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BILIPSCHITZ MAPPINGS WITH DERIVATIVES OF

BOUNDED VARIATION

Stanislav Hencl

Abstract

Let Ω ⊂ R
n be open and suppose that f : Ω → R

n is a bilipschitz

mapping such that Df ∈ BVloc(Ω, R
n
2

). We show that under

these assumptions the inverse satisfies Df−1
∈ BVloc(f(Ω), R

n
2

).

1. Introduction

Suppose that Ω ⊂ R
n is an open set and let f : Ω → f(Ω) ⊂ R

n be
a homeomorphism. In this paper we address the issue of the regularity
of f−1 under regularity assumptions on f . The starting point for us
is the following very recent result from [4] (see Preliminaries for the
definition of the space BV ).

Theorem 1.1. Let Ω, Ω′⊂R
2 be open and suppose that f : Ω → Ω′ is a

homeomorphism. Then f ∈BVloc(Ω; R2) if and only if f−1∈BVloc(Ω
′; R2).

Moreover, both f and f−1 are differentiable almost everywhere.

In the same paper we also studied the conditions that guarantee that
f−1 ∈ BVloc(Ω, Rn) in higher dimensions. With some additional as-
sumptions (namely that f is a mapping of finite distortion) it is moreover

possible to prove that f−1 ∈ W 1,1
loc (Ω, Rn) (see [2], [3] and [5]).

In this paper we want to address the issue of regularity of the second
derivative of f−1. The classical inverse function theorem states that
if f is C2 and Jf (x0) 6= 0 then there is a small neighborhood of x0

where f is homeomorphism and f−1 is C2. We will assume that f is a
bilipschitz mapping and show that Df−1 ∈ BVloc provided that Df ∈
BVloc. This resembles the result from [6] that the inverse of bilipschitz
Delta-convex mapping is again Delta-convex.
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Theorem 1.2. Let Ω, Ω′ ⊂ R
n be open and suppose that f : Ω → Ω′

is a bilipschitz mapping such that Df ∈ BVloc(Ω; Rn2

). Then Df−1 ∈

BVloc(Ω
′; Rn2

).

It is moreover possible to show that Df−1 belongs to the Sobolev
space W 1,p

loc if Df ∈ W 1,p
loc .

Theorem 1.3. Let Ω, Ω′ ⊂ R
n be open, p ≥ 1 and suppose that f : Ω →

Ω′ is a bilipschitz mapping such that Df ∈ W 1,p
loc (Ω; Rn2

). Then Df−1 ∈

W 1,p
loc (Ω′; Rn2

).

Let us make a comment on our assumptions. Let α > 1 and consider
the function f : (−1, 1) → R defined as f(x) = |x|α sgnx. Then it is
easy to check that f is Lipschitz, homeomorphism, Df ∈ W 1,1((−1, 1)),
but Df−1 /∈ BVloc((−1, 1)). Thus the assumption that f−1 is Lipschitz
cannot be omitted.

In Section 4 we give an example which shows that Theorem 1.2 is
not valid in dimension n ≥ 4 without the assumption that f is Lips-
chitz. If n = 1, then Df ∈ BV implies that Df is bounded and that
f is Lipschitz, and thus this assumption is redundant. We would like
to know if a homeomorphism f : Ω → Ω′ such that f−1 is Lipschitz

and Df ∈ BVloc(Ω; Rn2

) must satisfy Df−1 ∈ BVloc(Ω
′; Rn2

) in dimen-
sions n = 2 and n = 3. Unfortunately our method of the proof and our
counterexample do not provide an answer to this question.

2. Preliminaries

By e1, . . . , en we denote the canonical basis in R
n. For x ∈ R

n we
write x1, . . . , xn for its coordinates, i.e. x =

∑n

i=1 xiei. The euclidean
distance of x, y ∈ R

n is denoted by |x−y| and the norm of the n times n
matrix A is denoted by ‖A‖.

In the whole paper Ω will denote an open subset of R
n. We say that

F : Ω → R
n is a Lipschitz map if there is a constant K > 0 such that

|F (x) − F (y)| ≤ K|x − y|

for every x, y ∈ Ω. Further F is said to be bilipschitz if it is an invertible
mapping and both F : Ω → R

n and F−1 : F (Ω) → R
n are Lipschitz.

The Lebesgue measure of a set A ⊂ R
n is denoted by Ln(A). A map-

ping f : Ω → R
n is said to satisfy the Lusin condition (N) if Ln(f(A))=0

for every A ⊂ Ω such that Ln(A) = 0.
Let Ω ⊂ R

n be open and m ∈ N. A function h ∈ L1(Ω) is of bounded
variation, h ∈ BV (Ω), if the distributional partial derivatives of h are
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measures with finite total variation in Ω: there are Radon (signed) mea-
sures µ1, . . . , µn defined in Ω so that for i = 1, . . . , n, |µi|(Ω) < ∞ and

∫

Ω

hDiϕdx = −

∫

Ω

ϕdµi

for all ϕ ∈ C∞

0 (Ω). We say that f ∈ L1(Ω, Rm) belongs to BV (Ω, Rm) if
the coordinate functions of f belong to BV (Ω). Analogously we define
the Sobolev space: f ∈ W 1,1(Ω, Rm) if f ∈ L1(Ω, Rm) and the distribu-
tional derivatives of the coordinate functions are in L1(Ω, Rn). Further,

f ∈ BVloc(Ω, Rm) (or f ∈ W 1,1
loc (Ω, Rm)) requires that f ∈ BV (Ω′, Rm)

(or f ∈ W 1,1(Ω′, Rm)) for each open Ω′
⋐ Ω. For an introduction to the

theory of BV and W 1,1 spaces see [1], [7]. The function h : Ω → R
m is

said to be a representative of g : Ω → R
m if h = g almost everywhere

with respect to Lebesgue measure.
For function f : (a, b) → R

m we define

V
(

f, (a, b)
)

:= sup

{

k
∑

i=1

|f(ai) − f(bi)| : (ai, bi) are pairwise disjoint

intervals in (a, b)

}

.

The function f is said to have finite variation if V
(

f, (a, b)
)

< ∞.
It is a well-known fact (see e.g. [1, Section 3.11]) that a mapping u ∈

L1
loc(Ω, Rm) is in BVloc(Ω, Rm) (or in W 1,1

loc (Ω, Rm)) if and only if there
is a representative which has bounded variation (or is an absolutely con-
tinuous function) on almost all lines parallel to coordinate axes and the
variation on these lines is integrable. More precisely, let i ∈ {1, 2, . . . , n}
and denote by πi the projection on the hyperplane perpendicular to the
xi-axis. Suppose that Q(c, r) := (c1−r, c1+r)×· · ·×(cn−r, cn +r) ⊂ Ω
for some c ∈ R

n, r > 0 and set Qi(c, r) = πi(Q(c, r)). Let y ∈ Qi(c, r)
and denote

ui,y(t) = u(y + tei) for t ∈ (ci − r, ci + r).

Theorem 2.1. Let Ω ⊂ R
n be open and let u ∈ L1

loc(Ω, Rm).

(i) Then u ∈ W 1,1
loc (Ω, Rm) if and only if the following happens. For

every cube Q(c, r) ⋐ Ω and for every i ∈ {1, . . . , n} there is a rep-
resentative ũ of u such that the function ũi,y(t) is absolutely con-
tinuous on (ci−r, ci+r) (i.e. each coordinate function is absolutely
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continuous) for Ln−1 almost every y ∈ Qi(c, r) and moreover

(2.1)

∫

Qi(c,r)

∫ ci+r

ci−r

|∇ũi,y(t)| dt dy < ∞.

(ii) Then u ∈ BVloc(Ω, Rm) if and only if the following happens. For
every cube Q(c, r) ⋐ Ω and for every i ∈ {1, . . . , n} there is a
representative ũ of u such that the function ũi,y(t) has bounded
variation on (ci − r, ci + r) for Ln−1 almost every y ∈ Qi(c, r) and
moreover

(2.2)

∫

Qi(c,r)

V
(

ũi,y, (ci − r, ci + r)
)

dy < ∞.

We shall also need that the composition of BV function and a home-
omorphism with Lipschitz inverse is in BV (see [1, Theorem 3.16 and
Corollary 3.19]).

Theorem 2.2. Let Ω, Ω′ ⊂ R
n be open and let u : Ω → R

m. Suppose
that F : Ω → Ω′ is Lipschitz and homeomorphism.

(i) If u ∈ BVloc(Ω, Rm), then u ◦ F−1 ∈ BV (Ω′, Rm).

(ii) If u∈W 1,1
loc (Ω, Rm) and F−1 is Lipschitz, then u◦F−1∈W 1,1

loc (Ω′, Rm)
and

Du ◦ F−1(y) = Du(F−1(y))DF−1(y) for almost every y ∈ Ω′.

3. Regularity of the inverse

Proof of Theorem 1.2: We want to show that Df−1 has bounded varia-
tion on almost all lines parallel to coordinate axes and therefore Df−1 ∈
BVloc (see Theorem 2.1 (ii)). Fix Q(c, r) ⋐ f(Ω) and i ∈ {1, . . . , n}.

From Theorem 2.2 we know that Df ◦ f−1 ∈ BVloc. Denote by h a
good representative of Df ◦ f−1 from Theorem 2.1 (ii) and set hi,y(t) :=
h(y + tei) for y ∈ Qi(c, r). From (2.2) we have

(3.1)

∫

Qi(c,r)

V
(

hi,y, (ci − r, ci + r)
)

dy < ∞.

Denote

A =
{

x ∈ Q(c, r) : h(x) = Df ◦ f−1(x), f−1 is differentiable at x

and f is differentiable at f−1(x)
}

.

Lipschitz functions are differentiable almost everywhere and map Le-
besgue null sets to Lebesgue null sets and therefore Ln(A) = Ln(Q(c, r)).
From the definition of A we have

(3.2) Df−1(x)Df(f−1(x)) = I for every x ∈ A.
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Fix y ∈ Qi(c, r) and let {(aj , bj)}
k
j=1 be a system of pairwise disjoint

subintervals of (ci − r, ci + r) such that Aj := y + ajei ∈ A and Bj :=
y + bjei ∈ A for every j. Plainly ‖Df−1(x)‖ ≤ K where K denotes the
Lipschitz constant of f−1. Together with (3.2) this imply

k
∑

j=1

‖Df−1(Aj) − Df−1(Bj)‖

=

k
∑

j=1

‖Df−1(Aj)
(

Df(f−1(Bj))−Df(f−1(Aj))
)

Df−1(Bj)‖

≤ K2
k

∑

j=1

‖Df(f−1(Bj)) − Df(f−1(Aj))‖

≤ CV
(

hi,y, (ci − r, ci + r)
)

.

(3.3)

From (3.1) and Ln(A) = Ln(Q(c, r)) we know that V
(

hi,y, (ci − r, ci +

r)
)

< ∞ and L1

(

π−1
i (y) ∩ A

)

= 2r for Ln−1 almost every y. Fix such

a y ∈ Qi(c, r). From (3.3) and elementary properties of functions of
bounded variation we obtain that there is a function ũi,y : (ci−r, ci+r) →

R
n2

such that Df−1(y + tei) = ũi,y(t) for every t ∈ (ci − r, ci + r) ∩ A
and

(3.4) V
(

ũi,y, (ci − r, ci + r)
)

≤ CV
(

hi,y, (ci − r, ci + r)
)

.

It follows that there is a function ũ such that ũ(x) = Df−1(x) al-
most everywhere and this new representative has bounded variation
on Q(c, r) ∩ π−1

i (y) for Ln−1 almost every y ∈ Qi(c, r). Now (3.4) and
(3.1) yields

(3.5)

∫

Qi(c,r)

V
(

ũi,y, (ci − r, ci + r)
)

dy < ∞

which verifies (2.2) for Df−1.

Proof of Theorem 1.3: First let us prove the theorem in the case p = 1.
The proof of this case is analogous to the previous proof and therefore we
only sketch it and point out the differences. From Theorem 2.2 (ii) we

know that Df ◦f−1 ∈ W 1,1
loc . Fix y ∈ Qi(c, r) such that hi,y is absolutely

continuous on (ci − r, ci + r). Given ε > 0 find δ > 0 from the absolute
continuity of hi,y. Choose Aj and Bj as before and moreover assume
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that
∑k

j=1 |Aj − Bj | < δ. Analogously to (3.3) we obtain

k
∑

j=1

‖Df−1(Aj) − Df−1(Bj)‖ < Cε.

Reasoning analogously to the previous proof we conclude that Df−1 has
a representative which is absolutely continuous on almost all lines parallel
to coordinate axes. On those lines we have

V
(

ũi,y, (ci − r, ci + r)
)

=

∫ ci+r

ci−r

|∇ũi,y(t)| dt.

From Theorem 1.2 and Theorem 2.1 (ii) we already know (2.2) and thus
we obtain (2.1).

Now let us return to the case p > 1. We already know that Df−1 ∈
W 1,1

loc . Therefore we can use Theorem 2.2 (ii) and differentiate twice the
identity f ◦ f−1(y) = y to obtain

(3.6) D2f(f−1(y))Df−1(y)Df−1(y) + Df(f−1(y))D2f−1(y) = 0.

Here and in the sequel we identify the second derivative with an linear

operator from R
n2

to R
n2

. Clearly

‖
(

Df(f−1(y))
)

−1
‖ ≤ C, ‖Df−1(y)‖ ≤ C and |Jf−1(y)| ≥ C

at almost every point since f is bilipschitz. From (3.6) and substitution
formula we now obtain

∫

A

‖D2f−1(y)‖p dy ≤ C

∫

A

‖D2f(f−1(y))‖p|Jf−1(y)| dy

= C

∫

f−1(A)

‖D2f(x)‖p dx

for every open set A ⋐ f(Ω) and the claim follows.

4. Necessity of the Lipschitz condition for f for n ≥ 4

Example 4.1. Let n ≥ 4. There is a homeomorphism f : (−1, 1)n → R
n

such that Df ∈ W 1,1((−1, 1)n, Rn2

) and f−1 is Lipschitz, but Df−1 /∈

BVloc

(

f((−1, 1)n), Rn2)

.

Proof: Given x ∈ R
n we denote x̃ = [x1, . . . , xn−1] ∈ R

n−1 and ‖x̃‖ =
√

x2
1 + · · · + x2

n−1.
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Let α = 1
2n

, β = 3
4 and set

f(x) =

n−1
∑

i=1

eixi‖x̃‖
α−1 + en

(

xn + ‖x̃‖ sin(‖x̃‖−β)
)

if ‖x̃‖ > 0 and f(x) = enxn if ‖x̃‖ = 0. Our mapping f is clearly
continuous and it is easy to check that f is a one-to-one map since

xi‖x̃‖
α−1 = zi‖z̃‖

α−1 for every i ∈ {1, . . . , n − 1} ⇒

⇒ xi = zi for every i ∈ {1, . . . , n − 1}.

Therefore f is a homeomorphism.
A direct computation shows that the second partial derivatives of fi,

i ∈ {1, . . . , n − 1}, are smaller than C‖x̃‖α−2 and therefore integrable.
Moreover,

∂fn(x)

∂x1
= x1‖x̃‖

−1 sin(‖x̃‖−β) − ‖x̃‖β
x1

‖x̃‖β+2
cos(‖x̃‖−β).

It is not difficult to compute that we can bound each partial derivative of
this expression by C‖x̃‖1−2(β+1). Clearly 2(β +1)−1 < n−1 and there-
fore these second partial derivatives are integrable. Analogously we can
estimate other second partial derivatives of fn. Since the second deriva-
tives of f are smooth outside the segment {[0, . . . , 0, t] : t ∈ (−1, 1)} and

|D2f | ∈ L1((−1, 1)n) it is easy to see that Df ∈ W 1,1((−1, 1)n, Rn2

).
The inverse of f is given by

f−1(y) =

n−1
∑

i=1

eiyi‖ỹ‖
1

α
−1 + en

(

yn − ‖ỹ‖
1

α sin(‖ỹ‖−
β
α )

)

if ‖ỹ‖ > 0 and f−1(y) = enyn if ‖ỹ‖ = 0. The derivative of the func-

tion φ(t) = t
1

α sin(t−
β

α ) is bounded on (−1, 1) and therefore φ is Lips-
chitz. Thus it is not difficult to see that f−1 is Lipschitz.

The second derivative of f−1 is clearly continuous outside the seg-
ment {[0, . . . , 0, t] : t ∈ R}. Elementary computation gives us

∂(f−1)n(y)

∂y1
= −

y1

α
‖ỹ‖

1

α
−2 sin(‖ỹ‖−

β

α ) + ‖ỹ‖
1

α
β

α

y1

‖ỹ‖
β
α

+2
cos(‖ỹ‖−

β

α )

and therefore the second derivative ∂2(f−1)n(y)
∂y2

1

contains some integrable

terms and

(4.1) −‖ỹ‖
1

α
β2

α2

y2
1

‖ỹ‖2 β
α

+4
sin(‖ỹ‖−

β

α ).
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Since

2

(

β

α
+ 1

)

−
1

α
> n − 1

we obtain that the integral of the absolute value of (4.1) over the set

S =
{

y ∈ f((−1, 1)n) : y1 > 1
2 ||ỹ||, sin(‖ỹ‖−

β

α ) > 1
2

}

is infinite. Hence |D2f−1| /∈ L1
loc and it is not difficult to deduce that

Df−1 /∈ BVloc.
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