ON SOME TRIGONOMETRIC TRANSFORMS

OTTO SZASz

1. Introduction. To a given series 2 p=; u, we consider the transform

n .
sin Vi,
(1.1) An =Y u, —— where t, ¥ 0 as n— © ,
v=1 Vin

It was shown in a previous paper [5, Section 4, Theorem 3] that the transform
(1.1) is regular if and only if

(1.2) nt, =0(1), as n— @,

We shall now consider the transform (1.1) in relation to Cesaro means. In a forth-
coming paper Cornelius Lanczos has found independently that the transform (1.1)
is very useful in summing Fourier series and derived series, and gave some very
fnteresting examples; he takes ¢, = 7T/n . Of our results we quote here the follow-
ing theorem:

THEOREM 1. In order that the transform (1.1) includes (C,1) summability, it
is necessary and sufficient that

(1.3) nt, =pm+d,, nl,= 0(1) , p a positive integer.

We also discuss other triangular transforms which may be generated by “trun-
cation” of well-known summation processes, such as Riemann summability. The
transform A, and the transform D, (Section 5) are special cases of the general
transform

Tn =2 uyd(vha),

v=0
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where @(P) is a function of the n-dimensional point P(xy, %, * **, x,), and
B, — 0. This transform and many special cases of it were discussed by
W. Rogosinski [4]; in particular, the special case a, = 0 of our Theorem 4 is
included in his result on page 96. The general approach is essentially the same

as in the present paper.

2. Proof of Theorem 1. If we write

1 n sin Vi, sin (v +1) tn
u, = s, , Sy = sp, - =0y,
L wv=en, X osvTen, T © ) o
sinvt, 2sin (V+1) tp | sin (v +2) ta A2
Vi, (v +1) ta (v +2) ta v
!
then
nol sin nt,
An = Z SVAII + Sn e
v=1 nip
", 2 ' , , sin ntp
= z sp 0% + sp-1 Arl--l + (sn - Sn‘l) .
v=1 nty,
or
n-2 . _ .
2.1) A, = Z s,',Az,, +shos sin (n 1) th 2 sin nt,
v=1 (n - 1) th ntp
+ st sin ntp .
ntp

Now (C. 1) summability of 2 ¥=1 un to s means that
(2.2) nlsp— s, asn — ©,
If s, =1, then 4, = sin t,/t; — 1.

In order that (2.2) imply A, — s, it is necessary and sufficient [in view of
(2.1)] that
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sin nt, sin (n —1) t,

(2.3) t—n=.o(1) . . =0(1),
n-2

(2.4) Z v| &L =0(1), asn—>®
v=1

The first condition of (2.3) [in view of (1.2)] is equivalent to

sin nt, = 0(t,) = 0(1/n) ;
hence

ntp = pm+d,, nd, = 0(1).
The second condition of (2.3) now reduces to

cos ntp sin tp, = O(t,.,) ,

or

cos Op sin tp, =0(n71),

which is satisfied. Finally

sinvt

t t
= [ cos vxdx=R [ ¥ dx;
v 0 0

hence
(2.5) tn A% -R j(;tn A2 eiVE gy = Rj;tn eivx(l — eix)Z dx
and

(2.6) tn|0%] < j;t" |1 —ei*|? dx = 4_/0'"' (sin x/2)? dx

th 2 3
< j(:"x dx <t .

It follows that

n-2 n
> v <t Y v <n?t2=0(1), as n— ® ,
v=1 v=1
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This proves Theorem 1.

We can show by an example that the transform 4, may be more powerful than
(C,1). In (1.3) let p = 1, na, = —7/2; the series L=, (~1)"7'n (that is,
u, = (—1)"n) is not summable (C, 1), but summable (C, 2) to 1/4. Now

n
tnAn = Z (_l)v_l sin v tn
v=1
sin t, — (—=1)" [sin nt, +sin (n + 1) t,]
ll + ett lz

)

where nt, = 77—77/2n. Hence,as n — ®,

An ~1/4 +0(1) .
An even more striking example is u, = (—1)"7! 2.

3. Summation by harmonic polynomials. We get a more powerful method if we

introduce the harmonic polynomial

n .
@.1) ha(ot) = 3 uyp¥ Tt
v=1 v
and the corresponding transform
n , Sin Vitp

(3'2) Bn=zuvpn——: pn_)ly tn ‘1’0,

v=1 Vin
or

B, = t;Ihn(pn: tn) .
Let

n

— k=1

Sﬁ = 2 SvYn=v »
v=0

where
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y (R +1) - (k +n) nk
n n! Tk +1) °

we also write

b .
Akvy = Z (—l)r(’f.) Vy+r
r=1

and

k

ok =50 _
n - .
')’nk

Now (C, k) summability of the sequence {s,} tos is defined by

lim O',,k =s.
n-w

We quote the following elementary theorem [cf. 6, Theorem 1], which is included
in a more general result of Mazur [1, Theorem X] :

LEMMA 1. Let k be a given positive integer, and let
n
Tn=z an,v Sy, n=20,12 ---.
v=n

In order that lim T, exist, whenever the sequence fsntis (C, k) summable to s,
it is necessary and sufficient that:

n
(3.3) > vE IAka,-,,y | =0(1), any =0 for v >n;
v=0
(3.4) lim yk Aap,y = Oy exists, v=0,12 °--;
n-®
n
(3.5) lim ¥ a,, =8 exists.
n=® =g

We then have lim 7, = Bs + 29, & (0cf —s). Since then the transform Ty,
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is convergence preserving we must have (3.5) and:

lim ap exists, v=0,1,2, ***;
n-®

hence (8.4) and (3.5) hold, so that the conditions of Lemma 1 reduce to (3.3). In
the case of the transform B, we have

n Sin ntp
n,n = Pn nt ’
n
sin Vi, 41 Sin (v+1) ty :
an,y = Pn " = o} ;Y=L
Vin (v +1) tn

hence
any — 0, asn— @,
To satisfy (3.3) we must have

sin ntp

3.6 k,n 2 °n _
(3.6) n"pPn nt, O(l) ’
- in (n —41) th
3.7) kop1 20 =o0(1),
n Ion (n . 1) t" ( )
L n-p SIN (n—k) tn _
=0(1),
pn (n _k) tn ( )
and
nk-1 b k+ sin th
(3.8) Ry ——2 = 0(1) .
v=1 n

Assume first that £ = 0; then our conditions become:

(3.9) on sinntn _ o(1),
ntp
and
n-1 ; vt in (v+1) t
(3.10) > oo |- brl) ) o(1) .

Vi, (v +1) ta



ON SOME TRIGONOMETRIC TRANSFORMS 207

We now prove the lemma :

Lemma 2. If

1 —pn
~FPn

(3.11) PR =0(1), tp =0(1), asta V0, pp—1,

then By, is a regular transform.

Clearly (3.9) holds, and we need only to show that (3.10) also holds.
Ifp, >1,thenpy < pF, v=10,1,**+,n —1; if on the other hand P, < 1,
then p; < 1. Hence, in either case,

max Py =0(1), as n— ®,
o<v<n
We have
" sin vt sin (w+1) ¢ n sinvt sin (v +1) ¢t
2z P —p <Y o -
=1 v v+1 v=1 v v+1
olsin (W+1)t|

+(l—p)¥ v+1

the second term is O(¢), and

in vt in (v +1) t
sin _ sin ( ) - ft [COS Vx — cos (V + 1)x] dx = O(t2) ,
v v+1 0

so that

sinvt sin (v+1) ¢
v v+1

n
2 0¥
V=l

Thus (3.10) is satisfied and Lemma 2 holds.

Note that the condition p; = O(1) is equivalent to n(p, —1) <c, a positive
constant (see [5,p. 73]); furthermore, if n¢, = O(1), then clearly the second con-
dition of (3.11) holds.

Next let £ = 1; we shall prove the theorem:



298 OTTO SZASZ

THEOREM 2. If (3.11) holds, and if
(3.12) PR sin ntp =0(tn), n—,
then B, includes (C,1).

The conditions (3.6)—(3.8) now become :
Pn sin nt, = O(tn) ’

pn sin (n = 1) tn = 0(ta)

and
n-2 sin Vi,

(3.13) Y v|npr 22X o0, as n— ®.
v=1

Clearly, we need only to show that (3.13) is satisfied. Now

A? pY sin vt =A2p1’jo‘t cos vx dx = RA? jo't p¥etV* dx
=R_/(;t pveivx(l -2,0ei’ +p2e2ix) dx
=th pveivx(l —pel®)? dx
Hence
A" sinvt <p¥ fot 1 —pe™|? dx <p"t{(1—p)? +pt*};

it follows from (3.11) that

sin Vt,

A% py

n
v
v=1 tn

<L) +ontd} 3 vol =0(1).

This proves (3.13) and Theorem 2.

4, Comparison of B, and (C,%), £ > 2. We wish to prove the following theo-

rem:
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THEOREM 3. Suppose that (3.11) holds and that
4.1) n®71o% sin nt, =0(tn),
(4.2) nk1on cos nt, =0(1) on —1, ta 4O,
then B, includes (C, k) summability.

Now (3.6) holds because of (4.1), and then (3.7) follows from (4.2). It remains
to prove (3.8). We have

Ak“p” M=Ak+1pv fot cos vx dx = ARHIR -/<;t ,o”ei”’ dx
=R.]0‘t,oveiw‘(l _peix)kﬂ dx ;
hence
(4.3) ]Akﬂpv sin Vt <o ‘/(;t 1 = peix [T gy

< p? ‘/(;t (1 —p)? +,ot2}(k+l)/2dx

—0(e¥{ )T + ek,
It follows that

n n
=0 [ —pa)F" X vhoh | +0 [tET X vhoy ) .
v=1 v=1
Here the first term is O(1) by Lemma 2 of [6]; finally

n n k+1
tnt X vhn=0(ta X ok =0(1).
v=1 v=1
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This proves Theorem 3,

An interesting special case is ¢, = 7/n; the conditions now reduce to the

single condition
nk"1p8 =0(1).

If, in particular, n* p® = O(1) for all k, then B, includes all (C, k).
Observe that by Lemma 1 of [6] the condition n* p? = 0(1) is equivalent to

lim sup {n(op —1) + k log n} < 4+,
Note also that (4.1) and (4.2) imply:
nk"lom = 0(1) .

5. Truncated Riemann summability. The series 2=, u, is called (R, k)
summable to s if the series

k
(5.1) uo + Z (Sm "t) up = Ry (t)

converges in some interval 0 < ¢ <4, and if *
Re(t)— s, as t—0.

For £ = 1 it is sometimes called Lebesgue summability. The method (R, %) is
regular for £ > 2 and, in fact, it is more powerful than (C, %k — 2); for & = 2, it
was employed by Riemann in the theory of trigonometric series. We generate from
it by truncation the triangular series to sequence transform (uq = 0):

n sin vVt sin v, \F sin nty |k
Dn=zuv(—" Zsu —| tsa [—|

Vinp =1 Vinp ntp

k is a positive integer. We assume k& > 2; it is then easy to show that D, is a
regular transformation.
From Lemma 1 we find for (C, k) to be included in D, the conditions:

(5.2) thk(sin n =vt,)F =0(1), for v=0,1, +**, k;
n=k=1 . k
(5.3) T ok |kt sin Vin " | _ 0(1), n—w
v=1 Vin
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It follows from (5.2) (see Section 2) that we must have
(5.4) ntp =pm+ 0, , no,=0(1), p a positive integer ;
now (5.2) reduces to

t, sin (o, —vt,) =0(1), v=0,1 ¢, k,

and this is satisfied in view of (5.4).
To show that now (5.3) also holds, we employ a lemma, due to Obreschkoff
(2,p. 443]):

LEMMA 3. We have

. k m—k
Am(smvt) _Mt; ,
vt 14
where M is independent of t and v.
It now follows that

n in vt k

3 ok ok (___31; ) ~0(nta) =0(1), e

v=1 \ n

This yields the following theorem:

THEOREM 4. If nt, = pm + oy, p a positive integer, ntp, = O(1), then the
trans form

n Sin th k .
E Uy =Dy
v=1

Vin

includes (C, k) summability (k a positive integer).
6. A converse theorem. We shall establish the following result.

THEOREM 5. If

sin nt, k

(6.1) lim inf =A>1/2,

nty

then the transform D, is equivalent to convergence.
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It follows from (6.1) that lim sup nt, < 2Y% ; hence (see Sections 1 and 5) the
transform D, is regular. We now wish to show that D, — s implies s, — s;
we follow a device used by R. Rado [3].

Assume first that s = 0, and that s, = 0(1); then

0 < lim sup [sp| =8 <@,
n—o

and we shall show that § = 0. To a given € > 0 choose n = n(e) so that]s,,l <
§ + € for v > n. Next choose m > n and such that |s,| > & — €. We have

. k mn=1

sin mty

Sm =Dy — Z suly
mtn v=1

where

Vig (v+1) ty

(sin Vt,,,)k (sin v+1) tm)k
Ay = - H

hence, as mt, < 7, we have

n=-1

Z sy ly

v=1

<o(1) + (5 +¢) '(———Si:t’“')k —(———Si’;t””“)kl .

§—€< |spl <o(1) + (8 +€) {I/A=1+0(1)}.

But 1/\ < 2, and € is arbitrarily small; hence § = 0.

sin mty k +

|Snl < |Dm| +

nr=1
E syhy
v=n

It follows that

We next assume s = 0 and lim sup|s,| = ®; choose € > 0 and w large.

Denote by m = m(«) the least m for which |s,| > w; then

w< |sp] <o(l) +wfl/A =1 +0(1)}.

But this is impossible for A > 1/2, small €, and large m. This proves our theorem
for s = 0. Finally, applying this result to the sequence {s; — s} and its transform

completes the proof of Theorem 5.

7. Application to Fourier series. Suppose that f(x) is a Lebesgue integrable
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function of period 277, and let

®

(7.1) Fflx) ~ao/2 + Y (an cosnx + b, sinnx) = Zu,(x);

n=1

we may assume here ¢, = 0. Now (cf. [7,p. 270

. 1
(ap sin nx = by, cos nx) — ,
n

™M e

F(x) = f7 f(t)dt=C+

n=1

where

bn-

S [

[00)
c=
n=1

It is known [7,p. 55] that at every point x where F'(x) exists and is finite, the
series (6.1) is summable (C,r), r > 1, to the value F'(x).
It now follows from Theorem 3 for k = 2 and t,, = 77/n that if np? = O(1), then

n
E uv(x) /Orjlj
v=1

Furthermore, Theorem 4 yields, for & = 2, that if

nt, = pm + Gn, no, = 0(1),
then
n

Vi,

uy (x) (M)2 — F'(x).

v=1

An analogous theorem holds for higher derivatives (cf. [7,p. 257]).
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