COMPLETENESS OF SETS OF TRANSLATED COSINES

R. P. Boas, Jr.

1. Introduction. Conditions for the completeness on (0,77) of sets {cos Apox}
are well known. llere we shall consider sets §{cos (A x + qn)z. Such sets seem
first to have been considered by Ditkin [3], who proved that {cos (nx + Qn)Z(()n
is L-complete in (0,77) if 0 < ¢, < 7/2.

Ditkin’s very simple proof uses Fourier series and does not seem capable of
extension to the more general sets considered here. Our principal object is to
show how the problem may be attacked by complex-variable methods; we shall
not attempt an exhaustive discussion.

As a specimen we quote the following case. If A, > 0 and |\, —n| <
§ < 1/2, then the sets {cos (A,x + g,)}o and {sin (A,x + g,)} are L-
complete in (0,7) if 78/2 < ¢, < 7(1 — §)/2. (The statement “ ff,,(x)} is
LP-complete” means that the only functions of LP which are orthogonal to all
fn(x) are almost everywhere zero.) A further result, not covered by the present
paper, has been given by Bitsadze [1], who showed that every function satisfy-
ing a li¢lder condition admits a uniformly convergent expansion in terms of the
set {cos (nx + 7/4)}; he indicates an application of this result to the Tricomi
partial differential equation.

We remark that although Ditkin’s set {cos (nx + qn)gg) remains complete when
all g, = 7/2, it may fail to be complete if some but not all g, = 7/2. In fact,
the set {1, sin x, cos 2x, cos 3x,* * * { is oréhogonal to cos x. However, we shall
show that not only is the set {sin (nx + g,)}5 complete if}O < qn <7/2, but
even the set {sin (nx + ¢,)i7 is complete.

By applying the completeness theorem of Paley and Wiener [5,p.100] to the
equivalent set {cos nx + a, sin nxi, 0 < lan| < 1, we can show at once that
{cos (nx + gqn)35 is L?-complete if either 0 < lqn‘ < 8 < m/4for all nor
else 7/4 <8 < |qn| < /2 for all n. The problem of necessary and sufficient

conditions for the completeness of {cos (nx + ¢,)} remains open.

2. A general theorem. We shall obtain our results on fcos (A\px + qn)§ as
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corollaries of a theorem on a related set of more artificial appearance.

THEOREM. Let {N,}3 be an increasing unbounded sequence of nonnegative
numbers; let Ny(r) and N,(r) denote respectively the number of N,y and of Nyp4y
not exceeding r. If both

_ 1
(2.1) flrt INy(t)dt >E r =7 log r — constant,
and
- 1 1
(2.2) j'lrt IN,(t)dt > 5 r“()’ + 5)10{; r — constant,

where y = 1/2p’') if 1l < p <o,p’ = p/p —1),and y <1/2ifp = ©, then
the set

(2.3) ( cos ANapt + ag, sin Agpt,

T Q2pn+1 Cos >\2n+1t + sin )\2,,“ t
is LP-complete on ( —7/2, m/2) if the a, are real numbers all of the same sign.

COROLLARY 1. The set (2.3),with the ay, all of the same sign, is LP-complete
on (=7/2,7/2)if 0 < Ny <m+ 1+ 1/p',1 < p <©;itis L -completeif
0< A, <n+8,8<2.

COROLLARY 2. If A, > 0 and

1 7 (1 = 8)
el S b s T

b

then the set {cos (Apx + qn) §3° is L-complete on (0, 7).

For 8 = 0, Corollary 2 reduces to Ditkin’s theorem; for 8 # 0, the range of
qn is more restricted. If the A, are confined to one side of n, a sharper result

is true.

CoROLLARY 3. Ifn < N\, <n+ 8,0<8<1,and 0 < q, < 7(1 — §)/2,
n>050rifn =86 < Ny, <nforn>0,0<8<1,and (1l —8)/2<q,=< 0,
then {cos (Nyx + gp) 13 is L-complete in (0,7).

The following result on sets of sines includes the fact that {sin (nx + g, %loo
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is L-complete on (0,7) if 0 < ¢, < 7/2.

COROLLARY 4 If [n + 1 =A\,| < 8 <1/2and 78/2 < g, <71 — 8)/2,
then the set {sin (AN,x + )3 is L-complete on (0,7).

By demanding only LP-completeness instead of L-completeness, we can allow

the A, to be larger than in Corollary 2.

COROLLARY 5. If 1 < p < @andn + 2 — 8§ <A, <n+ 2—1/p,1/p<
§ < 1, then the set {cos (hyx + q,)33 is LP-complete on (0,7) if 76/2 <
gnp <m/2.

3. Proof of the general theorem. We now prove the theorem stated above. We
must show that if f(x) € LP and if

m/2
(3'1) j‘_T,/2 (COS )\2nt + Qn sin >\2n t)f(t)dt

=f7r/2 _ .
( —agn+1cos Aypspt + sin N1 t) f(t)dt

=71/2
= 0 (n=0,1,2,°”),
where all a, satisfy a, > 0 or else all a, satisfy a, < 0, then f(x) = 0 almost
everywhere,
Write

(20 F(2) =f772f(¢) cos 2t dt,  G(z) =[ 772 f(¢) sin 2t dt ;

then (3.1) is
(3.3) F(Ngn) +a2aG(Nz) =0,
_a2n+1F()\2n+1) +G()\2n+l) =0.

Let H(z) = F(z)G(z); then H(0) = 0; if A\; = 0, then H'(0) = H"(0) = 0; and
H(Ny )H(Nyn+1) < 0. Note that H(z) is an odd function. Let N{t) = N,{) +
N,(t), and let A(z) denote the number of zeros of H(z) in 0 < |z| < ¢.

We prove first that

(3.4) A(r) >2N(r) +1.
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To begin with, if A, = 0, we have, for 0 < r < A, the relations N(¢) = 1,
Ar) > 35 if Ay > 0, we have N(¢) = 0 for 0 < r < Ay, A(r) = 1. We proceed by
induction. Suppose that (3.4) is true for r < Ay . Then it remains true for r < Ag4y,
since N(r) does not change in A\ < r < Agyyo If HONL)H(Ng4q) 74 0, then
H(My) and H(Ag4,) have opposite signs and so A(Az4;) > A(Ng) + 2>
2N(Ng) + 3 = 2N(Ag+,) + 1, so that (3.4) is true forr = Ap4;. H H(Np4y )=
0, then (3.4) is true for r = Aj4; since A(r) increases by 2 atr = A4, while
N(r) increases by 1. Finally, suppose H(Ar) = 0, H(Ag+y) # 0.1f H(Aj) = 0
for j = 0,1,2, ¢ +,k, then A(Ng4+;) = A(N) > 2k + 3 = 2N(Agyy) + 1,
and (3.4) is verified for r = Aj4;. Otherwise there is a largest j < /& for which
H(>\j) # 0, and A( )\j) > 2N( )\j) + 1; there are at least & —j zeros of f(z) in
>\]~ <x < Ag4;; but the number of zeros in this interval is even if £ —j + 1 is
even [since H( N+, ) and H( )\]-) then have the same sign], odd if £ —j + 1 is
odd; so the number of zeros cannot be & —j and hence must be at least & —; + 1.
This completes the proof of (3.4).
By combining (3.4) with (2.1) and (2.2), we see that

(3.5) flr t"YA(t)dt > 2r — 47y log r — constant,

where 4y = 2/p' if 1 < p <0 ,4y < 2ifp = ©,
We now appeal to a modification of a result of Levinson [4,pp.7-9] to show
that #(z) = 0. This is as follows.

LEMMA. Let {x,3%% be a sequence of real numbers arranged in nondecreasing
order, and let H(z) be an entire function which is known to vanish at all xp; if
H(z) is known to have a multiple zero at some x,, that x, is to be repeated, ac-
cording to its multiplicity, in the sequence. Let V(r) denote the number of x, such

that |x,| < r and suppose that
flr t"Yv(t)dt >2r — & log r — constant .
Suppose finally that
. /2 2
G+ i) < {f777 n(e)etlrae}”

where h(t) > 0, h(t) € [P(0,7/2),1 < p < ®. Then H(z) = 0if a < 2/p’,
p' =p/(p =1).Ifp = @, then H(z) = 0 if o< 2.
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The proof of the lemma is parallel to that given by Boas and Pollard [2] for a
similar result, and we omit it.

Since H(z) = 0, we have either F(z) = 0 or G(z) = 0. If F(z) = 0,(3.3) shows
that G( A, 41) = 0; if G(z) = 0, (3.3) shows that F(A,,) = 0.

We first consider the case when F(z) = 0. Then, in particular, we have

m/2 _
f—W/Q f(t)dt =0 ’

and
/2 —
f-w/zf(t) cos Agp+yt dt =0 (n=0,1,2,--- )
m/2 .
f-w/zf(t) sin Agpept dt = 0 (n=0,1,2,--- )
hence
3.0 [T 5(t) &4t de = (n=0,%1,%2, -+ ),
where

(3.7) o =0, Mn = Nan-1 (n>0), ,un:_}\—Zn—l (n<0).

A result of Levinson [4,p.6], reduced to the interval (—7/2,7/2), is that
{e‘“"t§ is [P-complete if M(t), the number of |u,| < ¢, satisfies

(3.8) f: t"M(t)dt >r — (1/p') log r — constant,

1 < p < @ his proof also shows that L”-completeness follows from (3.8) if
1/p’ is replaced by any number less than 1. Since 3(t) = 2N,(t) + 1,(3.8)is
true in virtue of (2.2). Thus (2.2) implies f(¢) = 0 almost everywhere if F(z) = 0.

Now suppose that G(z) = 0. In the same way we have

/2 it
S ) e ae =0,

where now

(3.9) Mn = )\211 (n > O) y  Mn = T >\-2n-—2 (n < 0) .
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In this case M(¢) = 2N,(t) and (3.8) follows from (2.1). The rest of the argument

is as before.

4. Proof of Corollary 1. To prove Corollary 1 we have to show that (2.1) and
(2.2) follow from 0 < A, < n + 8 (n = 0,1,2,* ), where $ =1+ 1/p’,
1 < p <@, In the interval 2%k + 3 < u <2k + & + 2,wherek =10,1,2,°+°,
we have Ny(u) > £ + 1. Letx > 1l and definen by 2n + 8§ < x <2n + § + 2.
Then

x Ny (u 245 du 4+5 2du n+s N
Jruad oy prede g 2 s

248 n-2+8§ n

du

n 2
= klog| 1 +—"
,El °g( 2k+5«2)

2
n 2 1 2
: b - Mt
ek -2 2\2k+8 -2
n 2 -5 1
> 14—~ ———
= Z[ 2k 2(k~1)}

kol

=2

1 1
= n+<l"‘53——5)logn+0(1)

1 1—3 1 1
= x4+ 1 +0(1) ==x—— 1 +0(1).
y %ty logx 4 00) = Jx = log x +0(1)

On the other hand, in the interval 24 + 1+ 8§ <u <2k +3+ 8(k=0,1,2,++*),
we have N,(u) > £ + 1. Thus

x N;(u) 3+8 du 2n+1+8 N
P2 > f ~ du
1 u 1+ 2n-1+8
n 2
- 3 ol i)
b1 2k —1+ 58

n 2 1 2\
: 5 e 2
; % —1+8 2Gk—1+0

=1
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5. Proof of Corollaries 2—5. In proving Corollaries 2—5, it is convenient to

write —a, instead of a,, and t = x — 77/2, so that (2.3) becomes
cos ( Apx — Ngm/2) = a, sin (Apx — N,71/2) (n even) ;
an(cos Apx = Apm/2) + sin (hpx — AnT/2) (n odd) .
Put a,(1 + a2)” Y2 = sinb,, (1 + a2) Y2 = cos b,, 0 < b,<7/20r —7/2<

bn < 0, according as a, > 0 or a, < 0. Then the completeness of (2.3) is
equivalent to that of

[ cos (Apx = Ap7/2) cos by, = sin (Apx — ANy7/2) sin b, (n even) ;
sin (Apx = Np7/2) cos b, + cos (Apx — Ap7/2) sin b, (n odd) ;

that is, to the completeness of

‘ cos (Npx = Np77/2 + by) (n even) ;
sin (Apx = Nu7/2 + by,) (n odd) .
Now let A, = m — 2¢,/7, where m is an integer of the same parity asn. Thenthe

completeness of (2.3) is equivalent to that of

(5.1) cos (Npx + €n + by) (h=0,1,2,°*).
Thus a set
(5.2) cos (Apx + qn)

is equivalent to a set of the form (2.3) if for all n either

(5.3) €n < qp < 77/2 + €,
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or

(5.4) _'77/2 + €n < qn < €.

We may satisfy (5.3) or (5.4) in various ways. For example, (5.3) is certain-
< 8(n =0,1,2,° ), with § <1/2and 78/2 £ g, <
(1 — §)/2; this establishes Corollary 2, since the condition of Corollary 1 is
certainly satisfied in this case. Corollary 1 requires only that A, < n + 1if

ly true if |n — A,

p = 1; if we restrict A, to lie always on one side of n we can therefore obtain
a stronger result than Corollary 2. In fact, if n < A, < n + 1 we havee, <0,
and (5.3) is satisfied if 0 < ¢, < 77/2 + €,, hence certainlyifn < A\, <
nt+ 8, 8<1,and 0 < g, <7(1 —8§)/2. On the other hand, ifn =1 < A, < n
(n > 0), we have €, > 0 and (5.4) is satisfied if n — 8 < Ap\<n (n > 0),
5 <1l,and —7m(1 —8)/2 < g, < 0.

If we let A, = m —2¢, /7, where m has opposite parity to n, (2.3) reduces to
§sin (Apx + €, + by)}; by takingm = n + 1 we obtain Corollary 4. Finally,
Corollary 5 is obtained by taking m = n + 2. Further theorems of the same

character are readily written down.
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