
EXTENSION OF FUNCTIONS ON FULLY NORMAL SPACES

RICHARD ARENS

1. Introduction. Starting from the recent discovery of A. H. Stone that metric

spaces are "paracompact" [12] (paracompactness means that every open cover-

ing has a refinement only a finite number of whose members meet a suitable

neighborhood of each point [5]), J Dugundji has been able to extend to metric

spaces certain techniques in the theory of retracts which were hitherto appli-

cable at most to separable metric spaces [6]. The cornerstone of his method is a

theorem (see 2.4, below) according to which a continuous function on a closed

set A of a metric space X with values in a convex (= "locally convex") topo-

logical linear space L may be extended to the whole space X, indeed without

enlarging the convex hull of the image Essentially, the possibility of doing

this for a locally separable metric space X is implicitly given by a procedure for

the real valued case in [lθ]

One of the problems to which we address ourselves in this paper is that of

determining whether the assumption that X is metric can be reduced to X is

merely paracompact. The answer (see 6, below) is no. However, we have fairly

general results which imply that if L is metric and complete (and X is para-

compact) then the extension is possible (4.1, below). Our proof utilizes a process

of extending a pseudo-metric on A to all of X, which is ultimately based on a

theorem of Hausdorff. We generalize Hausdorff s theorem (3.2 and 3.4) and inci-

dentally show how Dugundji's result enables one to construct a short proof of

Hausdorff s theorem.

None of these extension theorems can properly be regarded as a true gener-

alization of Tietze's extension theorem, which deals with mappings on normal

spaces with values on the line or in the Hubert cube, since there exist normal,

not fully normal spaces. In order to provide a generalization of Tietze's theorem,

we have shown by way of application that the Hubert cube may be replaced by

any compact convex subset of a normed linear space (4.3).

S. Kakutani [10] has introduced the notion of "simultaneous extension re-

garded as a linear positive operation," in his case of real valued functions on

a locally separable metric space X: this means that it is possible so to extend
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all continuous functions such that (λf + g)e — λfe + g€ and fe > 0 whenever

/ > 0, where the superscribed e indicates the extension. We show that this is

possible in the more general case in which X is metric and L convex, the order

preserving feature of Kakutani's formulation being naturally reformulated as a

nonenlargement of the convex hull of the image (2.6). What is perhaps more sur-

prising is that the "simultaneous extension," while possible in more general

cases (4.2), is not possible under as general conditions as those under which

the individual extension (as in 4.1) is possible. As a matter of fact, we tie up

the notion of simultaneous linear and order relation preserving extension with

that of "sweeping" a measure from X onto A, and thus show that it is not always

possible even for compact ϊlausdorff spaces X (6.1).

The question arises whether among the simultaneous extensions which pre-

serve linear and order relations, there are not some which preserve quadratic

polynomial relations as well. It has already been shown by Yoshizawa just when

this is possible: at least when X is compact, A must be a retract of X,

We have inserted a section (5) showing that the "simultaneous extension"

for real valued functions can be derived from the "individual" extension of a

suitable continuous function with values in an infinite dimensional space, as

well as from the fundamental Lemma (2.1) directly.

In formulating our results, we shall always speak of "fully normal" [13]

rather than "paracompact" spaces, although it is known that these two proper-

ties coincide [12]. We do this because we use the full normality as such, using

Stone's result only for the metric case.

2. Extension of functions on metric space. One of the main geometric ideas

underlying the process of extension involved here is contained in the following

construction (cf. [6, 4.3] ).

2.1. LEMMA. Let X be a metric space, and A a closed subset of X. Then

there exists a family gy of continuous real-valued functions defined on X, and a

similarly indexed family of points ay of A such that

2.2. each gy vanishes on A, all but a finite number of the gv vanish in some

neighborhood of each point of X, the sum Z, gy {x) ~ 1 for all x in X — A and

each gy (x) is nonnegative;

2.3. for each a in A and each V, if gγ (x) > 0 then d(a, ay) < 3 d(a, x) (dis

the metric in X) and d(a, x) < d(a, aγ) + 2 d(x, A).

Proof. To each x in X - A, assign the open sphere of radius d(x9A)/4 Since

X - A is metric it is paracompact [12], so that this covering of X ~ A has a
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refinement R which is "neighborhood finite" (see [12]). For each V in R there is

a point x such that V is contained in the open sphere about x of radius d(x9A)/^

select such a point and call it xy. Also select ay in A such that d(av,xv)

< (5/4) d(xy, A). Let fv (x) = d(x, X - V) for every x in X. Since R is neighbor-

hood finite, each x in X has a neighborhood on which all but finitely many fy

vanish, and so s {x) - Σ y cr R fy M ι s b ° t n finite and continuous. Since 5 (x)

is never 0, the functions gy = fy/s are continuous. It is easy to see that they

provide the kind of "Dieudonne partition" required by 2.2.

We now turn to 2.3. Suppose gv(x) > 0. Then x belongs to the open set V.

From what has been said about V 9 Xy9 and ay follows

d(ay9 x) < d(av, xv) + d{xy9 x) < ( 5 / 4 ) d(xy9 A) + (1/4) d(xy9 A).

Of course

d(xy9 A) < d(xy9 a)

< d(xy9 x) 4- d(x9 a) < (1/4) d(xy9 A) + d(x9 a),

and so (3/4) d{xy9 A) < d(x9 a). Thus d(ay9 x) < (6/4)d(xy9 A) < 2d(x9 a).

Thus finally we have half of 2.3, since

d(a, av) < d(a, x) + d(x9 ay) < d(a9 x) + 2 d(x, a) = 3 d(a9 x).

For the second half of 2.3, we note first that d(x9 A) > 3/4 d{xy9 A). On the

other hand,

d(ay9x) < d(ay, Xy) + d(xy9 x) < (6/4) d(xy9A)9

which is thus less than 2 d(x9 A). Finally,

d{a9 x) < d{a9 ay) + d{ay9 x) < d{a9 ay) + 2 d(x9 A).

Thus the proof of 2.3 is complete.

Geometrically, the lemma given above says that X — A can be so mapped into

the finite dimensional faces of the "formal simplex" with vertices equal to the

points of A9 in such a way that as x tends to a point α 0 of A9 the vertices of the

carrier of the image of x all tend to α 0 , in the topology of A, With this picture

in mind, it is easy to imagine how functions on A with values in a convex set

£, can be extended to all of X. The next result [6, 4.1] makes this precise.
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2.4. THEOREM. Let K be a convex subset of a convex topological linear

space L (cf. [14]). Let A be a closed subset of a metric space X. Let f be con-

tinuous on A with values in K. Then f may be extended continuously to a function

fe defined on X with values in K.

Proof. Using the result and notation of 2.1, we define / e a t once by setting

fe(x) = i^y gv(x) f(ay)> for x in X - A, and fe(a) = f(a) for a in A. There

remains only the proof of continuity. Now the topology of L (and thus K) can be

based on neighborhoods of 0 defined by relations \\k\\ < 1 where | | | | is one

of the pseudo-norms of L, according to von Neumann's idea (cf. [14] )• Select

any point a of A. There is a positive r such that d(a, b) < r implies | | f(a)

- f(b) | | < 1 for b in A. Now suppose d(a, x) < r/3. For those finitely many V

for which gy (x) is not 0, we have J(α, ay) < r, so that

This shows the continuity of fe at any point of A. At points x of X — A we can

find a neighborhood in which only finitely many gv do not vanish, so that fe is

continuous there also. The rest of 2.4 is obvious. The second half of 2.3 is not

needed for this proof.

The fact that a single formula, so to speak, can be chosen to perform the

extension can be expressed in several ways. Suppose Kγ and K2 are convex

subsets of two convex topological linear spaces, and let there be an affine

mapping m of Kι into K2. Suppose fi9 f2 are functions as in 2.4 with values in

Kx, K2 respectively, but satisfying the condition m{fχ (a)) - f2 (a) for all a in

A. If we use the same system gv, ay in extending f2 as in extending fx then we

surely obtain m{ff(x)) = f2(x) for all x in X. We shall abbreviate this by saying

that the process of extension when applied to all possible f is consistent^ and

note the result:

2.5. THEOREM. Each f satisfying the hypothesis of 2.4 with K variablebut

A and X constant may be so extended that the entire process is consistent.

Another kind of consistency or simultaneity is expressed as follows.

2.6. THEOREM. Let K be a {linear or possibly merely convex) subset of a

convex topological linear space9 and let A be a closed subset of the metric

space X. Let F be the class of continuous functions on A with values in K. Then

each f may be extended by an fe(using 2.4) in such a way that> for f^9 , fnin

F and Cγ9 , cn real numbers {nonnegative with sum 1 when K is merely
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convex), we have

(cι ft + + c n fn)
e = c t /\e + - + cn in

This result is a generalization of Kakutani's theorem [10] on "simultaneous

extension of continuous functions considered as a positive linear operation".

The only real advance of 2.6 over Kakutani's theorem is the removal of separa-

bility, although Kakutani limits F to the space of bounded real valued continuous

functions C (A).

An addendum to 2.4 and 2.6 is of interest:

2.7. Under the conditions of 2.4 or 2.6, if there is an f and a point a of A

such that f is constant on a neighborhood (relative to A) of α, then fe is con-

stant on a neighborhood (relative to X) of a.

In fact, suppose /(α') is constant for d(a9 a') < 3 e and a' in A. Then fe(x)

is constant for d(a, x) < e, since then d(a, a^) < 3 e.

3. Extension of pseudo-metrics. Let X be a topological space. Let s be a

real-valued function of two variables defined in X such that

s (y, x) = s (x, y) > 0, 5 (x9 z) < s (x, y) + s (y, z)

and such that the set of x such that s (x, y) < e is open for each e > 0 and γ.

Then 5 is a pseudo-metric. It falls short of being a metric in that 5 (xn, y) —> 0

[s (x, y) = ϋj does not necessarily imply xn—> y (x — y). Our first result is in

the direction of an extension of a pseudo-metric from a closed set to the whole

space.

3.1. LEMMA. Let X be a fully normal [13] topological space, and let q be a

pseudo-metric defined on a closed subset A of X. Then there is a pseudo-metric

s defined in all of X such that for x9 γ in A and k — 4, 5, , if s (x, y) < 2

then q(x9 y) < 2~k.

Proof. Select a positive integer n. Construct an open covering U consisting

of those open sets V which intersect A in a set of α-diameter less than 2 n,
* * *

Using the terminology, notation, and results of [13] we obtain U > Uγ > U2 >

[13, V-7.4], and a pseudo-metric rn such that [13, V-7.5, correcting C to ^

x ^L S(y, Up) implies rn(x, y) > 2 ~ ^ + 2 ) for p = 1, 2, . We may also assume
Γn (χ> y) < l ^ e c a n t n u s f°Γπl Γ(*> y) = Σ π 2~n rn(x9 y). This is clearly a

pseudo-metric. Suppose r(x, γ) < 2 , for k > 4 and %, y in /I. Then r^_3 (x9 γ) <

2" 3 . Hence x C S (y, Ut), this covering being the one obtained for n = k - 3.
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(We have omitted an index showing dependence on n.) Since U± < U we obtain

q(x, y) < 2 ' 3 . Setting s = 2 3 r gives the required pseudo-metric, completing

the proof of 3.1.

We remind the reader that compact IΊausdorff spaces and metric spaces are

fully normal [13, V-8.14, VI-4.5].

This lemma is actually all we need in order to extend the results of §2 as

we shall do later. However, by an application of a theorem of Hausdorff, we can

improve 3.1 aesthetically by obtaining a pseudo-metric s which is an extension

to X of the original q. In fact, rather than refer to Hausdorffs theorem, we first

give a new proof since it is an interesting application of 2.1, is much shorter

than HausdorfPs, and shows in passing how a metric space may be isometric ally

imbedded in its own space of bounded continuous functions (cf. [4, p.187]).

The present proof resembles that in [ i l ] more than that in [9] However,

Kuratowski's proof, besides requiring separability, generally does not provide an

isometric, but merely topological imbedding (see below, and also [9, p.47]).

3.2. THEOREM. [Hausdorff]. Let A be a closed subset of a metric space X,

and let f be a continuous mapping of A into another metric space B. Then B can

be isometricallγ imbedded in a metric space Y such that f can be continuously

extended to X with values in Y9 such that f is a homeomorphism of X — A with

Y — By and such that B is closed in Y.

Proof: For any space S let C (S) denote the Banach space of real-valued con-

tinuous bounded functions g on S, with \\ g\\ — sup ^ ς | g(x) j .

To begin the proof, obtain for X a bounded metric d The metric r in B we

must not alter, of course. For b in B, let rb denote the function with values

r,(b') = r(b9 b'). This function is not necessarily bounded, but r^ — rc is

bounded (cf. [4, p.187]) and | | r f e - r c | | = r(b, c), where b, c are points of B.

Select a point o in A, to be held constant. The function φ defined for a in A by

φ (a) = Γ/ / \-~rf( \ evidently maps A into C (A). Indeed, since

\\φ(a)-φ{a')\\ = | | r / ( α ) - r / ( O | | = r ( / ( α ) , / ( « ' ) ) ,

the map φ is continuous. It may therefore by extended to all of X by 2.4, and we

denote the extension also be φ. Now form L - C{B) x R x C{X), where

and R is the real number system. For x, y in X dςfine dx(y) = d(x, y) as earlier,

and let d(x) = d(x, A). For x in Z, define F {x) = [φ (x), d{x), d(x) dx] in L .
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This F is obviously continuous. Define Bx ~ F(A) and Y = F(X)9 both subsets

of L. Clearly Bι is closed relative to Y. Now for each a in A we obtain f(a) on

one hand and F (a) on the other. We now show that it sets up an isometry between

B and Bv In fact,

\\F{a)-F{a')\\ - \\φ(a) -φ(a')\\ = | | r / ( f l ) - r / ( ( / ) | | = r [ / ( α ) , / ( α ' ) ] ,

as mentioned earlier. If we identify /? with S l f then F becomes an extension of

/, continuous on all of A. Suppose F(x) — F(y), where y belongs to X' — A. Then

d(x) = d(y) > 0; hence dx = dy9 which means x = y. Thus F has an inverse on

Y — βj_. We shall show that it is an homeomorphism. Let y ζl X — A and suppose

F(Λ )—> F (y). Then i/(%)—>d(y) > 0, and C?(Λ;) dx—>d(y) dy. From this we con-

clude dx—» dy or c/U, γ) = 11 rf^ — Jy 11—> 0. Thus 3.2, Hausdorffs theorem, is

proved. It is to be borne in mind that it was not known in 1938 that metric spaces

were paracornpact.

We go on to establish a refinement of 3.2 also due to Hausdorff.

3.3. THEOREM. // the { in 3.2 is a homeomorphism of A with B then it can

be arranged that F also is a homeomorphism.

To establish 3.3, Ilausdorff [9, p.46] modifies the construction of F. It is

an interesting fact that the F we construct automatically satisfies 3.3. The only

nontrivial part of the proof of 3.3 is that if F (x) —* F (a) for x in X — A and a in

A9 then x—»αin X. Therefore, suppose F (x)—>F (a). Let

h = g(x) - g(a) = Σ gv(x) ίrf(av) ~ Γ/(α)] '

w h e r e t h e gy a n d ay a r e d e s c r i b e d in 2 . 1 . Now | h(f{a)) | < \\h\\ — » 0 . B u t

hίf(a)] = Σδvlx)r[f(av),f(a)]

is not less than the least of those r[f(av), /(α)] which appear in this sum, that

is, for which gy {x) is not 0. Denote the ay in question by a^9 where of course

W depends on x. Since r(f(aw), f(a)] tends to 0 and / is a homeomorphism on A,

we see that a^—> α. From 2.3 we obtain d(a, x) < d(a, a^) + 2 d{x)9 and so

x—>α, as desired.

These two results have the following consequence.

3.4. COROLLARY. Let A be a closed subset of a metric space X. Let r be

a pseudo-metric defined on A. Then this pseudo-metric may be extended to all

of X in such a way that
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3.41 in X — A it is equivalent to the metric d of X;

3.42 in x G X - A then for some positive e, r(x, γ) < e implies y C X — A;

3.43 if r is a metric equivalent to d on A, the extension is equivalent to d on

all of X,

Proof. In A, form the equivalence classes for the relation r(x9 y) = 0, and

metrize in the obvious way using r. Call the resulting space B. The natural

mapping of A onto B satisfies the hypothesis of 3.2. Let m be the metric in Y.

Then m[F{x), F(y)] gives the desired extension of r(%, y).

We can now provide the finishing touch to 3.1.

3.5. THEOREM. Let X be a fully normal topological space, and let q be a

pseudo-metric defined on a closed subset of X. Then q can be extended to be a

pseudo-metric on X.

The proof is based on 3.1 and 3.4 as follows. Using the s of 3.1, partition X

into a set X of equivalence classes according to the relation s (%, γ) = 0, de-

noting the class containing x by %*, and so on. Define s*(x*, y*) = s (x, y); this

is a valid definition, which makes X a metric space, and the natural mapping of

X onto X* is continuous. Let A* be the closure in A* of the image of A. The

conclusion of 3.1 shows that q may be carried over in unique fashion to A , to

form a pseudo-metric q*. An appeal to 3.4 extends q* to X , and q(x, y) = ςr*Gc*,

y*) provides the desired extension.

Note that we have no use for 3.41 - 3.43 in 3.5 because the s was not given

to us in advance.

4. Extension of functions on fully normal spaces. In the next result, the

metric for X in 2.4 is shifted to K.

4.1. THEOREM. Let A be a closed subset of a fully normal space X. Let f

be continuous on A with values in a complete convex metric subset K of a con-

vex topological linear space L. Then f can be continuously extended to X with

all values still in K.

Proof. In A define the pseudo-metric q (α, α') = m[f(a), / ( α ' ) L where m is

the metric, and extend q to X by 3.5. Let Ao be the set of x such that q(x, A)

- 0. Given e > 0 and x in AQ, let Se be the set of a in A such that q(x9 a) < e.

The f(Se) form a nested system in K, and their diameters shrink to 0. Hence

there is just one point, which we call fix), common to all. This provides an
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extension of / t o Λo. Now partition X into a set X* of equivalence classes under

the relation q(x, y) = 0, denoting the class containing x by #*, and so on. Define

q* (x*, y*) = q (x, y); this makes X into a metric space and the continuous

natural image of A. In this natural mapping, Ao passes onto a closed subset A*

of X*. The function /* (α*) = /(α), a in .4 0, is continuous (indeed isometric) on

A*. It can be extended to all of X*9 by 2.4. Going back and defining f(x) =

/*(%*), we get an extension of /with the desired properties.

We shall show in 6 that a "simultaneous extension" of the type of 2.6 cannot

always be obtained if the hypothesis is merely that of 4.1 for each of the func-

tions involved. However, using the procedure of 4.1 and the result of 2.6, the

reader may prove the following:

4.2. THEOREM. Let A be a closed subset of a fully normal space X. Let F

be a linear {convex) set of functions each defined on A and with values in a com'

plete metric linear {convex) subset K of a convex topological linear space L.

Furthermore let there be defined on A a pseudo-metric q such that for each f in

F and for each positive r there is a positive s such that q{a, a') < s implies

m[f{a), f{a')] < r, where m is the metric in K. Then a simultaneous extension

{in the sense of 2.6) can be made for all the f in F.

None of the preceeding results can properly be claimed to be a generalization

of Tietze's extension theorem, since we always require more than normality of X.

We do not know whether the following is true: if 4̂ is a closed subset of a normal

space X, and / maps A continuously into a bounded closed convex subset K of a

Banach space L, then / can be continuously extended to X with values in K. Of

course, in the finite dimensional case of L, this result is an easy consequence of

the original theorem. In this case, we can replace "bounded" by "compact", and

in this form the theorem does admit generalization.

4.3. THEOREM. Let A be a closed subset of a normal space X. Let K be a

compact convex subset of a norrned linear space L. Let f be a continuous func-

tion on A with values in K. Then f can be continuously extended to X with values

in K {see note added in proof).

Proof: Since K is separable, we can find a countable family vt, v2, of

bounded linear functionals on L such that if u, u' belong to K and u{vn) = u'{vn)

for all n, then u = u\ (cf. [2, p.484, " N o t e " ] ) . We now imbed K in the space (s)

of [4]. For u in K, define U {u)n = vn {u). This mapping is continuous and one-to-

one, and hence a homeomorphism. We may therefore forget about the original L

and regard K as a compact convex subset of (s). By 2.4, since (s) is metrizable,

we can obtain a retraction of (s) on K, that is, a continuous r such that r{u) C K
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for u in(s), and r(u) = u for u in K. Let fn (a) = f(a)n* ^ n e ra-th coordinate of /(α)

in (s). By Tietze's original theorem, this fn may be extended continuously to all

of X, Defining fo(x) = Vf\ (x), f2 (χ)t ] in (s) we obtain a mapping of X into

(s). Setting f~(x) = r[fo(x)] gives the desired extension.

5. Simultaneous extension of real-valued functions. This section merely

shows that special cases of 2.6 and 4.2 in which the linear space is the real

number system R (or any finite dimensional linear space) can be reduced to 2.4

or 4.1, respectively, without further inquiry into the method of extension. In other

words the possibility of "simultaneous extension" of real-valued functions is a

direct consequence of the possibility of a single extension of a function with

values in a suitable infinite dimensional space. This sounds quite plausible, but

it is perhaps surprising that we must consider conjugate spaces.

Consider first a closed subset A of a metric space Z, and the spaces C (A)

and C (X) of continuous real-valued functions on them. Let L be C (A) , the con-

jugate space, with the weak topology (see [14], for example). Let K be the set of

ζ in L with norm not exceeding 1 and with ξ > 0 (that is, ζ(f) > 0 for/ > 0).

For a in A, define F (a) in K by F (a) (f) = /(α). This F is continuous since we

are using the weak topology, and K is convex. By 2.4 this F can be extended to

A. For / in C(A), define fe by fe(x) = F(x) (/). We leave to the reader the com-

pletion of the proof of the following:

5.1. THEOREM. The operation f—>fe is a linear, isometric^ nonnegative

transformation of C (A) into C (X), and fe is an extension of f.

In the next section we shall show that 5.1 cannot be generalized for nonmetric

X even if X is compact. However, the following is true.

5.2. T H E O R E M . Let A be a closed subset of a fully normal space X. Let S

be a separable (in the norm topology) closed linear subspace of C(A). Then there

is a linear isometric nonnegative transformation f—>/e of S into C (X) such that

fe is an extension of f.

The proof is just like that of 5.1, except that we appeal to 4.1. To do this we

must observe that since S is separable, K in S with the weak topology is

metrizable (as is well known), for example with the metric

m(ξ,η) = Σ 2 ~ B \(ξ-η) (/») I,

where the fn are dense in the unit ball of S; and that K is compact (Alaoglu-

Bourbaki [l]) and thus complete.
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6. Applications to measure in topological spaces. Let Z be a topological

space with a measure, and let A be a subset such that every function of a fixed

linear set F of real-valued functions on A can be extended to a summable func-

tion on X by a positive linear operation P. By defining / (/) = J P (/) {x) m (dx)

for f in F, we obtain a functional which may sometimes be represented by an

integral (cf. [2, 3] or any of the references given there). When this is true, one

obtains a measure m' on A which is generally not the mere restriction [m'(E)

= m {E) for E C A] of m to A.

Unfortunately we have not been able to apply this process to any situation

to obtain measures in A of a class not more easily obtainable by other methods.

This is because of the requirement of the existence of a pseudo-metric in 4.2

with the stated properties, or of the separability of S in 5.2. The interest of

the present section lies mainly in the fact that it is shown that one cannot

avoid limitations of this sort. For this purpose we present only one of a variety

of theorems, and then show why it cannot be generalized.

6.1. THEOREM. Let X be a fully normal Hausdorff space and let m be a

finite Baire measure [8] such that m(V) - 0 for an open V only if V is void.

Let A be a compact subset of X. Let S be a separable subset ofC(A). Then

there exists a strongly regular measure m' in A such that all functions in S are

measurable and if f £ S and f > 0, / Φ 0 then

SA f(a) m'(da) > 0.

Proof, Let Q be the normed linear algebra generated by S and 1. By [3, 4.4]

we can obtain a measure as described such that

SA f(a)m'{da) = fχ fe(x)m(dx).

The point to observe is that if / > 0, / ^ 0, then the same thing is true for fe

9

and thus the right integral is positive.

Why can we not ignore the separability of S in 6.1? Let Ao by any uncount-

able discrete set. By adding a "point at infinity" we obtain a compact space A.

This space A can be imbedded in a cartesian product X of unit intervals. The

obvious product measure [8, p.158 (2)] has the properties needed for 6.1. Let S

- C(A), and, forgetting that S is not separable, apply 6.1. The resulting measure

would make every one of the points Ao have nonzero measure, and so A itself

would not be measurable. This shows why the separability of S in 6.1 cannot

be ignored; and it also shows that one cannot ignore the pseudo-metric q in 4.2

or the separability of S in 5.2.
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Added in proof: We have recently found, and shall soon publish, a stronger

form of 4.3, namely in which "compact" is replaced by "separable".
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