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1. INTRODUCTION

1. l Outline of the paper* By substituting polar coordinates in
the partial differential equation

(1) ^ + Vu + 4/. + 1 du + 4v + l du
dx* dy1 x dx y dy

and separating variables, one is led in a natural way to certain com-
binations of Whittaker functions and Jacobi polynomials (called for
brevity J.-W. functions in this paper). With a view towards deriving
some functional relations involving hypergeometric functions, we
develop in the first part of the paper a technique for the construction
of expansions of arbitrary regular analytic solutions of (1) in terms of
these J.-W. functions. The method of our investigation consists in
setting up a one-to-one correspondence between the class of even
analytic functions of one complex variable regular in a circle around
the origin and a certain class E of regular solutions of (1). This
correspondence associates with a solution u{x, y) e E the function
u(Xy — ix) obtained by considering u (α?, y) on the (imaginary) characteristic
x — ίy=0 of (I).1 Since the maps of the even powers of a single variable
in this correspondence are shown to be the J.-W. functions mentioned
above, the expansion problem in question is reduced to the problem of
finding the Taylor expansion of a given analytic function of one variable.

Applying this technique to some special solutions of (1), we are
led to three expansions involving various kinds of hypergeometric
functions. The first of them contains a number of well-known theorems
on special functions as special cases, namely, among others, Bateman's
addition theorem in the theory of Bessel functions, Ramanujan's
formula for the product of two confluent hypergeometric series, and
Erdelyi's addition theorem (with respect to the parameters) for the
product of two M-functions. The second application gives rise to

Received October 9, 1953. This paper was prepared under a National Bureau of
Standards contract with American University. The author is indebted to Prof. A. Erdelyi,
who saw a first draft of this paper, for some most helpful critical remarks.

1 This procedure is related to Bergman's operator method in the theory of elliptic par-
tial differential equations with regular coefficients; see the remark at the end of §4.
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726 P. HENRICI

another addition formula (in the ordinary sense) for the product of two
M-ίunctions, while the third may be looked at as an alternate formula-
tion of Bailey's decomposition formula for a special case of AppelΓs
function F±.

1. 2. Definitions, In (1) the parameters μ, v, λ, k are arbitrary
complex numbers with the only exception that μ and v are subject to
the condition

(2) 2^-f2H=-2, -3, -4, ... .

Sets of values (u, v} λ, k) satisfying (2) are called admissible values of
the parameters.

If & denotes a domain of the complex (x, ?/)-space which contains
the origin, we denote by E$ the class of analytic functions u(x, y)
of the two complex variables x and y which

(i ) are regular in & ,
(ii) are even fuctions of x and of y, and
(iii) satisfy (1) for certain admissible values of the parameters.2

We denote by J/Γr the circle |£|<V of the complex £-plane, and by
,^x3ί^ the bicylinder | z | O , |2*|<> i*1 the space K'1 of the two complex
variables z and 2*.

Our notation of special functions follows the traditional lines. For
the ordinary and the generalised hypergeometric series we found it
convenient to use Bailey's notation [1, p. 8]

2. JACOBI-WHITTAKER FUNCTIONS

Our first aim is to construct a set of solutions of (1) by the
elementary method of separating variables. Introducing in (1) the new
variables

( 3 ) P -

we obtain for v(p, τ)=u(x, y) the equation

^ dp* dp δ 2
dp dp δr

]r] + kp(λ
dτ V 4

If v(p, τ)=R(p) T(τ) is a solution of (4), one finds by the usual sepa-

2 We do not investigate the problem of the extent to which the three conditions (i),
(ii), and (iii) imply each other.
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ration method that K(p) and T (τ) have to satisfy separately the
equations

(5) +2(l + μ + v) + \ +
dp1 P dp L ρz p 4

and

( 6 ) ( i - ^ ) « £ ^

where s is a separation parameter. Writing s=w(2/*4-2v-f 1 + ri), we
find that solutions of (5) which are regular near ^=0 are represented
for n=0, 1, 2, ••• by

( 7 )

where Λf denotes the Whittaker function of the first kind, while (6)
has for the same values of s the polynomial solution

r

where P stands for the Jacobi polynomial in the notation of Szego [11,
p. 61]. Provided (2) is valid, solutions of (1) regular near x=y=0 are
thus given by the functions

( 9 ) fn^\ρ, τ; λ, k) == cJPn<*^\τ)k

where

is a normalisation factor introduced for later convenience. We shall
call these functions for brevity Jacobi-Whittaker functions (J.-W.
functions) of order n. The arguments λ and k in /w

Cμ>v) will usually be
omitted, if it is not necessary to exhibit them explicitly.

For later reference we note the following special and limiting
cases of the functions fn

Cμ^:
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( i ) For Λ=0 we have [6, p. 13]

f^^Hoy r; 0; k)

where / is a modified Bessel function.

(ii) Putting λ= κ and letting k-*0, we obtain the function
4J

(12) ™ V Ak

where J denotes the ordinary Bessel function. Evidently (12) satisfies
the differential equation

(13) ^ + ̂  + - 4 * ± ί 3 ^ + 4?i±l 3 w- + m = 0 .
3 a ? a a ? / 2 ^ 3 ^ y d y

We will refer to (12) as to the " reduced M case of the functions
/w

C μ 'v ). The limiting values of λ and k leading to it are included in
the admissible values of the parameters.

(iii) For λ=h=O we have from (9), (11) or (12)

(14) fn^
v\Pi τ; 0, 0) = cnP

nPn^ ^\τ) .

We study next some properties of the J.-W. functions considered
as functions of the two complex variables z and z^ defined by

(15) z^xΛ-iy , z*=x—iy .3

As such they satisfy the differential equation

(16)
dzdz* z + z* I dz dz*) z-z% I dz

which is readily constructed by inserting in (1) the variables (15).
From (3) it is evident that

Thus we have for

3 It is assumed throughout the paper that x and y are independent complex variables,
so that also z and z* take on independent complex values.
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the representation

(17) Fn^\z, z*)

2

Using the relations [11, pp. 58, 61]

and

pC2μ,2V)M_(2 i" + 2

^ ( r J ~ ~ nΓ \TJ 2 ' l-2n-2μ

and observing (7), we may write this also as follows:

ra /r-lV „ Γ-n, -ίi-2/ι; 2 Ί
\TJ 2 ' l-2n-2μ-2v

1~τ\

kzz*

From this representation it is easy to draw the following conclusions
LEMMA 1. For all admissible values of the parameters,

LEMMA 2. For all admissible values of the parameters,

In order to prove Lemma 1 we observe that the last two factors in
(18) are entire functions of zz*, while, since the series 2Fλ in (18) termi-
nates after at most n terms, the first two factors form together a
polynomial in z and z*. The solution (18) of (16) is thus an entire
function of z and z*. Furthermore the conditions of symmetry im-
posed on the elements of E, which for functions of z and z* amount to
the relations

(19) F(z, z*)=F(-z, -z*) , F(z, z*)=F(z*, z) ,

are satisfied by (18). Lemma 2 follows simply from the fact that for
z* = 0 the last three factors in (18) reduce to 1. It is easy to see that
both Lemma 1 and Lemma 2 remain also true in the reduced case.

We come now to a simple equiconvergence property of series of
J.-W. functions.

LEMMA 3. Let r > 0 and let
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(20) /(z)

be regular in <5^. Then for fixed admissible values of the parameters
the series

(21) F(z, s*) = Σ α Λ ( μ '>(s, z*; λ, k)

converges uniformly in every closed subregion £# of & =3ίίrx^Γr and
represents there a function e Έ& with the property

(22) F(z, O)=f(z) .

Proof. Obviously the second statement of the lemma follows
immediatly from the first and from Lemma 2. In order to prove the
uniform convergence, we again use for the J.-W. functions the re-
presentation (18). It follows in the general case from a well-known
theorem on M-iunctions [8, p. 93] and in the reduced case from an
analogous theorem on Bessel functions [13, p. 44, formula (1)] that for
bounded (z, z*) and for n large the product of the last two factors in
(18) is asymptotically equal to 1. It suffices therefore to consider the
case λ=k=O. We make now use of the well-known generating func-
tion of the Jacobi polynomials [11, p. 68. formula (4.4.5)]. Replacing
the variables a, βf x, w in Szegδ's formula by 2v, 2μ, (z2 + z*'z)l2zz*, tzz%

respectively and observing (17), we obtain the power series in t

(23) ΣfinιFn^\z, z*; 0, 0)tn=E(z, z*; ί) ,
W = 0

where for given r r / >0, E(z,z*;t) is a certain analytic function of zf

s* and t regular in (z, z*)e {J3ζΓ,, x J££,} Γ\ {\t\<r"-*}. Let now ^ b e
enclosed in a bicyUnder ._>££ x <ί^, where r r < r , and choose r", r"'
such that r'<Cr"<Cr'"<r. Applying to (23) Cauchy's estimate for the
coefficients of a power series with \t\=r'"~2 yields

(24) \Fn^\z, z*; 0, 0)\^K\cn\r"'*» ,

where

K= max \E(z,z*;t)\

is finite and does not depend on n. Therefore the terms of (21) are
dominated in & by the terms of the series
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which converges absolutely, since |cw/cn_i| —> 1 (%->oo) and (20) converges
for some z = r " " with r ' " O " " < > . 4

3. A UNIQUENESS THEOREM FOR SOLUTIONS OP (1)

LEMMA 4. Let & be a domain CZ K2, containing the origin, and
let F(z, s*) be a function e E such that F(z, 0) = 0. Then F(z, z*) = 0 in &.

Remark. The proof of this lemma does not follow from the
general uniqueness theorems for hyperbolic initial value problems
(see, for example, [7, p. 321]), since some of the coefficients in (16)
are singular.

Proof. In view of the relations (19) the power series expansion of
F, which by assumption converges in a certain neighbourhood of the
origin, must be of the form

(25) F (z, 2*)= Σ Σ cm, nz'm-nz*n ,
771 = 0 W = 0

where

If we call s + t the weight of the monomial z?z*\ we may say that
(25) contains only terms of even weight. By assumption and by (26),

(27) Cnh0^cmi2m=0 , m=0,l ,2,

By differentiating (25) and substituting into (16) we obtain, after multip-
lying by z2-z*2,

= 0 ,

where the symbol Rm denotes terms of higher weight than m. We
prove now that cm,n=0 for all values of m and n in question by induction
with respect to the weight.

By (27), ^ o ^ O . Let us assume that we have proved

(29) c fc)%=0 for n=0,1, ••• ,2k; k=0, 1, , m - 1 .

Consider now in (28) the terms of fixed weight m. Then the terms
Rm will be multiplied by coefficients cKn with k<m, which are zero by

4 The author is indebted to a referee for the following remark: Using the theorems
about the growth of a power series of one complex variable whose coefficients satisfy
certain conditions, one could obtain bounds for the functions (21) in terms of the coeff-
icients an.
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(29). Considering now the fact that the coefficients of each fixed
power z*m-nz*n must vanish separately, we are led to the recurrence
relations

(30) ς,i(w+// + ̂ )+2cm,Mμ-v)=0 ,

cm, n+ι(n 4-1) (2m - n 4- 2μ 4- 2v) + 4cm> w(ra -n){μ-

— 0 , rc=l, 2, ••• , 2 m - l .

Since cm.t0=0 and since m+w + v=4=0 for admissible values of the para-
meters, we have from (30) cmΛ=0 and hence from (31) cTO| o + 1 = 0 as long
as 2m — n + 2μ + 2v=%=0, for n=l,2, •••, 2m — 1 . It follows that (29) is
true for /£=m and hence for all k.

4. EXPANSION THEOREM

The following theorem, which will be the principal tool for the
special functions work in the later part of this paper, is now easy to
prove.

THEOREM. Let r>0, & = ,?£ x ^ and let F(z, z*) e E$. If

(32) F(z, 0) =

then the series

(33) ΣαnFβ<^>(s, z*)

(which by Lemma 3 converges in <5&) is equal to F(z, z*) in & .
Proof. By Lemma 3, (33) represents a function e E$ which is

equal to F(z, 0) for z* = 0. By Lemma 4 the function

F(Z, Z^-JtanFn^iZiZ*)
w = 0

vanishes identically in & .

The expansion (33) will sometimes be called J.-W. expansion of
F(z, z]ί). The function (32), the knowledge of which is sufficient for the
construction of the J.-W. expansion of F(z, s*), will be called the
generating function of this expansion.

Remark. For fixed admissible values of the parameters Lemma 3
sets up a mapping of the class of even analytic functions of a single
complex variable regular in a J ^ o n the class Ejcrχj{r. This mapp-
ing is one-to-one by Lemma 4. The inverse mapping is given by the
formula

f(z)=F(z,0),
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which is essentially identical with the inversion formula for Bergman's
so-called integial operator of the first kind,5 whose existence, however,
has been established in general only for the case where the coefficients
of the differential equation are regular analytic functions in the con-
sidered domain. Our theory presents an example of a representation
of an operator analogous to that of Bergman in a case where the
considered differential equation has singular coefficients.6

We proceed now to construct explicity by our method the J.-W.
expansions of several special solutions of (1), which are again obtained
by the method of separation of variables.

5. APPLICATIONS OP THE EXPANSION THEOREM :

CARTESIAN COORDINATES

If the function u(x,y)=X(x) Y(y) is introduced in (1) (with &=1),
we find that the differential equation is satisfied if X and Y satisfy
separately the equations

( 8 4 ) ^ * **

+

dy2 y dy

provided a + β=λ .

Solutions of these equations which are regular near #=0 and y=0
can again be expressed by means of Whittaker functions. In view of
the differential equation satisfied by these functions it is readily verified
that, provided none of the numbers 2μ and 2v is a negative integer,
one may put

X(x)=χ-**-ιMΛtμ(a?) ,
( 8 5 )

Introducing the variables z and z* and passing to hypergeometric
series we have

( 3 6 )

5 See [2, p. 117]. Contrary to the situation described there, our operator maps func-
tions f(z) which are real for real z on solntious of (1) which are real for real x and y.

6 Other cases of differential equations with singular coefficients have been treated by
Bergman [3,4]. The " r e d u c e d " equation (13) has in the case 4μ + l = 0 been considered
by the present author in [10], where a different method has been used.
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The generating function of the J.-W. expansion of U(z, z*) is thus
given by

= y V
«-o (2/ i4- l ) m m!

Applying the expansion theorem, writing the J.-W. functions in the
form (9) and using the relations (following from (3))

we obtain the following J.-W. expansion for the product of two Whit-
taker functions with different pairs of indices and arguments, which
is valid for unrestricted values of p, τ, a, β, as long as none of the
numbers 2//, 2v and 2μ-\-2vJrl is a negative integer:

\ / ί n _L_ ^ rv \ "J ιι nsin . , _ L ^ M ^i

^ Γ n Vr/Γ iK1Λ + β> μ+v+ i n m\P)

This mother expansion has a great number of children and grand-
children, of which some are known since long. In the following we
list some of those of its special cases where the function 3F2 can be
expressed in a more closed form, and some other consequences.

5 1. Bateman's expansion. Putting in (38)

f) = kr* , r=cos2# ,

β=siϊi2
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and letting &->0, we obtain, using (12) and replacing 2μ and 2v by μ
and v respectively,

(r cos φ cos #)~μe7μ(r cos ψ cos d) (r sin ^ sin ^)"Vv(r sin ^ sin •«?)

(39) ^ (-)m2
>4- 1 + ra)

which is equivalent to Bateman's expansion for the product of two
Bessel functions [13, p. 370]. As pointed out by Watson, a great
number of theorems on Bessel functions can be considered as special
cases of this expansion.

5. 2. Product of Bessel functions, second case. If α = /3=0, we
have, using a theorem by Watson [1, p. 16],

1
f ) ( 1 I -1-

~"" ίU}l < V ~i —I

1 J

, if m=2n

0 , if m = 2 n + l ,

n=0, 1,2,

and thus by (11), after dividing by a numerical factor and replacing p
by 2p,

2 )

This Neumann series for the product of two Bessel functions cannot be
deduced from Bateman's expansion. The special case μ=v of it has
been given by us already earlier [9, p. 333].

5. 3. Product of two Bessel functions, third case. Replacing in (38)
p, a, β by kp, l/4fe, —1/4&, respectively and letting k-^-0, we obtain
in view of (14), writing again μ, v instead of 2μ, 2v,
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1 \n

Equivalent forms of this formula are well known in the theory of
Bessel functions.7

5- 4- J^W, expansion of a single Whittaker function. In the case
/?=v + i the 3F2 in (38) reduces to 1 (one of its numerator parameters
being zero) and the second of the two M-ίunctions on the left becomes
an exponential function. Thus we have

( 9 )

(42) V 2 /

- P

e

An expansion which is equivalent to this one is listed by Buchholz [6,
p. 130], who gives credit for it to Erdelyi. Buchholz also indicates
various special cases of the expansion.8

5. 5. Product of two Whittaker functions, Remanujan's case.
Another case in which the function 3F2 can be summed elementarily is
given by the conditions a=β, μ = v. Then we have, upon application
of a theorem by Dixon [1, p. 13]

Γ-2μ-m,μ + \

1—μ-Va-m-V ,

—a, -ra;

0 , iίm=2n + l,

furthermore [11, p. 80]

7 See, for example, [13, p. 148]; or for the special case μ = v =̂ 0 also [12, p. 2].
8 The case where the ikf-functions in the summation reduce to Bessel functions has

(with r = l) been rediscovered recently by Slater [16].
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where C2χ+i denotes the Gegenbauer polynomial. Thus (38) becomes9

» (2n)l(μ+la)(μ++a)

n = 0 n\(2μ + l)n(Aμ + l),n

 2

For r = 0 we obtain in view of

after multiplying by (p/2)2μ+1 and replacing ^ by 2p the series

( 4 4 ) . ( - n 2 n y ( μ l ) μ ^ ) ( μ )
O-2μ-l V V ^ /n\ * /n\ ώ/» 1/

(\)2(2l)(4 l)

which expresses the square of an M-function as a series of M-ίunctions
in which the first index and the argument are duplicated. Expressing
p and τ on both sides of (43) by z and z* and putting £* = (), we have
in view of Lemma 2, using (37) on the left.

Zz 1 Z2

J

(45) = v

2 '

This result was already found by Ramanujan [1, p. 97].

5, 6. Generalisation of Erdely's integral- Assuming m ^

- - - , multiplying (38) by

9 The special case μ = α = — of this formula has been given in a different notation by

Rainville [15]. (The M-f unctions on the left can then be expressed in terms of the error
function.) Some misprints in [15] are pointed out in [14].
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{pj2Y+v+ι(1 - r)2v(l 4- r ) s W ' «(r) ,

where n is a fixed nonnegative integer and integrating with respect
to τ from — 1 to -I-1 we obtain in view of the well-known orthogonality
properties of the Jacobi polynomials [11, p. 67]

( 4 6 ) __2^Γ(2v + w +

-2μ-n,

For w=0 this reduces to a formula equivalent to a well-known result
due to Erdelyi [8, p. 134]; see also [6, p. 128]. It is then most easily
proved by means of the Laplace transformation.

5 7. Neumann series for the product of two M-functions* We
mention finally that the special case obtained by putting β=—a, μ=v
has been given by us already earlier (See [9, p. 329], and [10, p. 270],
where also some special cases are discussed). In this case (and also in
the more general case μ^v) the ikf-functions on the right of (38)
reduce to Bessel functions, without this being the case for the M-
functions on the left.

6. APPLICATIONS OF THE EXPANSION THEOREM:

JACOBIAN ELLIPTIC COORDINATES

Other particular solutions of (1) can be found by introducing in
(4) or (16) new variables ξ and η defined by

(47) ξ = ω + p , V = ω-p ,

where

(48) <b = V(a^^(a^z**)

with some real constant a, the square roots being positive for z=z* = 0.10

10 These coordinates can be shown to be a special case of the general ellipsoidal coor-
dinates, as investigated by Jacobi. Their use is also suggested by the structure of the
generating function of the Jacobi polynomials.



ON CERTAIN SERIES EXPANSIONS INVOLVING WHITTAKER FUNCTIONS 739

By elementary computations one finds that if U(z9z*)=W(ζ,ij)9 (16) is
transformed into

oξ

(49)

This equation can again be separated. One finds by the usual method
that if W{ξ, *])=Ξ(ξ)H.(rj) is a solution, Ξ and H have to satisfy
separately the two ordinary differential equations

where p is a separation parameter. In order to obtain solutions of
these equations in terms of known functions, it seems necessary to
simplify them by assigning special values to some of the parameters.
Two such simplifications will be indicated below, one of them leading
again to Whittaker functions, the other to ordinary hypergeometric
functions.

6. 1. Addition theorem for Whittaker functions. If in (50) we set

p=0, v= — --, λ=a , the first equation becomes divisible by ξ — a and
2 8

the second by τy + a. Cancelling these factors and setting (without
essential loss of generality) k=l, we obtain the two equations

dη 16

which again can be easily reduced to Whittaker's equation. Carrying
out the reduction one finds that solutions which as functions of z and
z* are regular near z=z* = 0, that is regular near ξ==η=saf are given
by

(52)
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and that, as long as 2μ is not a negative integer, the product of these
two functions belongs to EjcΛxJC<f Since for z* = 0

the generating function of the J.-W. expansion of W(ξf

 γJ)=Ξ

(53) / ^

If we write

(54)

the required J.-W. expansion, valid in ^ ^ x J ^ a n d provided 2μ is not
a negative integer, is

(aP -
~8' V 2

(55)

2μ + m) 8

where ω is given by (48). It does not seem possible to express the
coefficients i4m°° in any closed form. Using a result of the previous
section it is however not difficult to derive for them a series whose
general term is again a M-function and whose coefficients can be ex-
hibited explicitly. If in (43) we replace p, r, a by α,τ/l"-^"2/α", a/8
respectively we obtain on the left just (53) and have therefore

(56) f(z)

Now, by Gauss' quadratic transformation,

r- L 2^ + 1 J

Inserting this in (56) and rearranging the series by collecting equal
powers of z (which is permissible in view of Weierstrass' theorem) we
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obtain in view of (54) the desired series representation

1 0 C ) (μ + λ+vΛ (2μ +-0C) (μ + λ
8/Λ 22/n~ \ 2 8/Λ 2

Λ f t ί μ ) ( α H "•"(27+l)Λm! Σ? ι ( w ^ θ
(57)

x α - 2 μ - * ) ¥ + i + 2 n (α) .
4 ^

Since in virtue of this formula (56) expresses the product of the two
functions

M»

in terms of products of iW-functions with the arguments p and a
respectively, (55) may be looked at as an addition theorem for the
functions on the left in analogy to a similar situation in the case of
the well-known addition theorems of Graf and Gegenbauer in the
theory of Bessel functions [13, p. 358].

For r = — 1 we obtain from (55) the following addition theorem of
a more elementary character:

(58) (

6 2 Hypergeometric functions. Inserting in (51) the special
values p=qjk> a = l, and letting yfc->0 yields the two differential
equations

(59)

(Ψ -1) -—• ^

which are of hypergeometric type. Using this fact it is readily proved
by substitution that solutions of these equations regular near z=z* = 0
(that is regular near ξ=V=l) are given by

1-7
2 1

J
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where

is arbitrary, since q was arbitrary. Writing U{z, z¥)=Ξ(ξ)H{7]) anb

(61) U(z,O)=±anz*n ,
71 = 0

we have, according to the expansion theorem,

(62) U(z9 z*) = Σ anFn^ »(z, z*; 0, 0) .

Since here the parameters λ and & are both zero, the coefficients an

can be easily determined by putting z=z*. From (47) one has in this
case 6=1, V=^l — 2z2 and from (14), since now r = l , p=z\

, υ, ϋj—-- - ~ z .

( )

Thus (61) reduces to

FΓ
ft+v+ 2•-

which yields

(64) ( / ^ + 2

Thus (62) may now be stated more explicitly as follows:

l



ON CERTAIN SERIES EXPANSIONS INVOLVING WHITTAKER FUNCTIONS 743

A result equivalent to this was derived by Brafman11 from Bailey's de-
composition formula for a special case of AppelΓs hypergeometric
function F± of two variables [1, p. 81.] Since it is also possible to
derive Bailey's formula from (65) simply by replacing the Jacobi
polynomial by its hypergeometric definition and inserting appropriate
values of p and r, our proof of (65) contains also a new proof of that
formula.

Restating (61) with the explicit value of an given by (64) we obtain

(66)

_ τp \ Z Z 2

L 2/^4-1,2^+1,2^ + 2^4-1 J

which is equivalent to a result proved by Bailey [1, p. 88, formula (3)]
by means of transformations of terminating generalized hypergeometric
series.
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