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EXCEPTIONAL SINGULARITIES OF CODIMENSION

ONE HOLOMORPHIC FOLIATIONS

Marco Brunella and Carlo Perrone

Abstract

We study some numerical properties of singularities of codimen-
sion one holomorphic foliations which can be analytically collapsed
to one point. Some local and global dynamical consequences are
deduced.

1. Introduction

Let X be a complex manifold of dimension at least 3, and let F be
a codimension one holomorphic foliation on X . Denote by Sing(F) the
singular set of F , which is an analytic subset of X of codimension at
least 2, and denote by Sing∗(F) the union of the irreducible components
of Sing(F) whose codimension is precisely 2. This subset Sing∗(F) rep-
resents the most important part of Sing(F), for at least two (related)
reasons. Firstly, according to Baum-Bott residue formula [B-B], [Suw],
the cohomology class c21(NF ) can be localized on Sing∗(F). Here NF de-
notes the normal bundle of the foliation. Secondly, by Malgrange’s sin-
gular Frobenius theorem [Mal] around each point of Sing(F) \Sing∗(F)
the foliation admits a holomorphic first integral, and so we may say that,
in some sense, singularities outside Sing∗(F) are removable or negligible.

In this paper we shall study certain numerical properties of those
connected components of Sing∗(F) which are exceptional subsets of X ,
that is which can be analytically collapsed to one point [Gra], [Pet].
The motivation comes from some problems tackled in [Br1] and [C-L].

In order to state our first and main result, let us recall that a line
bundle L on a compact Moishezon space Z is said to be nef (resp. flat)
if deg(L|C) ≥ 0 (resp. deg(L|C) = 0) for every irreducible compact
curve C ⊂ Z. These definitions make sense when Z is an exceptional

2010 Mathematics Subject Classification. 32S65, 37F75, 14E15.
Key words. Holomorphic foliations, Baum-Bott residues, modifications.
Work partially supported by ANR-08-JCJC-0130-01.



296 M. Brunella, C. Perrone

subset of a complex manifold, for such a subset is always a Moishezon
space [Pet, §2.4].

Theorem 1.1. Let F be a codimension one foliation on a complex man-
ifold X of dimension at least 3, and let Z be a connected component of
Sing∗(F) which is exceptional in X. Assume that NF |Z is nef. Then:

(1) The Baum-Bott residue of each irreducible component of Z is van-
ishing.

(2) NF |Z is flat.

The proof of this result is based on Baum-Bott theory coupled with
some vanishing theorems for line bundle cohomology [G-R], [E-V]. This
will give a suitable division property of the foliation along Z, which in
turn implies (1) and (2). As we shall see, however, part (1) holds under
some slightly weaker assumption than part (2).

A first application of Theorem 1.1 concerns a conjecture stated
in [Br1] on the dynamics of codimension one foliations.

Theorem 1.2. Let X be a complex projective manifold of dimension at
least 3 and with Pic(X) = Z, and let F be a codimension one foliation
on X. Then every leaf L of F accumulates to Sing(F):

L ∩ Sing(F) 6= ∅.

The link of this result with [Br1] comes from the (easy) fact that the
hypothesis Pic(X) = Z implies that NF is ample, hence Theorem 1.2
proves the conjecture of [Br1] in the special case of projective manifolds
with cyclic Picard group. The much more special case X = CPn, n ≥ 3,
was previously done in [Lin]. The proof of Theorem 1.2 is based on
Theorem 1.1 (in a slightly more general form) and a pseudoconvexity
result from [Br2], which leads to exceptional singularities via Grauert’s
results [Gra], [Pet]. Theorem 1.1 is used in the following weak form: if
Z is an exceptional singularity, then NF |Z cannot be ample.

A second application of Theorem 1.1 is relative to a local problem
stated in [C-L]. Indeed, an exceptional singularity Z is partially re-
lated to the work of Cerveau and Lins Neto, because by collapsing Z
to one point we get a foliation on a singular space X0, with an isolated
singularity p0 ∈ X0, which is also an isolated singularity for the folia-
tion (neglecting, as usual, the higher codimensional part of the singular
set). However, we are not precisely in the setting considered in [C-L],
because our projected foliation on X0 is not necessarily generated by a
holomorphic 1-form around p0, as assumed everywhere in [C-L].

We shall consider, in fact, only a rather particular case (which, any-
way, is the case mentioned in [C-L, Problem 1]). Let X0 denote the
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analytic space, of dimension 3, defined by the equation z1z2 = z3z4
in C4. It has an isolated singularity at the origin (which we shall call a
simple double point). For sake of clarity, let us say that by a foliation on
an open subset V ⊂ X0 we just mean a foliation, in the ordinary sense,
on V ◦ = V \ {0}; we do not impose any kind of condition at the origin.
Cerveau and Lins Neto ask about the local structure of foliations on X0.

Theorem 1.3. Let F be a codimension one foliation on a neighbour-
hood V ⊂ X0 of 0, and suppose that F is nonsingular on V ◦. Then, up
to restricting V , one of the following properties holds:

(1) F has a holomorphic first integral.

(2) Each leaf of F is a proper analytic subset of V passing through the
origin.

This result can be thought as a substitute to Malgrange’s theo-
rem [Mal] on singular threefolds having only simple double points as
singularities. Remark that the general results of [C-L] imply that prop-
erty (1) holds provided that the foliation is generated by a holomorphic
1-form around 0, a sort of “Gorenstian” condition that, as we shall see,
does not always hold. One could think that when property (2) holds
then the foliation has a meromorphic first integral, but we shall see that
it is not always the case. However, it is likely that, in that case, the
foliation is topologically conjugate to one which admits a meromorphic
first integral (compare with [Klu]).

Besides Theorem 1.1, in the proof of Theorem 1.3 we shall use the
remarkable fact that the singularity ofX0 can be resolved in two different
ways by so-called small resolutions, related each other by a so-called flop.

The paper is divided into three sections, one for each theorem.

2. Around Theorem 1.1

We start by recalling some aspects of Baum-Bott residue formula
[B-B], [Suw].

Let F be a codimension one foliation on a complex manifold X , of
dimension n ≥ 2. By definition, the datum of F is equivalent to specify
a rank one saturated subsheaf

N⋆
F ⊂ Ω1

X

which satisfies the Frobenius integrability condition. Locally, N⋆
F is gen-

erated by holomorphic 1-forms ωj ∈ Ω1
X(Uj), where {Uj} is an open

covering of X , such that

ωj ∧ dωj = 0
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and

ωj = gjkωk on Uj ∩ Uk.

The functions gjk are nowhere vanishing, and the multiplicative cocy-
cle {gjk} defines a line bundle NF , dual to N

⋆
F and called normal bundle

of F . The saturatedness condition means that the zero set of every ωj

has codimension at least 2, i.e. N⋆
F is a line subbundle of Ω1

X outside an
analytic subset of codimension at least 2, called singular set of F and
denoted by Sing(F). As in the Introduction, we will denote by Sing∗(F)
the codimension 2 part of Sing(F). Moreover, we set

X◦ = X \ Sing(F) and X∗ = X \ Sing∗(F).

In the nonsingular case, the Frobenius condition ωj ∧ dωj = 0 can be
equivalently replaced by

dωj = βj ∧ ωj

for some βj ∈ Ω1
X(Uj) (at least if Uj is Stein, which we will always

assume without loss of generality). This is the classical division property
of nonsingular integrable 1-forms, which is at the heart of Baum-Bott
theory. Remark that, given ωj, such a βj is not unique, but it is uniquely
defined up to addition of a 1-form which vanishes on F , i.e. up to a
section of N⋆

F over Uj . On Uj ∩ Uk we then find

βj ∧ ωj =
dgjk

gjk
∧ ωj + βk ∧ ωj

which precisely means that the 1-form defined by

γjk =
dgjk

gjk
− βj + βk

is also a section of N⋆
F , over Uj ∩Uk. Hence {γjk} is a cocycle of 1-forms

vanishing on F , and it corresponds to a cohomology class in H1(X,N⋆
F ).

It is readily seen that this class is intrinsically defined by the foliation,
i.e. it does not depend on the choices done so far.

In the singular case, the previous construction can be done on X◦,
or even on X∗: indeed, by a simple cohomological argument, on which
we shall return, the division property holds even for integrable 1-forms
whose zero set has codimension at least 3 [Mal]. Hence we get a well
defined class

BBF ∈ H1(X∗, N⋆
F)

intrinsically associated to the foliation.
Actually, on X◦, or even on X∗ thanks to [Mal], the foliation is

locally defined by closed 1-forms ωj , hence we may choose βj = 0 and
therefore the cocycle {γjk} is nothing but than the logarithmic derivative
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of the cocycle {gjk} (which vanish on F because of the closedness of the
generating 1-forms). In other words, the line bundle NF has, as any
line bundle on a complex manifold, a class in H1(X,Ω1

X) (logarithmic
derivative); the integrability condition allows, on X∗, to lift this class
to H1(X∗, N⋆

F).
Baum-Bott formula is related to the extendibility of this class BBF

from X∗ to X . Take a point p ∈ Sing∗(F). We shall say that BBF

extends through p if there exists a (small) ball Bp ⊂ X centered at p
such that BBF extends to a class in H1(X∗ ∪Bp, N

⋆
F). Setting

S(Bp) = Sing∗(F) ∩Bp and B∗
p = Bp \ S(Bp),

and observing that the cohomology over Bp is obviously trivial, we see
(Mayer-Vietoris) that BBF extends through p if and only if

BBF |B∗

p
= 0

for some ball Bp centered at p. Because BBF is defined through the
division property, the following fact should be evident.

Lemma 2.1. The class BBF extends through p if and only if there
exists holomorphic 1-forms ω and β on some neighbourhood of p such
that ω generates N⋆

F and dω = β ∧ ω.

Proof: We can always take a generator ω of N⋆
F on some ball Bp. Then

the vanishing of BBF |B∗

p
is clearly equivalent to the solvability of the

equation dω = β ∧ ω on B∗
p . By Hartogs’ theorem, a solution of this

equation on B∗
p holomorphically extends to Bp.

Remark that, because S(Bp) has codimension 2 in Bp, the cohomology
group H1(B∗

p , N
⋆
F) is infinite dimensional [B-S, Chapter 2], and so the

vanishing of the class BBF |B∗

p
is certainly not a trivial condition. On

the other hand, H1(Bp \A,N⋆
F) = 0 whenever A is an analytic subset of

codimension at least 3 [B-S, Chapter 2], and this is the reason for which
the division property holds around points in Sing(F) \ Sing∗(F) [Mal].

A way to measure the nontriviality of the class BBF on B∗
p consists

in looking at its residue along S(Bp). If we work with smooth sections
ofN⋆

F , instead of holomorphic ones, the corresponding cohomology group
is trivial, and so we can certainly find a smooth (1, 0)-form β ∈ A1,0(B∗

p)
such that dω = β ∧ ω (ω being a generator of N⋆

F). The smooth 3-form
(of mixed type (3, 0) + (2, 1))

1

(2πi)2
β ∧ dβ
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is closed, and it has a De Rham cohomology class in H3(B∗
p ,C), which

does not depend on the choice of ω and β.
Take now an irreducible component Y of Sing∗(F). Take a generic

point p ∈ Y , i.e. a point where Y is smooth and disjoint from the other
singular components. Take Bp sufficiently small, so that S(Bp) is a
codimension 2 subball of Bp. Then the above De Rham class can be in-
tegrated over an oriented 3-sphere Lp ⊂ B∗

p positively linked with S(Bp):

BB(F , Y ) =
1

(2πi)2

∫

Lp

β ∧ dβ.

This complex number is called Baum-Bott residue of F along Y . By a
connectedness argument, it does not depend on the choice of the generic
point p ∈ Y .

Remark that BB(F , Y ) = 0 when BBF extends through p (it is not
difficult to see that this condition also does not depend on the choice
of the generic p ∈ Y ), hence the Baum-Bott residue represents the first
obstruction for the extension of BBF fromX∗ to X . Generally speaking,
however, there are also “higher order” obstructions.

It is now an easy matter to get Baum-Bott formula. To state it, let us
recall that every irreducible component Y of Sing∗(F) has a class [Y ] ∈
H4(X,C) (conveniently defined via the integration current over Y ).

Theorem 2.1 ([B-B]).

c21(NF ) =
∑

Y

BB(F , Y )[Y ]

where the sum is done over all irreducible components of Sing∗(F).

Proof: We sketch a proof because our definition of BB(F , Y ) is hard to
find explicitely in [B-B] or [Suw].

We coverX by open sets Uj where the foliation is defined by holomor-
phic 1-forms ωj , with ωj = gjkωk. We may find smooth (1, 0)-forms βj
on U∗

j = Uj ∩ X∗ such that dωj = βj ∧ ωj . We fix a small neighbour-
hood V of Sing∗(F) and we regularize each βj on V , i.e. we choose a

smooth (1, 0)-form β̃j on Uj coinciding with βj outside of Uj ∩ V . Then

the smooth (1, 0)-forms γ̃jk =
dgjk
gjk

− β̃j + β̃k vanish on F outside of V .

This cocycle can be trivialized: γ̃jk = γ̃j − γ̃k, where γ̃j is a smooth
(1, 0)-form on Uj vanishing on F outside of Uj ∩V . Finally, after setting

β̂j = β̃j + γ̃j , we find
dgjk

gjk
= β̂j − β̂k.

Remark that we still have dωj = β̂j ∧ ωj outside of Uj ∩ V .
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The globally defined closed 2-form (of mixed type (2, 0) + (1, 1))

Ω =
1

2πi
dβ̂j

represents, in the De Rham sense, the Chern class of NF , and so its
square Ω ∧ Ω represents c21(NF ). Outside of V , by differentiating the

identity dωj = β̂j∧ωj we get Ω∧ωj = 0, from which it follows Ω∧Ω = 0,
that is

Supp(Ω ∧ Ω) ⊂ V .

If T ⊂ X is a 2-ball intersecting transversely Sing∗(F) at a single
point p ∈ Y , with V ∩ T ⋐ T , then the integral of Ω ∧ Ω on T is equal
to BB(F , Y ), by Stokes formula, i.e. residue calculus. This means that
the 4-form Ω∧Ω is cohomologous, as a current, to the integration current
over

∑
Y BB(F , Y )[Y ].

We can now start the proof of Theorem 1.1. From now on, we shall
suppose that n = dimX ≥ 3.

Let Z be a connected component of Sing∗(F), with irreducible com-
ponents Zj , j = 1, . . . , ℓ. Suppose that Z is contained in an exceptional
subset W ⊂ X . Recall [Gra], [Pet, §2] that this means that W is a
compact connected analytic subset of X for which there exists a normal
analytic space X0 and a proper holomorphic map

π : X −→ X0

such that π(W ) is a single point p of X0 (usually singular) and the
restriction π|X\W is a biholomorphism onto X0 \ {p}.

Remark that we do not require the equality W = Z: the excep-
tionalW may be larger than Z, and it may have irreducible components
of any dimension (between 1 and n− 1), not necessarily singular for the
foliation. However, we shall always require, even if not explicitely stated,
that for some neighbourhood U of W we have

Sing∗(F) ∩ U ⊂W

(this condition is automatically satisfied if W = Z).
For any irreducible component Zj of Z, denote by W (Zj) the union

of the irreducible components of W which contain Zj. Of course, we
have only two possibilities: either W (Zj) = Zj , or W (Zj) is a union of
hypersurfaces containing Zj . We shall say that Zj is a fat component
if the former case occurs. Given any point p ∈ Z, we shall say that p
is a fat point if every irreducible component of Z through p is fat. In
particular, this holds when the codimension of W at p is at least 2 (but
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not conversely: W may have an irreducible component of codimension
one through p which contains no component of Z).

The following statement implies part (1) of Theorem 1.1.

Proposition 2.1. Let Z be a connected component of Sing∗(F) which
is contained in an exceptional subset W ⊂ X. Assume that NF |W is
nef. Then, for every fat point p ∈ Z, the class BBF extends through p.
In particular, for every fat irreducible component Zj of Z, we have

BB(F , Zj) = 0.

Proof: The fact that W is exceptional in X guarantees that there exists
a (arbitrarily small) strongly pseudoconvex neighbourhood U ⊂ X ofW ,
such that W is the maximal positive dimensional analytic subset of U
(this is the easy part of [Gra], which proves that the converse also holds).
We choose U so that Sing∗(F) ∩ U ⊂ W , that is U \W ⊂ X∗. Hence
the class BBF restricts to a class

BBF |U\W ∈ H1(U \W,N⋆
F).

We will show that this class extends to U . This implies the desired
conclusion, because around each fat point any irreducible components
of Z is also an irreducible component of W . It is here worth observing
that, by the usual codimension 3 argument, the class BBF |B∗

p
extends

to Bp if and only if it extends through generic points of S(Bp).
We shall use the following vanishing theorem, due to Grauert-Riemen-

schneider [G-R] and Kawamata-Viehweg [E-V]: if L is a line bundle
on U such that L|W is nef, then Hk(U,KX ⊗ L) = 0 for every k ≥ 1.
Actually, this is proved in [G-R] under the slightly stronger hypothesis
that L admits a smooth hermitian metric with semipositive curvature.
The proof is by reduction, via an algebraization theorem of Artin, to
an analogous vanishing theorem for so-called “quasi-positive” line bun-
dles on projective manifolds, still due to [G-R]. This last result has
been generalized by Kawamata and Viehweg to the case of nef and big
line bundles [E-V, §5]. Then the same reduction procedure of Grauert-
Riemenschneider gives the statement that we are using.

We apply this vanishing theorem to L = NF and k = n − 2 (it is
here that the assumption n ≥ 3 is essentially used). Then, by Serre’s
duality [B-S, Chapter 7], we obtain

H2
cpt(U,N

⋆
F) = 0

(cohomology with compact support). This vanishing holds also for any
other smaller strongly pseudoconvex neighbourhoodU ′ ⊂ U ofW , hence,
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as in [B-S, Chapter 1], we find

H2
W (U,N⋆

F) = 0

(cohomology with support in W ). Consider now the exact sequence

H1(U,N⋆
F) → H1(U \W,N⋆

F ) → H2
W (U,N⋆

F).

From the vanishing of the last term we infer that any class in the
group H1(U \W,N⋆

F ) extends to H
1(U,N⋆

F).

Remark 2.1. The referee has suggested the following reformulation of
the previous proof. Instead of working on the family of strongly pseu-
doconvex neighbourhoods U ′ ⊃ W , we can consider the formal comple-

tion of X along W , denoted by X̂W . Then, by a suitable version of
Kawamata-Viehweg theorem for formal spaces, one can obtain the van-

ishing of the group Hn−2(X̂W ,KX ⊗ NF ), that is, by Serre’s duality,
of H2

W (X,N⋆
F) (= H2

W (U,N⋆
F)). The advantage of this approach is that

it gives directly the vanishing that we are looking for, without passing
through the groups H2

cpt(U
′, N⋆

F ). The inconvenient is that it needs a
vanishing theorem of Kawamata-Viehweg type which is difficult to find
in the literature. On the other hand, let us observe that, by an easy
variation on Lemma 2.1, the vanishing of H2

cpt(U,N
⋆
F) for some U is

already sufficient to extend the class to U .

With a stronger assumption on W , we now can prove also part (2) of
Theorem 1.1.

Proposition 2.2. Let Z be a connected component of Sing∗(F) which is
contained in an exceptional subset W ⊂ X of codimension 2 (i.e., every
irreducible component of W has codimension at least 2). Assume that
NF |W is nef. Then NF |Z is flat.

Proof: The codimensional hypothesis on W ensures that every p ∈ Z is
a fat point. By the previous proposition, there exists a covering {Uj} of
a neighbourhood of Z and holomorphic 1-forms ωj , βj ∈ Ω1

X(Uj) such
that ωj generates N⋆

F , dωj = βj ∧ ωj , ωj = gjkωk. As usual, we find
on Uj ∩ Uk the identity

dgjk

gjk
∧ ωj = (βj − βk) ∧ ωj

which means that
dgjk
gjk

−βj +βk is a section of N⋆
F over Uj ∩Uk, i.e. it is

proportional to the generator ωj. In particular, and because ωj vanishes
identically on Z ⊂ Sing(F), we find that

dgjk

gjk
|Z = βj |Z − βk|Z .
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Now, by this relation the 2-form Ω∈Ω2
Z(Z) locally defined by 1

2πi
dβj |Z

represents the Chern class of NF |Z . Because it is holomorphic, its inte-
gral over a compact complex curve in Z is vanishing. This means that
NF |Z is flat.

The argument used in the previous proof is nothing but than a “sin-
gular” version of Bott vanishing principle (which, by the way, is at the
origin of Baum-Bott formula), which says that NF is flat along the non-
singular leaves of F . We just showed that such a flatness holds also along
singular leaves (i.e. locally analytic subsets invariant by F but possibly
passing through Sing(F), or even contained in it), provided that at each
point of such a singular leaf the division property is satisfied.

One could ask if, under the hypotheses of Proposition 2.2, one has the
flatness of NF on W , and not only Z. The answer is negative, because
W could contain a “supplementary” irreducible component which is not
singular for F and not even invariant by F , thus not subject to Bott
vanishing principle (cf. the examples at the end of the paper).

3. Around Theorem 1.2

Let us firstly recall a result from [Br2].

Proposition 3.1 ([Br2, Proposition 3.1]). Let X be a complex projective
manifold and let F be a codimension one foliation on X whose normal
bundle NF is ample. Let M ⊂ X be a compact subset invariant by F
and disjoint from Sing(F). Then X \M is strongly pseudoconvex.

The ampleness assumption in that result is always satisfied whenever
the Picard group is cyclic:

Lemma 3.1. Let X be a complex projective manifold with Pic(X) = Z.
Then every codimension one foliation on X has ample normal bundle.

Proof: The normal bundle cannot be trivial, otherwise the foliation
would be globally generated by a holomorphic 1-form, against the hy-
pothesis Pic(X)=Z (which, in the projective case, implies that Ω1

X(X)=
{0}). Hence, either NF or N⋆

F is ample. The latter possibility is however
excluded by an inequality of Bogomolov-Castelnuovo-De Franchis [Rei],
which states, more specifically, that the conormal bundle of a codimen-
sion one foliation has Iitaka-Kodaira dimension at most 1.

The proof of Theorem 1.2 is by contradiction. Suppose that, for some
leaf L of F , we have L ∩ Sing(F) = ∅, so that M = L is compact,
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invariant by the foliation and disjoint from its singularities. By Propo-
sition 3.1, X \ M is strongly pseudoconvex, i.e. there exists a smooth
function

ψ : X \M −→ R

such that ψ(p) → +∞ as p → M and ddcψ > 0 outside a compact
set K ⊂ X \M. According to Grauert [Gra], [Pet, §2], X \M contains
a maximal positive dimensional compact analytic subsetW ′, all of whose
connected components are exceptional subsets, and by contracting each
such component to a point we get a (singular) Stein space (the so-called
Remmert reduction).

The assumption Pic(X) = Z implies that every irreducible component
of W ′ has codimension at least 2: indeed, every hypersurface in X is
ample, hence some multiple of it moves in a nontrivial family, and hence
it cannot be inside an exceptional subset.

Consider now the codimension 2 singular set Sing∗(F). It is compact
and contained in X \M, hence in W ′. Any connected component Z is
contained in a connected component W of W ′. Of course, NF |W is nef,
and even ample, hence we may apply Proposition 2.2 and conclude that
NF |Z is flat. This contradicts the ampleness, unless Sing∗(F) = ∅. In
this last case, however, from Baum-Bott formula we get

c21(NF) = 0

which is again in contradiction with the ampleness. This completes the
proof of Theorem 1.2.

Note that instead of using Proposition 2.2 we may use the weaker
Proposition 2.1, which still gives BB(F , Y ) = 0 for every irreducible
component of the singular set, and consequently c21(NF ) = 0 again. This
could be useful in trying to prove the conjecture of [Br1] in full gener-
ality, i.e. under the sole assumption that NF is ample and no assump-
tion on the Picard group. In that case, we are faced with the problem
that W ′ may contain some codimension one irreducible component. We
should need a stronger conclusion in Proposition 2.1, ensuring the van-
ishing (or negativity. . . ) of BB(F , Y ) even for irreducible components Y
which are not fat.

Remark 3.1. It is not difficult to see (using [Mal]) that the above Propo-
sition 3.1 from [Br2] holds under the weaker hypothesis that M is dis-
joint from Sing∗(F), instead of Sing(F). Therefore, the conclusion of
Theorem 1.2 can be improved as

L ∩ Sing∗(F) 6= ∅.
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4. Around Theorem 1.3

In this section we shall work on a complex manifold X of dimension 3
(a threefold). A compact connected component Z of Sing∗(F) is there-
fore a (connected) union of irreducible compact curves C1, . . . , Cℓ. To
say that Z is contained in a codimension 2 exceptional subset W is the
same as to say that Z itself is exceptional in X (once a time, this fol-

lows from [Gra]: using the fact that W \ Z and Z intersect each other
only at isolated points, it is not difficult to construct a fundamental
system of strongly pseudoconvex neighbourhoods of Z starting from an
analogous fundamental system of W ). Theorem 1.1 says that, if Z is
exceptional, then the conditions {degNF |Cj

≥ 0 for every j} actually
imply {degNF |Cj

= 0 for every j}. In particular, if Z = C is irreducible,
then we necessarily have

degNF |C ≤ 0.

By collapsing Z to one point we get an analytic space X0 with an
isolated singularity p0. The collapsing map π : X → X0 is said to be
a small resolution of p0, because its exceptional locus (where it fails
to be an isomorphism) has codimension 2. Of course, the existence of a
small resolution for an isolated singular point is a rather strong property.
The singularity p0 is said to be rational if, for every sufficiently small
strongly pseudoconvex neighbourhood U of Z, we have H1(U,O) = 0 (in
particular, each irreducible component of Z must be a rational curve).

The following result is a particular case of [C-L, Main Theorem].

Theorem 4.1 ([C-L]). Let X,F , Z = C1 ∪ · · · ∪ Cℓ be as above, with
Z exceptional and p0 rational. Assume that degNF |Cj

= 0 for ev-
ery j = 1, . . . , ℓ. Then there exists a holomorphic function f on some
neighbourhood U of Z such that df generates the foliation on U .

Proof: Because H1(U,O) = 0, the numerical triviality of NF on Z actu-
ally implies that NF is even holomorphically trivial on U , and therefore
we may take a holomorphic 1-form ω which generates N⋆

F over U . Thus,
we are in the setting of [C-L]. Namely, by using iteratively the divi-
sion property (which holds thanks to H1(U \ Z,O) = 0, consequence of

H1(U,O) = 0 and H2
Z(U,O) = 0 [G-R]), we find formal functions f̂

and ĝ along Z such that ω = ĝdf̂ (Godbillon-Vey scheme). Then, with
some care [Mal], [C-L], we even find that these formal functions can be
choosen in a convergent way.
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We now specialize to the following particular case: Z = C is a single
smooth rational curve, with normal bundle

NC = O(−1)⊕O(−1).

It is worth observing that the analytic type of a neighbourhood of such
a curve is uniquely determined [Lau]. The singularity p0 obtained by
collapsing C is isomorphic to the singularity at the origin of the hyper-
surface in C4 defined by the equation z1z2 = z3z4, and it is rational.

A fundamental fact for what follows is that the curve C can be flopped.

E ⊂ X̃

C ′
⊂ X ′C ⊂ X

p0 ∈ X0

πC πC′

π π′

We firstly blow-up X along C, πC : X̃ → X . The exceptional divi-

sor E ⊂ X̃ of πC is isomorphic to CP 1×CP 1, and its normal bundle in X̃
has degree −1 on each factor. On E we have two rulings: the first one is
just E → C, given by the restriction of πC , and the second one will be
denoted by E → C′. Each fiber of this second ruling can be contracted
to one point [F-N], and the result is a smooth threefold X ′, containing
a smooth rational curve C′ with normal bundle NC′ = O(−1)⊕O(−1).

The space X̃ can be seen as the blow-up of X ′ along C′, πC′ : X̃ → X ′,
so that the second ruling above is just the restriction of πC′ to E. By
collapsing C′ to one point, we get the same singular threefold X0 as by
collapsing C. Hence, the two collapsing maps

π : X −→ X0 and π′ : X ′ −→ X0

are two different small resolutions of p0, both dominated by the divisorial

resolution π ◦ πC = π′ ◦ πC′ : X̃ → X0.
The bimeromorphic map πC′ ◦ π−1

C : X → X ′ (or its inverse) is called
a flop of X along C (or of X ′ along C′).
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The foliation F can be flopped: F ′ = (πC′)∗(πC)
∗(F) is a well defined

foliation on X ′. Note, however, that C′ is not necessarily still a com-
ponent of Sing∗(F

′): the foliation F ′ may have, around C′, only some
isolated singularities on C′, or even no singularity at all (we shall see
later some examples). In fact, it is exactly such a phenomenon that we
are looking for, in some sense. The key fact is the following asymmetry
between degrees of normal bundles.

Lemma 4.1.

degNF |C = − degNF ′ |C′ .

Proof: Consider the common blow-up F̃ = π∗
C(F) = π∗

C′(F ′). For gen-
eral reasons, we have

NF̃ = π∗
C(NF)⊗O(mE)

NF̃ = π∗
C′(NF ′)⊗O(m′E)

for suitable integers m and m′. Let F ⊂ E be a fiber of the ruling E →
C′, i.e. a section of E → C, and let us compute the degree of NF̃ on F ,
using E · F = −1:

degNF̃ |F = deg π∗
C(NF )|F +mE · F = degNF |C −m

degNF̃ |F = deg π∗
C′(NF ′)|F +m′E · F = −m′.

By comparison of the two expressions, we get

degNF |C = m−m′.

By a similar argument, and after exchanging the two rulings of E, we
get

degNF ′ |C′ = m′ −m.

For later purposes, let us observe that the previous lemma holds with
no assumptions on the singularities of the foliations, C and C′ may be
totally singular or not.

We can now prove Theorem 1.3.

Let F0 be a foliation on a neighbourhood U0 of a simple double
point p0 ∈ X0, nonsingular on U◦

0 = U0 \ {p0}. Under the two above
small resolutions, the foliation can be lifted to a neighbourhood U of C
and a neighbourhood U ′ of C′ (for codimensional reasons, for instance,
any foliation on U \ C extends to U). Call F and F ′ these foliations,
and note that

Sing(F) ⊂ C Sing(F ′) ⊂ C′.
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By Lemma 4.1, and up to exchanging the two foliations, we have

degNF |C ≥ 0.

Let us therefore distinguish two cases.

(1) degNF |C = 0. This is the case already analyzed in the above The-
orem 4.1 from [C-L]. It does not matter, for that result, that C be a
singular component, the inclusion Sing(F) ⊂ C is enough. Therefore,
we are in case (1) of Theorem 1.3.

(2) degNF |C > 0. According to Theorem 1.1, the curve C is not totally
singular for F , that is Sing(F) is only a finite subset of C. By [Mal], and
up to restricting U , we may cover U with open sets Uj where the foliation
is generated by closed 1-forms ωj = dfj , fj ∈ O(Uj). We claim that the
curve C is generically transverse to F . Indeed, in the opposite case
(C tangent to F) the Bott vanishing principle would give the flatness
of NF |C , and therefore the vanishing of its degree, as explained after
Proposition 2.2. This generic transversality between F and C implies,
up to restricting U , that every leaf of F (possibly completed with some
singular point) is a proper analytic subset of U , which intersects C at
some points. Hence the leaves of F0 are proper analytic subsets of U0

passing through p0, and we are in case (2) of Theorem 1.3.
Let us also observe that, in this second case, the (closures of) leaves

of F ′ are also proper analytic subsets of U ′, which however contain the
full C′ instead of intersecting it at a finite set. The foliation F ′ looks
“topologically” like a pencil of hypersurfaces based at C′.

We conclude with few examples, illustrating case (2).

Example 4.1. As a model of X , it is convenient to take the total space
of the rank 2 vector bundle O(−1) ⊕ O(−1), and C equal to the null
section. Denote by pr : X → C the bundle projection. A first obvious
foliation F is given by the fibers of pr. It is nonsingular, everywhere
transverse to C, and degNF |C = 2. By flopping, we get a foliation F ′

with Sing(F ′) = C′ and degNF ′ |C′ = −2. This foliation is a pencil
of hypersurfaces through C′, which is a so-called Kupka component of
radial type: around each point of C′, the foliation is the product of the
radial foliation in dimension 2 (z dw − w dz = 0) and a disc. Both F
and F ′ have a meromorphic first integral, whose indeterminacy set is
either empty or C′.

The rank 2 vector bundle O(−1)⊕O(−1) has many rank 1 subbundles
with trivial quotient (indeed, the dual bundle O(1) ⊕ O(1) has many
trivial rank 1 subbundles, generated by nowhere vanishing sections).
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Every such subbundle

O(−2)
i

−→ O(−1)⊕O(−1)
F
−→ O

induces a submersion

F : X → C × C

(C×C = total space of the trivial line bundle O), whose first component
is pr, and the second one is denoted by f . If G is any nonsingular
foliation on C × C, then F = F ∗(G) is a nonsingular foliation on X . If
G = Ker(df), then F is tangent to C, the degree of its normal bundle is 0,
and we are in case (1). Otherwise, G is generically transverse to C×{0}
and F is generically transverse to C ⊂ X . If k is the number of tangency
points (counted with multiplicity), then

degNF |C = 2+ k.

When k ≥ 1, it is possible that G admits no meromorphic first integral,
on any neighbourhood of C × {0}; then also F admits no meromorphic
first integral, on any neighbourhood of C. The leaves of the flopped
foliation F ′ are hypersurfaces passing through C′. At a generic point
of C′ we still have a local product structure, as in the Kupka case, but
the 2-dimensional model is more complicated than a radial singularity
(singularities of this kind are studied in [Klu]; they also may fail to have
a meromorphic first integral). Further, there are some points of C′ where

the local product structure is lost (it is useful to pass through F̃ in order
to see these properties).

Example 4.2. Take any codimension one foliation F1 in CP 3, and take
a line L ⊂ CP 3 disjoint from Sing∗(F1) and not tangent to F1. Take
two points p1, p2 ∈ L where the foliation is transverse to L, and blow-up
them. Then the strict transform of L is a smooth rational curve C in a
threefold X with normal bundle O(−1)⊕O(−1). The lifted foliation F
has at most isolated singularities on a neighbourhood of C, and it is
generically transverse to C. This example is more complicated than
the previous one, in the sense that the foliation, around C, does not
necessarily come from a foliation in dimension 2. However, we can repeat
the considerations above about the structure of the flopped foliation F ′.
Here again we do not have meromorphic first integral around C, unless
F1 has a rational first integral: indeed, the space of leaves of F around C
is the same as the space of leaves of F1 around L, and a meromorphic
first integral around L extends to a rational first integral on CP 3.
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