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RIESZ TRANSFORMS ASSOCIATED TO
SCHRODINGER OPERATORS WITH NEGATIVE
POTENTIALS

JOYCE ASSAAD

Abstract

The goal of this paper is to study the Riesz transforms VA~1/2
where A is the Schrédinger operator —A — V', V' > 0, under
different conditions on the potential V. We prove that if V is
strongly subcritical, VA~1/2 is bounded on LPRN), N > 3,
for all p € (p);2] where p{ is the dual exponent of po where
2< % < po < oo; and we give a counterexample to the bound-

edness on LP(RY) for p € (1;p}) U (pox; 00) where pos := ]\’;3_1:0

is the reverse Sobolev exponent of pg. If the potential is strongly
subcritical in the Kato subclass K37, then VA~1/2 is bounded
on LP(RY) for all p € (1;2], moreover if it is in L{l\,[/Q (RN) then
VA~1/2 is bounded on LP(RN) for all p € (1; N). We prove also
boundedness of V1/2A~1/2 with the same conditions on the same
spaces. Finally we study these operators on manifolds. We prove
that our results hold on a class of Riemannian manifolds.

1. Introduction and definitions

Let A be a Schrodinger operator —A+V where —A is the nonnegative
Laplace operator and the potential V: RV — R such that V =V+ -V~
(where V* and V'~ are the positive and negative parts of V', respec-
tively). The operator is defined via the sesquilinear form method. We
define

a(u,v)= Vu(x)Vv(a:)dx—i—/ V+(x)u(x)v(x)dx—/R V(x)u(x)v(z) dx

RN RN N

D(a) = {u e WhH2(RM), VT (z)u?(z) dr < oo} .

RN
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Here we assume V€ LL (RY) and V'~ satisfies (for all u € D(a)):

(1) V_(x)uz(x) dx
RN

<a {/ |Vu|? () da +/ VT (x)u?(z) dx} +8 u?(z) dx
RN RN RN
where a € (0,1) and 8 € R. By the well-known KLMN theorem (see
for example [22, Chapter VI]), the form a is closed (and bounded from
below). Its associated operator is A. If in addition 5 < 0, then A is
nonnegative.
We can define the Riesz transforms associated to A by

1 > dt
VA2 .= —/ ViVe t4A 2
I'(3) Jo t

The boundedness of Riesz transforms on LP(RY) implies that the
domain of A'/? is included in the Sobolev space W'P(RN). Thus the
solution of the corresponding evolution equation will be in the Sobolev
space WLP(RY) for initial data in LP(RY).

It is our aim to study the boundedness on LP(R") of the Riesz trans-
forms VA~1/2. We are also interested in the boundedness of the opera-
tor VY/2A=1/2 1f VA=Y2 and V/2A71/2 are bounded on LP(RY), we
obtain for some positive constant C'

IVully + [V 2ull, < Cll(=A + V) 2ull,.
By a duality argument, we obtain
I(=A + V)" 2ully < C(IVully + [V 2ull)

where p’ is the dual exponent of p.

Riesz transforms associated to Schrodinger operators with nonnega-
tive potentials were studied by Ouhabaz [25], Shen [28], and Auscher
and Ben Ali [2]. Ouhabaz proved that Riesz transforms are bounded
on LP(RY) for all p € (1;2], for all potential V' locally integrable. Shen
and Auscher and Ben Ali proved that if the potential V' is in the reverse
Holder class B, then the Riesz transforms are bounded on LP(RY) for
all p € (1,p1) where 2 < p; < oo depends on ¢g. The result of Auscher
and Ben Ali generalizes that of Shen because Shen has restrictions on
the dimension N and on the class B,. Recently, Badr and Ben Ali [5] ex-
tend the result of Auscher and Ben Ali [2] to Riemannian manifolds with
polynomial volume growth where Poincaré inequalities hold and Riesz
transforms associated to the Laplace-Beltrami operator are bounded.
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For manifolds of homogeneous type (without polynomial volume growth
condition), they proved similar results for a smaller range of p.

With negative potentials new difficulties appear. If we take V €
L>(RY), and apply the method in [25] to the operator A + ||V||wo,
we obtain boundedness of V(A + [|[V|le)™*/? on LP(RY) for all p €
(1;2]. This is weaker than the boundedness of VA~/2 on the same
spaces. Guillarmou and Hassell [19] studied Riesz transforms V(A o
P+)_1/ 2 where A is the Schrédinger operator with negative potential
and P, is the spectral projection on the positive spectrum. They prove
that, on asymptotically conic manifolds M of dimension NV > 3, if V is
smooth and satisfies decay conditions, and the Schrodinger operator has
no zero-modes nor zero-resonances, then Riesz transforms V(Ao P, )~1/2
are bounded on LP(M) for all p € (1, N). They also prove (see [20])
that when zero-modes are present, Riesz transforms V(A o P,)~/? are
bounded on LP(M) for all p € (%, %), with bigger range possible if
the zero modes have extra decay at infinity.

In this paper we consider only negative potentials. From now on, we
denote by A the Schrodinger operator with negative potential,

A=-A-V, V>0.

Our purpose is, first, to find optimal conditions on V allowing the bound-
edness of Riesz transforms VA~1/2 and that of V/2A4~1/2 on LP(RN)
second, to find the best possible range of p’s.

Let us take the following definition

Definition 1.1. We say that the potential V is strongly subcritical if
for some £ > 0, A > V. This means that for all u € W12(RY)
1
Vu? < —— |Vul?.
RN 1+¢ RN

For more information on strongly subcritical potentials see [16] and
[34].

With this condition, V' satisfies assumption (1) where § = 0 and
a = %ﬂ Thus A is well defined, nonnegative and —A generates an
analytic contraction semigroup (e~*4);>0 on L#(RY).

Since —A —V > eV we have (1 +¢)(—=A — V) > e(—A). Therefore

1
) vl < (14 2) 142,

Thus, VA~/? is bounded on L?*(RY). Conversely, it is clear that if
VA~1/2 is bounded on L?(RY) then V is strongly subcritical.
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We observe also that —A — V' > eV is equivalent to
1
3) VY20l < A2l

Thus, V124712 is bounded on L?*(RY) if and only if V is strongly
subcritical.
So we can conclude that

[Vaulls + [VY2ully < (A = V)Y2ul),

if and only if V' is strongly subcritical. Then by a duality argument we
have

IVullz + [V 2ullz ~ (=2 = V) 2ull2
if and only if V' is strongly subcritical.

To study Riesz transforms on LP(RY) for 1 < p < oo with p # 2 we
use the results on the uniform boundedness of the semigroup on L?(RY).
Taking central potentials which are equivalent to c¢/|z|? as |z| tends to
infinity where 0 < ¢ < (£52)2, N > 3, Davies and Simon [16] proved
that for all ¢ > 0 and all p € (p}; po),

le™ lp—p < C

where 2 < % < pp < oo and pj its dual exponent. Next Liskevich,

Sobol, and Vogt [24] proved the uniform boundedness on LP(RY) for

all p € (ph; po) where 2 < % < pg = (Nfz)(i]\\f/l—lig)’ for general

strongly subcritical potentials. They also proved that the range (pj, po) is
optimal and the semigroup does not even act on LP(R™) for p ¢ (p}, po)-
Under additional condition on V', Takeda [32] used stochastic methods
to prove a Gaussian estimate of the associated heat kernel. Thus the
semigroup acts boundedly on LP(RY) for all p € [1, 00].

In this paper we prove that when V is strongly subcritical and N > 3,
Riesz transforms are bounded on LP(RY) for all p € (p);2]. We also give
a counterexample to the boundedness of Riesz transforms on LP(RY)
when p € (1;p() U (pos; 00) where 2 < pg, = ]51]:0 <pp < oo IfV
is strongly subcritical in the Kato subclass K3, N > 3 (see Section 4),
then VA~1/2 is bounded on LP(RYN) for all p € (1,2]. If, in addition,
Ve Lg/Q(RN) then it is bounded on LP(RY) for all p € (1, N). With
the same conditions, we prove similar results for the operator V1/24-1/2,
Hence if V is strongly subcritical and V' € Kg ﬁLfX/2 (RN), N > 3, then

(4) IVully + 1V 2ull, = [(=A = V)2,
for all p € (N’; N).
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For Schrédinger operator —A 4+ V' with nonnegative V', these results
hold under the sole assumption V € Lg/ 2,

In the last section, we extend our results to a class of Riemannian
manifolds. We denote by —A the Laplace-Beltrami operator on a com-
plete non-compact Riemannian manifold M of dimension N > 3. We
prove that when M is of homogeneous type and the Sobolev inequal-
ity holds on M, V(—=A — V)~1/2 and V1/2(~A — V)~/2 are bounded
on LP(M) for all p € (pp; 2] provided that V is strongly subcritical on M.
If in addition Poincaré inequalities hold on M and V belongs to the Kato
class Ko (M), then V(—=A—V)~/2 and V'/2(—A—V)~/2 are bounded
on LP(M) for all p € (1;2]. Assume now that the volume of balls B,
of M is equivalent to "V, and Poincaré inequalities hold on M. If V is
strongly subcritical in Ko, (M) N L{Xm(M) and V(—A)~'/2 is bounded
on L" (M) for some 7 > 2, then V(—A —V)~1/2 and V1/2(—-A - V)~1/2
are bounded on LP (M) for all p € (1;inf(r, N)). We deduce that this last
result holds for Schrédinger operators with potentials in L3snL%+e.

For the proof of the boundedness of Riesz transforms we use off-
diagonal estimates (for properties and more details see [4]). These es-
timates are a generalization of the Gaussian estimates used by Coul-
hon and Duong in [13] to study the Riesz transforms associated to the
Laplace-Beltrami operator on Riemannian manifolds, and by Duong,
Ouhabaz and Yan in [17] to study the magnetic Schrodinger operator
on RY. We also use the approach of Blunck and Kunstmann in [8]
and [9] to weak type (p, p)-estimates. In [1], Auscher used these tools to
divergence-form operators with complex coefficients. For p € (2; N) we
use a complex interpolation method (following an idea in [2]).

In contrast to [19] and [20], we do not assume decay nor smoothness
conditions on V.

In the following sections, we denote by LP the Lebesgue space LP(R™Y)
with the Lebesgue measure dz, ||.||, its usual norm, (.,.) the inner prod-
uct of L2, ||.||p—q the norm of operators acting from L? to L. We denote
by L the weak Lebesgue space. We denote by p’ the dual exponent to p,
p = p"%l. We denote by C, ¢ the positive constants even if their values
change at each occurrence. Throughout this paper, VA~/2 denotes one
of the partial derivative %A_lm for any fixed k € {1,...,N}.

2. Off-diagonal estimates

In this section, we show that (e7t4),~0, (VtVe )50 and
(VIV/2e=t4) L satisfy LP — L? off-diagonal estimates provided that
V' is strongly subcritical.
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Definition 2.1. Let (T})>0 be a family of uniformly bounded operators
on L2 We say that (T})¢>o satisfies LP — L9 off-diagonal estimates for
p,q € [1;00] with p < ¢ if there exist positive constants C' and ¢ such
that for all closed sets E and F of RY and all h € LP(RN)N L*(RY)with
support in E, we have for all t > 0:

cd(E

_ _ )2
|Tehllpary < Ct7e™ 7+ [[h]lp,

where d is the Euclidean distance and 7,4 := %(% - %)

Proposition 2.1. Let A= —A—V where V >0 and V is strongly sub-
critical. Then (e )i>0, (VEVe ™) is0, and (VIV/2e™t4)5q satisfy
L? — L? off-diagonal estimates, and we have for allt > 0 and all f € L?
supported in E:

(@) lle ™ f | pagry < e @ BRI/ fly,

(i) [VEVE™  fl| 2y < Cem @ EI/10t) ]|y,

(it)) [[VIVY2e A |2y < Cem D/ ]
Proof: The estimate (i) is proved in [14, Theorem 3.3]. Nevertheless,
to prove estimates (ii) and (iii) we use the classical Davies perturbation
technique, and the estimate of the perturbed semigroup. Therefore we
give details of the proof of (i) with this method, as of (ii) and (iii).

Let A, := e’ Ae=P? where p > 0 and ¢ is a Lipschitz function with

[V¢| < 1 a.e. Here A, is the associated operator to the sesquilinear
form a, defined by

a,(u,v) := ale "?u, e!?v)
for all u,v € D(a).
By the strong subcriticality property of V we have for all u € W12

(A + ) = — [ P21Vl + [ [Val = [ Va2 + 0 ull}
o[-

> V122,
Using (2), we obtain
K&+fmw:—/fWWﬁ+/WW—/Vﬁ+MM@

(6)
> | Vull2
T e4+1 2
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In particular (A4, + p?) is a maximal accretive operator on L?, and this
implies

_ 2
(7) e eully < € [lul2.
Now we want to estimate
2
(A, +2p)e Aet200) [y,

First, let us prove that A, + 2p? is a sectorial operator.
For u complex-valued,

ap(u, u) := a(u,u) + p/qubW - p/ﬂquVu —p? / IVo|?|ul?.
Then
a0 + 20l 2 a(u,) + p [ wVoVa~ p [T96Tu+ 5 ul?
= a(u,u) + 2ip3m/uv¢w+ P2 ||ull3.

This implies that

(8) Re(a,(u, u) + 207 [ull3) > a(u,w),
and
9) Re(a,(u, u) + 2p°[[ull3) > p*|lull3-

On the other hand,
ap(u, u) = a(u,u) + p/quSW - p/ﬂV(qu — p? / |V |?|ul?

= a(u,u) + 2ip3m/uv¢w — p? / |V |? ul?.
So
(m (e (u,w) + 202 ul12)] = 2l / |Vl 7a]
< 2o llull2 | Va2
Using (2) we obtain that
(9 (a (u,10) + 202 [ul2)] < 2lplullacea? (u, )
< a(u,u) + p2ul,

where ¢, = (1 + %)% Now using estimates (8) and (9), we deduce that
there exists a constant C' > 0 depending only on ¢ such that

|Im(a, (u,u) + 20°[|ull3)] < CRe(ap(u,u) + 207 |ul3).
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We conclude that (see [22] or [25])
||efz(Ap+2p2) H2—2 <1

for all z in the open sector of angle arctan(1/C). Hence by the Cauchy
formula

(10) (A, + 2p2)e tAH20D)| |,y <

~1Q

The constant C' is independent of p.
By estimates (5) and (6) we have

(A, +20%)u,u) > (A, + pPu,u) > e[V 2ul3,
and

9
((Ap +20%)u,u) > (A, + p*)u, u) > mIIVUIIE-

Setting u = e~ (4e+2") f and using (10) and (7) we obtain

(11) IVEVe 0 flly < Ce® | £,
and
(12) IVEV2e=t40 flly < O flo.

Let E and F be two closed subsets of RN, f € L?(R") supported in E,
and let ¢(z) := d(x, E) where d is the Euclidean distance. Since e?? f =
f, we have the following relation

e—tAf — e—pd>e—tApf-
Then
Ve ' f = —pVge PPe o f 4 e PVe A f,
and
V1/2e—tAf — €_p¢V1/2€_tApf.
Now taking the norm on L?(F), we obtain from (7), (11) and (12)

2
(13) le ™ fllpar) < e PUEF)er | £l
_ _ 2 c _ 2
(14) Ve " fllrzcry < pe U™ fl|5 + 7 PAUEE) 27 £y,

and

_ Cc _
(15) VY2 || pa gy < 7 pd(BF) 20%1| .

We set p = d(E,F)/2t in (13) and p = d(E, F)/4t in (15), then we get
the L? — L? off-diagonal estimates (i) and (iii).
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We set p=d(E, F)/4t in (14), we get

d(E, F
A eeEnrs i,
AVt
This gives estimate (ii). O

_ C
Ve il < 5 (14

Now, we study the L? — L? boundedness of the semigroup, of its
gradient, and of (V'/2e~t4),-.

Proposition 2.2. Suppose that A > eV, then (e )0, (VtVe )0
and (VEVY2e ) oo are LP — L? bounded for all p € (p);2]. Here

Py is the dual exponent of py where py = (N—Q)(lz—]ll/l—lis)’ and the
dimension N > 3. More precisely we have for allt > 0:

i) [letfll2 < Ct| £l
i) [[VIVe A flla < Ct | f]|p,
iii) [[VEV2eTt A f]ly < Ot f]lp,

where v, = %(% -3).

Proof: i) We apply the Gagliardo-Nirenberg inequality
[ully < CaplIVull3 full3,

where a+b=1and (1+2y,)a = 2v,, tou =e 4 f for all f € L>N LP,
all t > 0, and all p € (p(;2]. We obtain

le™ A f113 < Capl Ve A 13 e £

At present we use the boundedness of the semigroup on LP for all p €
(pp; 2] proved in [24], and the fact that |[Vu|3 < (1 + 1/e)(Au,u) from

the strong subcriticality condition, then we obtain that

le= A F157 < —Cw' ) £112e
where ¢ (t) = |le 7?4 f||3. This implies

a—

11152/ < Clap(t) =)

Since %b = % and “T_l = —i, integration between 0 and ¢ yields

_ _ —1
tfl Y < Cle A f), 0,
which gives i).

We obtain ii) by using the following decomposition:
ViVe A = IV A2 A2~ tA/2—tA)2,
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the boundedness of VA~/2 and of (v/tA/?e7*4),~0 on L?, and the fact
that (e=*4);5¢ is L? — L? bounded for all p € (p};2] proved in i).

We prove iii) by using the following decomposition:
VIV2e=tA — i 1/2 A=1/2 A1/20—tA/2—tA/2

the boundedness of V12472 and of (vtA/?e~*4),50 on L?, and the
fact that (e *4);~ is LP — L? bounded for all p € (p); 2] proved ini). O

We invest the previous results to obtain :

Theorem 2 1. Assume that A > eV then ()50, (VIVe )50 and
(\[Vl/2 —tAY,o0 satisfy LP —L? off-diagonal estimates for all p € (ph; 2].

2N
Here p)y is the dual exponent of py where pg = Ty — and the

dimension N > 3. Then we have for all t > 0, all p € (py;2], all closed
sets B and F of RN and all f € L?> N LP with supp f C E

i)

(EF)

(16) le™ 4 FllL2ry < Ct e [l
ii)
_ _ (E F)
(17) IVEVe ™ A fllr2m < Ct e 1f1lps
iii)
_ _ d (E F)
(18) VIV 2e A f|| 1oy < Ct e £l

_ N1 _ 1 "
where v, = 5 (5 — 3) and C, ¢ are positive constants.

Remark. 1) By duality, we deduce from (16) a L? — LP off-diagonal
estimate of the norm of the semigroup for all p € [2;pg), but we cannot
deduce from (17) and (18) the same estimate of the norm of v/tVe ™4 f
and of v/tV1/2e~*4 f because they are not selfadjoint. This affects the
boundedness of Riesz transforms and of V1/24-1/2 on L? for p > 2.

2) If V() := c|z|~2 where 0 < ¢ < M, assertion i) is proved in
[14, Example 4.17].

The previous theorem follows from [14, Theorem 4.15] using our
l 1

Proposition 2.1 and Proposition 2.2, and setting W, (., 1) := Ct = FG-7
and Wa (., vt) := Ctz~2) for some r € (p;2).
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Note also that i) follows from Proposition 2.2 and Riesz-Thorin inter-
polation theorem since

2
Ixre “xpfllz < e ED/A £l

by Proposition 2.1. Similar arguments hold for ii) and iii).

3. Boundedness of VA~1/2 and V1/24-1/2 on LP
for p € (pg; 2]

This section is devoted to the study of the boundedness of V'1/2A~1/2
and Riesz transforms associated to Schrodinger operators with negative
strongly subcritical potentials. We prove that VA~1/2 and V1/24-1/2
are bounded on LP(RY), N > 3, for all p € (p};2], where pj, is the
exponent mentioned in Theorem 2.1.

Theorem 3.1. Assume that A>eV | then VA™/2 is bounded on LP(RN)
for N >3, for all p € (pp; 2] where pj, = ((N—Z)(lijz/l—lis)),'

To prove Theorem 3.1, we prove that VA~1/2 is of weak type (p, p)
for all p € (p};2) by using the following theorem of Blunck and Kunst-
mann [8]. Then by the boundedness of VA~!/2 on L?, and the Marcin-
kiewicz interpolation theorem, we obtain boundedness on LP for all p €
(pg; 2]. This result can also be deduced from an extension to complex
time of Theorem 2.1 together with Theorem 1.1 of [9].

Theorem 3.2. Let p € [1;2). Suppose that T is sublinear operator of
strong type (2,2), and let (A, )r>o be a family of linear operators acting
on L2.

Assume that for j > 2

1 1/2 1 1/p
2 . p

and for j > 1

1/2 1/p
1 1
—_— A 2 | — p

for all ball B with radius r(B) and all f supported in B. If ¥ :=
> g(j)2N < oo, then T is of weak type (p,p), with a bound depend-
ing only on the strong type (2,2) bound of T, p, and X.

Here C1 = 4B and C;(B) = 22T'B \ 2/ B for j > 2, where \B s the
ball of radius Ar(B) with the same center as B, and |AB| its Lebesgue
measure.
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Proof of Theorem 3.1: Let T = VA~'/2. We prove assumptions (19)
and (20) with A, =T — (I — e*TQA)m for some m > N/4 — v,, using
arguments similar to Auscher [1, Theorem 4.2].

Let us prove (20). For f supported in a ball B (with radius ),

1
W”ATJCHLZ(C,-(B))

|2J+IB|1/2

i( > k+1 —kr2Af
=1

L2(C;(B))
2(B c (B))

1 " (m o\
< g 2 () Clirt) e 171
k=1

for all p € (p);2) and all f € L? N LP supported in B. Here we use the

LP — L? off-diagonal estimates (16) for p € (p};2]. Since v, = %(% -1

we obtain

1 1/2 Cr—27 7cd2(B c;(B))
2 —_—
<|2j+1B |ATf‘ ) S |2j+1B‘1/2 || ||p

C;(B)
a2 1/p
. —cd2(B,C;(B))
<C2TINPe= ( / pr) .
|B

This yields, for j =1,

1/2 1/p
(s [ o) = (g [ )

and for j > 2

1 1/2 1/p
2 —jN/2 _—c4?
<|2”1B|/c.(3) IArf|> scrrey ()

Thus assumption (20) of Theorem 3.2 holds with .-, g(j)2’ IN < 0.
It remains to check the assumption (19):
We know that

o dt
VA Y2f = c/ Ve t4f—
0 Vit
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then, using the Newton binomial, we get

dt

VA_1/2(I _ e—r2A)mf — C‘/O ve—tA(I _ e—rzA)chW

= C/ gr2 () Ve A f dt
0

where
" (m X(t—kr2>0)
r2(t) = o Ll
0o (1) ;<k>( R
Hence, using the LP — L? off-diagonal estimate (17), we obtain for all p €
(ph;2), all j > 2, and all f € L? N LP supported in B
HvAfl/Z(I_efr A)mf||L2(Cj(B)) SO/ |gr2 (t)|t*"/p71/267c41r /t dt”pr
0

We observe that (see [1, p. 27])

lg2(t)] < if kr?<t<(k+1r*<(m+1)r?

t — kr2
and
lgr2 (t)| < OP2mt=™=Y2 i ¢ > (m 4+ 1)r2
This yields
_1 2
IVATZ(I — e )" fll2(c,(By)

M (R - 1/2

<Cy et 1],
o k2 Vit — kr?
(21) N
o0 cad 2
+C P2 S Gt £
(m+1)r2
<L+ L.
We have

o c "7‘2 ]
I ;_O/( e St fllp < Crwan B £,
m T
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by the Laplace transform formula, and

t—"/p—l/Q _cady2?

m o a(k+1)r?
IL:=C -
=y [

o (k:+1)’r2 ti’ypil/z cad 2 r? c4d 2
=C|fll / —_—e dtJr/ e 5T 4t
b ; kr2 Vit — kr? 0

=Ji + Js.

In the preceding equation

t—’)’p—l/Q _c4dr?
t

m (k+1)r2
7 =Clf| / tr .

49 m (k+1)r?
< C”f“pe_ mFT Z(k‘TQ)_’YP_lm/ (t _ k,r2)—1/2 dt
k

k=1 2
< Cr—2w9—2i(m+y) I £1lps

and

r? 1 calr2
Js ::0/ e = Gl £
0

2

; r
<Cl e [ eie
0

cad r2
2t

dt

2
ca9 r2

T
<Clglyam [ e e
0

2
cad r2

§C||f||p272j(m+vp)r*2vp/ t~le="m dt
0

< Cr By | g,

Here, for the last inequality, we use the fact that j > 2 to obtain the
convergence of the integral without dependence on r nor on j.
We can therefore employ these estimates in (21) to conclude that

. .
IVATY2(I — e )™ fllzae, my) < Cr™ 2272w £,



RIESZ TRANSFORMS 137

which implies
L pata ey
12741 B Je,(p)

SCQij(anvar <|B|/ |f|p>

where " g(j)27Y < oo because we set m > N/4 — ,,. O

Proposition 3.1. Assume that A > €V, then VY/2A=Y2 is bounded
on LP(RYN) for N > 3, for all p € (ph; 2] where py is the dual exponent

of po with py = A \/ ;-
1+€

Proof: We have seen in (3) that the operator V/2471/2 is bounded
on L2 To prove its boundedness on LP for all p € (p};2] we prove
that it is of weak type (p,p) for all p € (p};2) by checking assump-
tions (19) and (20) of Theorem 3.2, where T' = V/2A4~1/2_ Then, using
the Marcinkiewicz interpolation theorem, we deduce boundedness on LP
for all p € (p(;2).

We check assumptions of Theorem 3.2 similarly as we did in the proof
of Theorem 3.1, using the LP — L? off-diagonal estimate (18) instead
of (17). O

=

Let us now move on, setting V = c|z|~2 where 0 < ¢ < (¥52)2, which
is strongly subcritical thanks to the Hardy inequality, we prove that the
associated Riesz transforms are not bounded on L? for p € (1; p()) neither
for p € (pox; 00). Here po. = A?‘f:ﬂ is the reverse Sobolev exponent of pg.

Proposition 3.2. Set V strongly subcritical and N > 3. Assume that
VA=12 is bounded on LP for some p € (1;pp). Then there exists an
exponent q1 € [p;ph) such that (e=*4);~¢ is bounded on L" for all v €
(¢132).

Consider now V = c|z|=2 where 0 < ¢ < (¥52)2. It is proved in [24]
that the semigroup does not act on LP for p ¢ (p{;po). Therefore we
obtain from this proposition that the Riesz transform VA~1/2 is not
bounded on LP for p € (1;pp).

Proof: Assume that VA~1/2 is bounded on L? for some p € (1;p}). By
the boundedness on L? and the Riesz-Thorin interpolation theorem, we
get the boundedness of VA~Y/2 on L9 for all ¢ € [p;2]. Now we apply
the Sobolev inequality

(22)

q* < CHVqu
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where ¢* = ]\I,V—_q if < N to f:= A~"2u, so we get

q
HA*1/2U o < C’||VA71/QU||q < Cllullq

for all ¢ € [p;2]. In particular, ||A_1/2||q1_q1* < C where p < q1 < p)
such that g7 > pj.

Decomposing the semigroup as follows
(23) etA — AL/2,—tA[2,~tA/2 g—~1/2

where A=1/2 is L9 — L9 bounded, e *4/2 has L9 — L? norm bounded
by Ct~ i (Proposition 2.2) and A'/2e~t4/2 is L?—L? bounded by Ct~1/2
because of the analyticity of the semigroup on L?. Therefore, we obtain

le™ A g2 < Ct7 Y 712 = 0,

We now interpolate this norm with the L? — L? off-diagonal estimate of
the norm of e~*4, as we did in the proof of Theorem 2.1, so we get a
L™ — L? off-diagonal estimate for all 7 € (¢1;2). Then Lemma 3.3 of [1]
yields that (e7*4);~ is bounded on L for all 7 € (qy;2) for q; € [p; ph)
such that ¢} > pj. O

Proposition 3.3. Set V strongly subcritical and N > 3. Assume that
VA~1/2 is bounded on LP for some p € (pos; 00). Then there exists an
exponent gz > po« such that the semigroup (e *4)y~¢ is bounded on L*
for all s € (2;q3). Here ¢35 > po.

Consider now V = ¢|z|~2 where 0 < ¢ < (852)2. It is proved in [24]
that the semigroup does not act on LP for p ¢ (pj;po). Therefore we
obtain from this proposition that the Riesz transforms VA2 are not
bounded on LP for p € (pg«; 00).

Proof: Assume that VA~'/2 is bounded on LP for some p € (pg;00).
Then by interpolation we obtain the boundedness of VA~/2 on L for
all ¢ € [2;p]. In particular,
VAT gmqo < C

where po. < g2 < po, g2 < p, g2 < N. Using the Sobolev inequality (22),
we obtain that A=1/2 is L% — L% bounded where a5 > po.

Now we decompose the semigroup as follows
(24) etA _ A=1/2,—tA/2 g1/2 ,~tA/2

Thus we remark that it is L? — L% bounded where a5 > po-

Then, using similar arguments as in the previous proof, we conclude
that (e *4);s0 is bounded on L*® for all s € (2;¢3) for po. < qo <
inf(pg, p, N). O
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4. Boundedness of VA~1/2 and V1/2A4-1/2 on LP
for all p € (1;N)

In this section we assume that V' is strongly subcritical in the Kato
subclass K§°, N > 3. Following Zhao [34], we define
= O} s

oo . loc, 1; V(y)|
s {V N3 Lii‘?v fn e
where K¢ is the class of potentials that are locally in the Kato class K.

For necessary background of the Kato class see [30] and references
therein.

We use results proved by stochastic methods to deduce a L' — L™ off-
diagonal estimate of the norm of the semigroup which leads to the bound-
edness of VA~1/2 and V1/2A=1/2 on LP for all p € (1;N).

First, we recall the following

Lemma 4.1. For two functions f and g defined on a metric space M,
such that f € LT and g € L1, for some r,q € (1,00) we have the
following Hélder inequality

(25) 1f-9llp < Cp,rall fllrwllglla:

where || |y = sup,so (" u{x; |f(z)] > t})Y" and p € (1,00) such that
1,11
rTd T
Proof: For r,q € (1,00) and p such that + + % = Lt is known that

(see [18, p. 15]) ’

1 £-9llpw < Cprgllfllrwllgllguw-

In particular,
1F-llp.w < Cprgll fllrwllglle-

Let p;, g; and r (i = 1,2) such that % + % = %. Then
”.f'gHme S szzﬂ“,%'”f T,ngqu

This means that the operator Ty (g) := f.g is bounded from L% to LPi.
Now using the Marcinkiewicz interpolation theorem we deduce (25). O

Theorem 4.1. Let A be the Schrédinger operator —A —V, V > 0.
Assume that V' is strongly subcritical in the class K§, (N > 3), then
VA=Y2 and VI/2A=12 are of weak type (1,1), they are bounded on LP
for allp € (1;2]. If in addition V € Lg/z, then VA=Y2 qnd V1/2A-1/2
are bounded on LP for allp € (1;N).
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Proof: We assume that V' is strongly subcritical in the class K37. There-
fore V satisfies assumptions of Theorem 2 of [32]. Thus the heat kernel
associated to (e7*4);s¢ satisfies a Gaussian estimate. Therefore using
Theorem 5 of [29] we conclude that VA~'/2 and V'/2A~1/2 are of weak
type (1,1) and they are bounded on L? for all p € (1;2].

To prove the boundedness of VA~/2 on LP for higher p we use the
Stein complex interpolation theorem (see [31, Section V.4]).

Let us first mention that D := R(A) N L' N L* is dense in LP for
all p € (1;00) provided that V is strongly subcritical in K37, N > 3.
We prove the density as in [2], where in our case we have the following
estimate

(26) [fr = I < k(e(=A) + k)7 f

where f, :== A(A+ k)~1f and c is a positive constant. This estimate
holds from the Gaussian estimate of the heat kernel associated to the
semigroup (e *4)so.

Set F(2) := ((—A)*A~*f,g) where f € D, g € C*(RY) and z € S :=
{x + iy such that x € [0;1] and y € RN}. F(2) is admissible. Indeed,
the function z — F(2) is continuous in S and analytic in its interior.
In addition

(27) [F(2) = [(A7* . (=A)*g)| < [IAT* fll2ll(=2)?g]l2-
For Rez € (0;1), D(—A) C D((—A)7), so

(28) 1(=A)?gll2 < Cllgllw=2

for all z € S.

When V is strongly subcritical, A is non-negative self-adjoint operator
on L?, hence ||A%||3_2 < 1 for all y € R. Therefore for all z = z+iy € S
and f = Au € R(A) we have

1A Fll2 < 1A -2l A*"u]

(29) < O([lullz + [[Aull2)-

Here we use D(A) C D(A'~%) because (1 — ) € (0;1).

Now we employ (28) and (29) in (27) to deduce the admissibility
of F(z)in S. Thus we can apply the Stein complex interpolation theorem
to F(2).

Since V' is strongly subcritical and belongs to the class K%, N > 3,
we obtain a Gaussian estimate of the heat kernel of A. Thus A has a
H>-bounded calculus on L? for all p € (1;00) (see e.g. [8, Theorem 2.2]).
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Hence

[EGy)] < 1A Fllpo | (—2) gl < Crripo € Fllpo 911

for all v > 0, all pg € (1;0).
Let us now estimate |[VA™!(|,,—p,. By the Holder’s inequality (25)
of the previous lemma, we have

(30) VA ullp, < CIVIy Wl A7 ull
where p; < N and % =14 % As mentioned above we have a Gaussian
upper bound for the heat kernel. In particular

le™ 4 l1—0 < CEN/2

for all t > 0. Therefore A~! extends to a bounded operator from L?*
to L7 such that s < % and % = % + %, and we have

1A= ully < Cllulls,
(see [12]). Thus s = p1, D(A) € D(V) and (30) implies
VA lpy—p, <C

where C' depends on [|V||y ,,. Hence we can estimate
:

I(=A) A ullp, = [(=A =V + V) A ullp,
(31) < lullp, + VAT ullp,
< Cllullp,

where C' depends on ||VH% . We return to F(z),

|1+ )] < [(=A)ATTATY fllp [(=2) gl
<D A oy, AT Fllpu (= 2) " gl

< CypnlViy M 1o N9l

for all p; € (1; N/2) and all v > 0.

From the Stein interpolation theorem it follows that for all ¢ € [0; 1]
there exists a constant M; such that

[F ()] < Ml fllp, gl

where p% = % + p%' Setting ¢ = % and using a density argument we
conclude that VA~1/2 is bounded on LP for all p € (1; N).
To prove boundedness of V1/24-1/2 on L? we use the following de-

composition
vi/24-1/2 V1/2(—A)_1/2(—A)1/2A_1/2.
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Assuming V € L/ 2, by the Holder’s inequality (25) we have
IV 2ull, < CIIVY2 |y lullg

where p < N and % — % = % Then by Sobolev inequality and the

boundedness of Riesz transforms associated to the Laplace operator we
obtain

[V 20|, < Conviiy MVl < Conviy |, (=) ull,
forall p e (1; N). Thusif V € L/? we have for all p € (I;N)
(32) V2 (=2) 2|y < C.

Using the boundedness of Riesz transforms associated to the Schrédinger
operator A we have

I(=A)2A7 2], < Clfull,

for all p € (1; N). Therefore V1/2471/2 is bounded on L for all p €

(1; N) provided that V is strongly subcritical in the class K N LQIX/Q,

N > 3. O

Remarks. 1) The proof of the previous theorem shows that
Vullp, < CllAullp,

and
[Aullp, < CllAullp,
for all p1 € (1;N/2).

2) If we consider H = —A + V a Schrédinger operator with non-
negative potential V € Lg/ 2, we obtain by the previous arguments the
LPi-boundedness of VH~! and AH~! for all p; € (1;N/2), and the
LP-boundedness of V/2H~1/2 and VH /2 for all p € (1; N).

Corollary 4.1. Let A be the Schridinger operator —A —V_  V > 0.
Assume that V is strongly subcritical belongs to L3N L%*‘E, N >3,
for some € > 0. Then VA=Y2 and V'/2A~12 are bounded on LP for
all p € (1; N).

Proof: Taking N > 3 and € > 0, we show that L>cnNL>% ¢ Kg.
Thus we deduce this result using the previous theorem.
Assume V € L3 SN L2%¢ then V € LP for all p € (X -5 +e),

in particular, V € LP for all p € (%, % +¢). Therefore V belongs to the



RIESZ TRANSFORMS 143

Kato class Ky (see [30, Section A]). We recall that

: V()|
Ky :=<V; lim | sup / ———dy| =0,.
o { al0 lEERN lz—y|<a |y - x|N_2

[ WO V() dy
=B 1y — x|V 2 (ly>B; la—y|<a} [¥ — 2|V 72

V() dy
+/{ _J;‘N—Z

ly|>B; |[z—y|>a} ly

Now

where the first integral tends to zero because L>NL2% C Ky. The
second one, by the Holder inequality,

1

V(y)| dy ”
3 WV Ley>B ——
/{|y|zB;w—y|za}|y—$|N 2 WEPN Jomyizayly—2 V=P

where we choose p € (% — & %) Thus

IR =
{lz—yl>a} |y — T (N2

converges and ||V||zr(jy|>p) tends to zero. Therefore V' belongs to K35.
O

Example. Set N > 3, and let us take potentials V' in the Kato sub-
class Ky N LY/? such that V ~ clz|~®* when z tends to infinity, where
a > 2. Suppose that ||V|\%w is small enough. Let us prove that these
potentials are strongly subcritical, so we should prove that

IV2ull < C[[Vull3

where C' < 1. This is (32) where p =2, and C' < 1 for ||V x
enough. Hence these potentials are strongly subcritical. Z. Zhao [34]
proved that they are in the subclass K. Hence they satisfy the assump-
tions of Theorem 4.1. Then V(—A —V)™%/2 and V/2(—~A—-V)~1/2 are
bounded on LP for all p € (1; N).

w 18 small

5. Schroédinger operators on Riemannian manifolds

Let M be a non-compact complete Riemannian manifold of dimen-
sion N > 3. Denote by dp the Riemannian measure, p the geodesic
distance on M and V the Riemannian gradient. Denote by |.| the length
in the tangent space, and by ||.||, the norm in LP(M,du). Let —A be
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the positive self-adjoint Laplace-Beltrami operator on M. Take V a
strongly subcritical positive potential on M, which means that there
exists an € > 0 such that

1
33 Vuldy < —— 24
(33) /M B H_1+€/M|Vu| s

and set A := —A —V the associated Schrédinger operator on M. By the
sesquilinear form method A is well defined, non-negative, and —A gen-
erates a bounded analytic semigroup (e~4);~q on L2(M).

As in RN, we have the L?(M)-boundedness of V'/24~1/2 and of the
Riesz transforms VA~1/2 if and only if V is strongly subcritical.

We remark that methods used in [24] hold in manifolds. The semi-

group (e *);s¢ can be extrapolated to LP(M), and it is uniformly
bounded for p € (( 1*\/12*ﬁ ) (1*\/12*$ ). If in addition the Sobolev
inequality

(34) AN 2, an = CINIV Il ar)

for all f € C§°(M) holds on M, then we obtain for all t > 0

lle= <ct e

Le(M)—L¥2 (M)

. Using the L?(M) — L*(M) off-

for aﬂpE ((17\/127$)/;(17\/127#))

diagonal estimate we obtain as in [24] the fact that (e7*4);¢ is bounded
on LP(M) for all p € (pj; po) where py := %ﬁ

For classes of manifolds satisfying (34) see [27]. Note that (34)
is equivalent to the following Gaussian upper bound of the heat ker-
nel p(t,z,y) of the Laplace-Beltrami operator (see [33] and [15])

(35) p(t,z,y) < Ct=N2e=0" @/t vy gy e M, t> 0.
We say that M is of homogeneous type if for all x € M and r > 0
(36) u(B(z,2r)) < Cu(B(z,r))

where B(z,r) := {y € M such that p(z,y) <r}.
We say that the L?-Poincaré inequalities hold on M if there exists a
positive constant C' such that

(37) /B(_ .) 1f(y) = fr(@)? du(y) < CrQ/ IV f () du(y)

B(z,r)

forall feC§*(M), x€ M, r>0, where f,.(z) :zm fB(I’r)f(y) du(y).
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Saloff-Coste [26] proved that (36) and (37) hold if and only if the heat
kernel p(t, z,y) mentioned above satisfies the following Li-Yau estimate

—cp®(z,y)/t —c1p”(z,y) /1
CeT <ty < DT
u(B(x, V1)) w(B(z, V1))

Arguing as in the Euclidean case we obtain the following theorem

(38)

Theorem 5.1. Let M be a non-compact complete Riemannian man-

ifold of dimension N > 3. Assume (33) and (34). Then (e"**)i=0,

(VtVe ™) 50 and (VIVY 27t <0 satisfy LP(M)—L*(M) off-diagonal

estimates for all p € (p};2]. Here pf is the dual exponent of py where
2

po = (N—2)(1—N\/1—1i5)' Then we have for all t > 0, all p € (p}; 2], all

closed sets E and F of M, and all f € L*(M)NLP(M) with supp f C E

cp?(E,F)

D) e ™ fllrzry < Ct7we™ " || fl,

- —tA e ep(BF)
i) [|VEVe ™ fllpaqry < Ctwe || fllp,

_cp?(B,F)

i) VIV 2e T A f| 2y < Ot e || fllps
where v, = %(% —3) and C, c are positive constants.

We invest these off-diagonal estimates as in the proof of Theorem 3.1
to obtain the following result

Theorem 5.2. Let M be a non-compact complete Riemannian manifold
of dimension N > 3. Assume (33), (34) and (36). Then V1/2A71/2
and VA~Y? are bounded on LP(M) for all p € (pj;2] where pj =
2N /
e
We say that the potential V' is in the class K (M), if for any e > 0
there exists a compact set K C M and § > 0 such that

sup Gz, y)|V(y)lduly) <e
xeM JKc

where K¢ := M \ K, and for all measurable sets B C K with u(B) < ¢,

sup | G(z,y)[V(y)|duly) <e.
zeM JB
Here G(z,y) = fooo p(t,x,y) dt is the Green function, and p(t,x,y) is
the heat kernel of the Laplace-Beltrami operator. This class is the gen-
eralization of K to manifolds (see [11, Section 2]).
Since (36) and (37) imply the Li-Yau estimate (38), we can use The-
orem 2 of [32] and obtain a Gaussian upper bound of the heat kernel
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of —A — V. Thus arguing as in the Euclidean case, we obtain the fol-
lowing result

Theorem 5.3. Let M be a non-compact complete Riemannian manifold
of dimension N > 3, and let A be the Schridinger operator —A—V, 0 <
Ve LJu\,’/Q(M) N Koo(M). Assume that for all ball B(x,r), u(B(z,r) =
V. Assume (33) and (37). Then A(~A—V)"L and V(—=A—-V)~! are
bounded on LP(M) for all p € (1;N/2).

Now using Theorem 2 of [32] then Theorem 5 of [29], we obtain the
following

Theorem 5.4. Let M be a non-compact complete Riemannian manifold
of dimension N > 3, and let A be the Schrédinger operator —A — V,
0 <V € Koo(M). Assume (33), (36) and (37). Then VA™Y? and
VY2A=Y2 are of weak type (1,1), thus they are bounded on LP(M) for
all p € (1;2].

Using Theorem 2 of [32] then arguing as in the Euclidean case, we
obtain the following

Theorem 5.5. Let M be a non-compact complete Riemannian mani-
fold of dimension N > 3 where u(B(z,r)) ~ Cr for all ball B. Let A
be the Schrédinger operator —A —V, 0 <V € Ko(M)N LfX/Q(M)
satisfying (33). Assume (37). If for some r > 2, the Riesz trans-
forms V(—A)"Y2 are bounded on L" (M) then VA2 and V1/2A~1/2
are bounded on LP(M) for all p € (1;inf(r, N)).

We notice that Theorem 5.3 and Theorem 5.5 hold with condi-
tions (36) and u(B(x,r)) > CrY instead of u(B(z,r)) ~ rV.

Remark. Let M be a non-compact complete Riemannian manifold of
dimension N > 3 which satisfies the Sobolev inequality (34). Let H =
—A 4+ V be a Schriodinger operator with non-negative potential V €
Ly? (M). Assume that for some 7 > 2, the Riesz transforms V(—A)~1/2
are bounded on LP(M) for all p € (2;7). Then the heat kernel associated
to H satisfies (35). Hence we obtain by the previous argument the
LP-boundedness of V/2H~1/2 and VH~'/2 for all p € (1;inf(r, N)).

Note that (36) and (37) hold on manifolds with non-negative Ricci
curvature (see [23]) as well as the boundedness on LP(M) for all p €
(1,00) of Riesz transforms associated to the Laplace-Beltrami operator
(see [6]).

We mention that Carron, Coulhon and Hassell [10] proved that the
Riesz transforms V(—A)~'/2 are bounded on LP(M) for all p € (2; N)
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on smooth complete Riemannian manifolds of dimension N > 3 which
are the union of a compact part and a finite number of Euclidean ends.
Ji, Kunstmann and Weber [21] proved that this boundedness holds for
all p € (1;00), on the complete connected Riemannian manifolds whose
Ricci curvature is bounded from below, if there is a constant a > 0
with o(—A) C {0} U [a;00). They also give examples of manifolds that
satisfy their conditions. Auscher, Coulhon, Duong and Hofmann [3]
proved that on complete non-compact Riemannian manifolds satisfying
assumption (38), the uniform boundedness of (v/tVe *(=2)),. on L4
for some ¢ € (2;00] implies the boundedness on LP(M) of V(—A)~1/2
for all p € (2;q).

Therefore we deduce the following propositions using our previous the-
orem and the previously mentioned criterion of [3]. We also use the fact
that the semigroup (e~*(=2~")),5 ¢ is bounded analytic on LP(M) for all
p € (1;00). This is true on manifolds where assumptions (36) and (37)
hold and when V € K, satisfying (33) (see e.g. [7, Theorem 1.1]).

Proposition 5.1. Let M be a non-compact complete Riemannian man-

ifold of dimension N > 3 where u(B(z,r)) ~ r¥ for all ball B. As-

sume (33), (37), and V € Koo(M)N L{XN(M). If for some r > 2

Ve S e ary—Lrany < C/VE
for allt > 0, then
Ve A Lo ary—Loary < C/VE
for allt >0, all p € (1,inf(r, N)).

Once again, we notice that the previous proposition holds with con-
ditions (36) and u(B(z,r)) > Cr¥ instead of u(B(x,r)) ~ rV.

Proposition 5.2. Let M be a non-compact complete Riemannian man-

ifold of dimension N > 3. Assume (34) and assume that V € Lg/Q(M).
If for some r > 2

Ve N Lrany -y < C/VE
for allt > 0, then
Ve T2 Lo any—po(ary < C/VE

for allt >0, all p € (1,inf(r, N)).
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