n, D < c/b+4b+32bn,
one concludes

0 < Dn2 + (2n− 1)[4(b− 1) + 4bnk − k2] < Dn2 + 8bn(nk + 1)

< 32bn3 +
(c
b

+ 4b
)
n2 + 8bn(8n2 + 1).
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For n ≤ 0.214(c/b)1/3 this is less than c, so that congruence (21) is
actually an equality that can be written

n2c = (2n− 1)(A2 − 4(b− 1)).

However, as remarked by Dujella, Filipin, and Fuchs in [6], this leads
to a contradiction: since A2 − 4(b − 1) is divisible by c, it follows that
2n− 1 divides n2, and this is impossible for n ≥ 2. The contradiction is
due to the assumption n ≤ 0.214(c/b)1/3.

For the remaining class of medium D(−1)-quadruples we follow the
reasoning employed in the proof of Lemma 16 from [6]. Although the
strategy is the same, the details are much more intricate because the
estimates are tighter.

Lemma 3.9. Suppose vm = wn for some c < b1.3, then

n > (3b2/c)1/4.

Proof: For ease of reference, we put ∆ := e + 1, so that A = b + ∆.
Lemma 3.4 yields e < ∆ < 0.251 c/b.

A simple computation shows that one has

b+ e− 1 = (2e+ 1)c− 2sfh,

where f , h are the positive integers introduced in the proof of Lemma 2.1.
Squaring this equality, one obtains

(22) b2 + 2(e− 1)b+ e2 + 2e+ 5 ≡ 0 (mod c).

From congruence (19), rewritten in the form

b(2n2 + ρn) ≡ 2m2 − ρ∆n (mod c),

one gets, on the one hand,

b2(2n2 + ρn)2 ≡ (2m2 − ρ∆n)2 (mod c),

and, on the other hand,

2(e− 1)b(2n2 + ρn)2 ≡ 2(e− 1)(2n2 + ρn)(2m2 − ρ∆n) (mod c).

Having in view (22), the sum of the last two congruences becomes

(23) − (e2 + 2e+ 5)(2n2 + ρn)2 ≡ (2m2 − ρ∆n)2

+ 2(e− 1)(2n2 + ρn)(2m2 − ρ∆n) (mod c).
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Assume n ≤ (3b2/c)1/4. By computation we know that e > 1014, we
also know that 7 ≤ n < m < 2n, thus we have the following estimates:

0 < |2m2 − ρ∆|n < 8n2 + ∆n <
(

8n+ 0.251
c

b

)
n,

0 < (2m2 − ρ∆n)2 <
(

8n+ 0.251
c

b

)2
n2,

0 < 2(e−1)(2n2+ρn)|2m2−ρ∆n|< 0.502c

b
×
(

2 +
1

7

)
n2× (8n2 + ∆n),

0 < (e2 + 2e+ 5)(2n2 + ρn)2 < 0.2522 · c
2

b2
· 152

72
· n4 = 0.8748 c.

As one can verify that, under the hypotheses on c and n, the sum
of the right sides is less than c, one concludes that congruence (23) is
actually an equality of the form

(e2 + 2e+ 5)X2 + 2(e− 1)XY + Y 2 = 0,

with X := 2n2+ρn, Y := 2m2−ρ∆n. As the discriminant is negative, it
results X = Y = 0, which is possible only for n = 0. The contradiction
implies the asserted result.

Now we can complete the proof of a weaker analog of Theorem 1.2.
Besides the first nine cases enumerated in the statement of Theorem 1.2,
we shall also consider b and c satisfying either

x’) b1.1 ≤ c < b1.2

or

xi) c < b1.1.

The resulting bounds for b and c are as follows.

Proposition 3.2. Let (1, b, c, d) be a D(−1)-quadruple with 1013 ≤ b <
c < d.

a) If b2 ≤ c < b3 then c < 7.21 · 10114.

b) If b1.5 ≤ c < b2 then c < 7.62 · 10112.

c) If b1.4 ≤ c < b1.5 then c < 5 · 10132.

d) If b1.3 ≤ c < b1.4 then c < 1.32 · 10166.

e) If b1.2 ≤ c < b1.3 then c < 2.11 · 10138.

f) If b1.1 ≤ c < b1.2 then c < 4.47 · 10110.

g) If c < b1.1 then c < 5.03 · 1088.

h) There is no D(−1)-quadruple with b8/7 ≥ c.
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Proof: All but the last part are proved in the manner seen above. For
the proof of part h) we use Lemma 3.5, according to which one has
c > 3.999f2b > 3.999 · 1014b. Therefore, supposing that c ≤ b8/7, one
gets

3.999 · 1014b < c ≤ b8/7,
whence

1.6 · 10102 < b,

in contradiction with f) and g).

4. Proof of Theorem 1.2

In this section we improve the previously obtained results with the
help of the linear form

Λ1 = 2m log(s+
√
c)− 2l log(r +

√
b) + log

s
√
b

r
√
c
,

attached to positive solutions to the system of Diophantine equations
consisting of (3) and (5).

From [12] it is known that if one has a solution with x = vm = ul,
where m is positive, then

0 < Λ1 <
b

b− 1
· (r +

√
b)−4l.

An application of Matveev’s theorem results in an upper bound for the
index l. Comparison of l with a certain power of b as in the previous
section is very cumbersome, so we take an indirect approach. Since
m log(s+

√
c) < l log(r+

√
b) (cf., for instance, Lemma 3.3 from [12], in

whose proof the additional hypothesis s = r + 1 is not used), one gets
an upper bound for m of the kind

(24) m < 3.08 · 1011 log

(
38.92m log(4c)

log(0.999bc)

)
log(4b) log(bc).

All is needed in order to employ Lemmas 3.6 to 3.9 is a lower bound for
the quotient m/n. Our next lemma provides this information.

Lemma 4.1. For c > c0 one has m > µn, with c0 and µ given in table
below.

Case i) ii) iii) iv) v) vi) vii) viii) ix) x’) xi)

c0 1098 1080 1064 1054 1068 10106 10120 10144 10130 10105 1084

µ 1.155 1.191 1.238 1.271 1.321 1.491 1.658 1.707 1.761 1.822 1.895

Table 1
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Proof: For b5 ≤ c < 2.5b6 and c > 1098, from Lemma 2.7 one gets

m

n
>

log(0.3999c7/6)

log(4c)
> 1.155.

Having in view Proposition 3.2, it is apparent that decreasing the
upper bound on c requires a careful study of the range b1.2 ≤ c < b1.4.
A successful idea leads to the next result.

Lemma 4.2. If vm = wn for some c satisfying b5/4 ≤ c < b4/3 then

n >

(
10b2

3c

)1/4

.

Proof: We reason by reduction to absurd. The only differences in com-
parison with the proof of Lemma 3.9 appear when estimating the terms
in equation (23).

Notice that Lemmas 3.8 and 3.9 together with Proposition 3.2 entail

n > min
{

0.5
√
b1/4,

(
3b2−4/3

)1/4}
> min

{
0.5·1013/8, 31/4 ·1013/6

}
> 21.

Therefore, in the notation introduced in the proof of Lemma 3.9, under
the present hypotheses one obtains with the help of Lemma 3.4

|2m2 − ρ∆n| <
(

8n+ 0.251
c

b

)
n <

(
5

3
+ 0.251

)
nc

b
< 1.918

nc

b
,

(2m2 − ρ∆n)2 < 1.9182
√

10

3

c3/2

b
< 6.717 c3/4,

2(e−1)(2n2+ρn)|2m2−ρ∆n|< 0.502c

b
×
(

2+
1

22

)
n2×1.918

nc

b
<4.859 c7/8,

(e2 + 2e+ 5)(2n2 + ρn)2 < 0.2522 · c
2

b2
· 452

222
· n4 < 0.886 c.

Since the sum of the right hand sides of the inequalities in the last three
lines is less than c, one arrives at a contradiction.

Combining all these ingredients in the same manner as in the previous
section, one obtains the following absolute bounds for b and c.

Proposition 4.1. Let (1, b, c, d) with 1 < b < c < d be a D(−1)-quadru-
ple with b > 1.024 · 1013. Then:

i) If b5 ≤ c < 2.5 b6 then b < 3.03 · 1016 and c < 1.86 · 1099.

ii) If b4 ≤ c < b5 then b < 2.47 · 1016 and c < 9.42 · 1081.

iii) If b3.5 ≤ c < b4 then b < 1.96 · 1016 and c < 1.46 · 1065.
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iv) If b3 ≤ c < b3.5 then b < 1.69 · 1016 and c < 6.37 · 1056.

v) If b2 ≤ c < b3 then b < 8.79 · 1043 and c < 1.87 · 10110.

vi) If b1.5 ≤ c < b2 then b < 1.47 · 1072 and c < 4.67 · 10108.

vii) If b1.4 ≤ c < b1.5 then b < 3.70 · 1090 and c < 6.68 · 10127.

viii) If b1.3 ≤ c < b1.4 then b < 2.69 · 10110 and c < 2.65 · 10147.

ix) If b1.2 ≤ c < b1.3 then b < 1.38 · 10102 and c < 6 · 10132.

x) If b8/7 ≤ c < b1.2 then b < 4.24 · 1088 and c < 2.25 · 10106.

The proof will be complete as soon as we show the next result.

Proposition 4.2. There is no D(−1)-quadruple (1, b, c, d) with 1013 <
b < c < d and c ≤ b1.16.

Proof: Suppose there exists at least one D(−1)-quadruple such that c ≤
b1.16. Then, by Lemma 3.5,

3.999 · 1014b < c ≤ b1.16,

whence

b >
(
3.999 · 1014

)6.25
> 1091,

in contradiction with part x) of Proposition 4.1.

Having in view Lemma 3.3 and Theorem 1.2, we get the following
absolute bounds for n and b. The fact that m < 2n < 1020 has been
used by some of our programs.

Proposition 4.3. Suppose (1, b, c, d) is a D(−1)-quadruple with 1013 <
b < c < d. Then the values of n and b satisfy the inequalities given in
Table 2.

Case i) ii) iii) iv) v) vi) vii) viii) ix) x)

b < 1017 1017 1017 1019 1035 1073 1091 10110 10103 1089

n < 1018 1017 1017 1017 1018 1018 1018 1019 1019 1018

n > 1013 1013 1013 1011 104 894 200 73 247 523

Table 2. Absolute bounds for b and n.

5. A bound for the number of D(−1)-quadruples

Below (1, b, c, d) is a D(−1)-quadruple with 1013 < b < c < d. Since√
b− 1 is an integer, b is either an odd integer whose prime divisors are
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all congruent to 1 mod 4 or twice such an odd integer. Besides this fact,
our argument uses the paradigm “compute rather than estimate”.

As already mentioned in the introduction, the proof idea is to see
how many possibilities are there to prolongate an initial subsequence to
a D(−1)-set with one more element.

In order to estimate the number of D(−1)-couples (1, b), we shall use
the information provided by Theorem 1.2. On account of this, we have

b ≤ B := 2.69 · 10110, c ≤ C := 2.65 · 10147.

Therefore, the number of D(−1)-pairs (1, b) is less than

N := B1/2 < 1.641 · 1055.

By [6, Lemma 1], each such a pair can be extended to a D(−1)-triple
(1, b, c) only if c belongs to the union of finitely many binary recurrent
sequences. It is known (see loc.cit.) that the number of sequences does
not exceed the number of solutions of the congruence t2 ≡ −1 (mod b)
with 0 < t < b. According to [17, g, §4, ch. V], there are at most 2ω(b)

such solutions, where ω(b) denotes the number of distinct prime divisors
of b. With some computer assistance, we find that the product of the
first 49 primes congruent to 1 mod 4 is greater than B/2. Allowing for
even b, we conclude that the number of sequences is at most

S := 249.

Thus, the third component of a D(−1)-triple (1, b, c) can be selected
out of S sequences by requiring that bc − 1 = t2 for a suitable positive
integer t. Any solution t to this equation appears in one of the recurrent
sequences, say, at index m. It is well-known that the terms of recurrent
sequences have an exponential growth. In our case we readily find tm >
(b − 1)(4b − 3)m−1. From b > 1013 and t ≤ T :=

√
B · C − 1 it results

m ≤M := 9. Therefore, a fixed D(−1)-couple (1, b) can be extended to
a D(−1)-triple in at most M · S ways.

Fix a D(−1)-triple (1, b, c) with 1013 < b < c. According to [10,
Theorem 1.1], each D(−1)-triple (1, b, c) can be embedded in at most two
D(−1)-quadruples (1, b, c, d). Hence, the numberQ ofD(−1)-quadruples
is bounded from above by

Q < 2 ·N ·M · S < 1.7 · 1071.

Dividing the set of solutions into two pieces: the first with c < b2 and
the second with c ≥ b2, with obvious notation we get the following upper
bound for the number Q of D(−1)-quadruples:

Q ≤ 2 ·N1 ·M1 · S1 + 2 ·N2 ·M2 · S2,



On D(−1)-Quadruples 303

where

N1 =B1/2, N2 =
(
1036

)1/2
, M1 =2, M2 =6, S1 =249, S2 =236.

Then we get the result announced in Theorem 1.1:

Q ≤ 4 · 1070.
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