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CONJUGATE SPACE REPRESENTATIONS
OF BANACH SPACES

EMILE BOYD ROTH

Let a linear homeomorphism T from a Banach space X
onto the conjugate space Y* of a Banach space Y be called
a conjugate space representation of X. If Γ:X-»Y* and
U:X—>Z* are two conjugate space representations of X, say
that T and U are essentially different if there is no linear
homeomorphism P from YontoZsatisfying P* = To ZJ'1. It is
proven here that if a nonreflexive Banach space has one con-
jugate space representation, it has uncountably many essen-
tially different conjugate space representations. A Banach
space X with norm p will be denoted by (X, p) when it is
important to emphasize the norm. The dual of p is the norm
p* defined on the conjugate space (X, p)* of (X, p) by

p*(jf) = sup{|/(aθ|: xeX and p(x) = 1} .

It is proven here that if T: (X, p) -> (Y, r)* and U: (X, p) -*
(Z, s)* are two essentially different conjugate space representa-
tions of (X, p), then there exists a norm q on X equivalent to
p such that # o T~x — rf for some norm Tι on Y equivalent to
r, but such that q o U"1 Φ s? for any norm Si on Z equivalent
to s.

Williams has shown [7, Th. 1, p. 163] that a Banach space (X, p)
is reflexive if and only if every norm q on X* equivalent to p* is the
dual of some norm on X equivalent to p. We show here that if (X, p)
is a nonreflexive Banach space, then there exists a norm g on I *
equivalent to p* such that q is not the dual of any norm on X equivalent
to p, but such that the Banach space (X*, q) is isometrically iso-
morphic to a conjugate Banach space. By contrast, Klee [3, Th. 4,
p. 21] has exhibited a Banach space (X, p) and a norm q on X* equiva-
lent to p* such that (X*, g) is not isometrically isomorphic to a con-
jugate Banach space.

We shall use the following notation. If A and B are sets, A\B
denotes the set of elements in A but not in B. If x is an element in a
linear space, [x] denotes the linear span of x. If A and B are linear sub-
spaces of a linear space X, and if AπB = {0}, then A 0 J5 denotes the
linear direct sum of A and B. If A is a subset of a normed linear space
(X, p), AL donotes the annihilator of A in X*. If A is a subset of
the conjugate space X* of a normed linear space (X, p)y A± denotes the
set of elements in X annihilated by A. If (X, p) is a normed linear
space, Jx denotes the canonical map from X into X** defined by
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(Jxx)f = f(x) for all x e X and fe X* .

LEMMA. // T:X—>Y* and U:X—+Z* are two conjugate space
representations of a Banach space X, then T and U are essentially
different if and only if

T*[JYY]Φ U*[JZZ].

Proof. ( i) Suppose T and U are not essentially different. Then
there exists a linear homeomorphism P from Y onto Z satisfying P* =
ToJJ~\ It is straightforward to verify that (P**(Jγy))g = (Jz(Py))g
for all y e Y and geZ*; that is, P**ojγ = JzoP. Therefore T*[JYY] =
(P*oU)*[JγY] = (U*oP**oJγ)[Y] = U*[JZZ].

(ii) Suppose T*[JyY] = U*[JZZ]. Let P - Jγo i7*"1oT* o Jγ =
Jz1 ° (To U~1)* o Jγ. Then P is a linear homeomorphism from Y onto Z.
It can be verified directly that (P*g)y — ((To U~i)g)y for all g e Z* and
yeY. Therefore P* = To U~ι.

THEOREM 1. Suppose that (X, p) is a nonreβexive Banach space
which is linearly homeomorphic to the conjugate (F*, r*) of a Banach
space (Y, r). Then there exists an uncountable collection of essentially
different conjugate space representations Ua\ (X, p)—+(Z'i, s*) such
that each space (Za} sa) is linearly homeomorphic to (Y, r).

Proof. By hypothesis there exists a linear homeomorphism T from
(X, p) onto (Γ*, r*). Let M = T*[JYY]. Then [4, p. 577] I is a
minimal total norm-closed subspace of (X*, p*). That is, M is total
and norm-closed, and no proper subspace of M is both total and norm-
closed. If L is any norm-closed subspace of X*, let QL denote the
canonical map from X into L* defined by

(QLx)f = f(χ) for all x e X and fe L .

In particular, Qx* is the canonical map Jx from X into X**. By
[4, p. 577], the map QL is a linear homeomorphism from (X, p) onto
(L*, (p*\L)*) if and only if L is a minimal total norm-closed subspace
of (X*, p*) Since (X, p) is not reflexive, Qx* is not a linear homeo-
morphism from (X, p) onto (X**, p**), and X* is not a minimal total
norm-closed subspace of X*.

Let fe X*. Let us show that there is a minimal total norm-closed
subspace ΰ of I * such that feB and such that B is linearly home-
omorphic to (Y, r). If feM, we may take B = M. Now suppose
fίM. By a theorem of Dixmier [1, Th. 11, p. 1065] a norm-closed
total subspace V of the conjugate i£* of a Banach space 2? is a minimal
total norm-closed subspace of E* if and only if #** = J / φ F 1 . Thus
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we have X** = JxXφML. Let H = [f]1. By the Hahn-Banach
Theorem [6, Corollary 2, p. 67], H£ M1 so JXX® (H Π M1) is a maximal
subspace of X**. Now i f g J X X since / Φ 0, so J J φ (HΠMλ)ΦH.
Since J x I φ ( i ϊn M1) and H are distinct maximal subspaces of X**,
there exists G e H such that X** = J X X ® (H n M1) Θ [<?]• Let D =
( f f Π F ) 0 [G], and let £ = D±. Then [6, (a?), p. 238] B is a norm-
closed subspace of (X*, p*). The subspaces H and M1 are w(X**, X*)-
closed [6, (x), p. 238], so Hf] Mλ is w(X**, X*)-closed. Therefore [6,
Corollary 5, p. 192] D is w(X**, X*)closed, and [6, Th. 1, p. 238] BL =
(ZJJ1 = Zλ Now B is a total subspace of X* since BL Π JXX = {0}.
By the theorem of Dixmier mentioned above, B is a minimal total
norm-closed subspace of X*. By the Hahn-Banach Theorem, we have
fe B since BL QH— [f]1. Now observe that both B and M are maxi-
mal subspaces of .(£ΓΠ Mλ)±, and consequently each of them is linearly
homeomorphic to the topological direct sum of B Π M with a one-
dimensional space. Therefore B is linearly homeomorphic to M which
is in turn linearly homeomorphic to Y.

Let {Za: aeΦ} be the collection of all minimal total norm-closed
subspaces of X* which are linearly homeomorphic to Y. For each
aeΦ let sa = p* | Za. We have established that every element / e l *
is contained in some Za. Each Za is nowhere dense in X* since each
Za is a proper norm-closed subspace of X*. Since X* is a complete
linear metric space, the Baire Category Theorem guarantees that X*
is not a countable union of nowhere dense sets. Therefore {Za: aeΦ}
is an uncountable collection. For every aeΦ, let Ua — QZa. It is
straightforward to verify that U* ° JZ(X is the identity map on Za. Thus
U*[JzaZa] = Za. Therefore by the lemma Uβ and Ua are essentially
different whenever β, aeΦ and β Φ a.

THEOREM 2. Suppose that T: (X, p) -> (Γ*, r*) αraZ [7: (X, p) -*
(Z*, s*) are έ^o essentially different conjugate space representations.
Then there exists a norm q on X equivalent to p such that qoT"1 is
the dual of some norm rx on Y equivalent to r, but such that q © U~~ι

is not the dual of any norm sL on Z equivalent to s.

REMARK. An interesting example may be obtained by letting X,
Y and Z be the sequence spaces I, c, and c0, respectively.

Proof of Theorem 2. Let A= T*[JTY] and let B= U*[JZZ].
Then A Φ B by the lemma. By [4, p. 577], A and B are minimal
total norm-closed subspaces of X*. The map T is a vector space iso-
morphism from X onto Γ* and T*[JYY] = A; it follows that T is a
w(X, A)-w(Y*, JFΓ)-homeomorphism. Let S = I 7 - 1 ^ 6 Γ*: r*(#) ̂  1}].
Then S is ^(X, A)-compact, because {g e Γ*: r*(βr) ^ 1} is w(Y*, JYY)-
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compact by the Banach-Alaoglu Theorem [6, Th. 1, p. 239]. Since
A Φ B and since A and B are both minimal with respect to certain
properties, we must have A $E5. Thus there exists feA\B. Let
L = f~\0) and let F - L n S . The subspace L is w(X, A)-closed
[6, Th. 3, p. 186] since feA. Thus V is w(X, A)-compact.

Now / is not w(X, i?)-continuous [2, Th. 9, p. 421] since fi B, so
[6, Th. 3, p. 186] L is not w(X, ί?)-closed. However, L is norm-closed
[6, Th. 3, p. 186] since fe X*. Thus U[L] is a norm-closed subspace of
(Z*, 8*), but U[L] is not w(Z*, JzZ)-closeά. Let K be the w(X, By
closure of V. Then [2, Lemma 4, p. 415] K is convex since V is
convex. Now U[K] is a convex w(Z*, J^^)-closed subset of Z*. By
a corollary of the Krein-Smulian Theorem [2, Corollary 9, p. 429], the
linear span of a convex, weak* closed set is weak* closed if and only
if it is norm-closed. Therefore U[L] Φ span (U[K\). Consequently,
L Φ span (K). However, span (K) Ξ2 span (V) = L, so there exists an
element x0 e K\L. Let W be the convex balanced hull of V U {(l/2)α?0}
Then if co denotes convex hull and bal denotes balanced hull, we have

W = co (bal (FU {y^o})) - co (bal (V) U bal { γ

which is w(Xf A)-closed [2, Lemma 5, p. 415] since the sets V and
bal {(l/2)flc0} are convex and w(X, A)-compact. The set W is norm-closed
since the norm topology is stronger than the w(X, A) topology. Also
W is norm-bounded since V and bal {{l/2)x0} are norm-bounded. Now
span (W) — X since span (W) properly contains the maximal subspace
L. Thus for any xeX there exist elements w19 wNe Wand nonzero
numbers tu * ,tN such that x — tιwι + + tNwN. Let t — Xf=11^|.
Then x/t e W since W is convex and balanced. Thus W is absorbing.
We have shown that W is a convex, balanced, absorbing, norm-closed
norm-bounded subset of the Banach space (X, p). Therefore W is a norm-
neighborhood of zero since Banach spaces are barrelled. By [6, p. 58]
the gauge q of W is a norm on X equivalent to p, and W —
{x e X: q(x) ^ 1}.

Let qL = qoT~\ Then qt is a norm on Y* equivalent to r* since
T is a linear p — r* homeomorphism. Also {# e F*: g^) ^ 1} — !Γ[TF],
and [g e F*: gx(^) ^1} is w(F*, JFF)-closed since TΓ is w(X, A)-closed.
Singer has shown [5, Lemma 2, p. 450] that if (E> h) is a Banach space,
and if hλ is a norm on J57* equivalent to Λ*, then fex is the dual of some
norm on E equivalent to h if and only if the set {geE*: hλ(g) ^ 1} is
w{E*, Jί;JE

r)-closed. (In one direction, of course, this is the well-known
Banach-Alaoglu Theorem.) Therefore there exists a norm rx on Y
equivalent to r such that rf = qγ — q ° 77"1.
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Let q2 = qo U"1. Then q2 is a norm on Z* equivalent to s* since
U is a linear p — s*-homeomorphism. Also {g e Z*: q2(g) <> 1} = U[W].
Now x0 £ W, for if x0 = cv + (1 - c)(d)((l/2)xQ) with i ; e 7 , 0 ^ c ^ l ,
and \d\ ^ 1, then (1 — 1/2(1 — e)d)#0 = eve L, so that $0 e £> contrary
to the definition of x0. However, x0 belongs to the w(X, l?)-closure of
W since the w(X, J?)-closure of W contains the w(X, J5)-closure of V,
namely K. Therefore W is not w(Xy JS)-closed. Thus U[W] =
{ge Z*: q2(g) <£ 1} is not w(Z, J^Z)-closed. By the Banach-Alaoglu
Theorem, there is no norm st on Z equivalent to s such that sf = q2 ~

COROLLARY. // (X, p) is a nonreflexive Banach space, there is
a norm q on X* equivalent to p* such that q is not the dual of any
norm on X equivalent to p, but such that the Banach space (X*, q)
is isometrically isomorphic to a conjugate Banach space.

Proof. Suppose that (X, p) is a nonreflexive Banach space. By
Theorem 1 there exists a conjugate space representation T: (X*, p*) —*
(F*, r*) such that T is essentially different from the identity map I
on X*. By Theorem 2 there exists a norm g on I * equivalent to p*
such that q © T~ι = rf for some norm rι on Y equivalent to r, but such
that q o I-1 is not the dual of any norm on X equivalent to p. Now
T is an isometric isomorphism from (X*,q) onto the conjugate Banach
space (F*, rf).
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