NORMAL- £-TUPLES

Joun E. MAXFIELD

1. Introduction. This paper is an extension to % dimensions of most of the
known theorems on normal numbers, along with several new results. Certain re-
sults are obtained showing some sufficient conditions under which the sum of

normal numbers is normal.

DEFINITION 1. A k-tuple [ is the k-tuple ( &y, O,y +++, ), each o; be-

ing a real number.

DEFINITION 2. The nth k-digit of a k-tuple to base r is

b" = (af, aj, -5 ap),

where a{ is the nth digit of the fractional part of ¢ to base (or scale) r.

DEFINITION 3. A k-tuple 3 is said to be simply normal to the base r if
the number n, of occurrences of the k-digit ¢ in the first n k-digits of the frac-

tional part of 8 has the property

e 1
lim — =—
n—oc N ,-k

for each of the r* possible values of c.

DEFINITION 4. A k-tuple 3 is said to be normal to the scale r if 3, rf3,

r2B, +++ are each simply normal to all the scales r, r%, +-., where
riB o= (rT oy, 10y, e, PR

Nore. If B, = (Cty, Clgy +++, Of) is normal, then any m-tuple, m < £k,

having any distinct m of the ®; as components is normal.

2. The correspondent and its use. We make the following definition.
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DEFINITION 5. The correspondent number to the scale r to a k-tuple 8 is

the number ¢ =.a, a,--- to the scale r such that

a(n-l)k+1’ Tt Gy
is the nth k-digit of 8 to the scale r.

THEOREM 1. A k-tuple is normal to the scale r if and only if its corre-

spondent number to the scale r is normal to the scale r.

Proof. Suppose S to be a normal k-tuple. Its correspondent o is simply
ko p2k ... Also rfa, r2k

normal to the scales r”,

the scales r% r2% ..., Thus « is simply normal to the scale r¥, and by a

¢y +++ are simply normal to

result? of Wall [4] is normal to the scale r.
Let o, a normal number, be the correspondent of 8. Then «, rkC(, r2kg, ...

are simply normal to the scales rk, r2% ..., and is normal to the scaler.
ply

COROLLARY 1. Given integers 0 < ¢; < ¢, <+++<¢; < m, and a normal
k-tuple (3, delete all k-digits except those in positions congruent to ¢, or ¢, or

s+« orcj (mod m). The resulting k-tuple is normal.

COROLLARY 2. If B is a normal k-tuple to scale r°, then [ is normal to

scaler.

THEOREM 2. A necessary and sufficient condition that a k-tuple 3 be

be normal to scale r is that every sequence of v k-digits occur with a frequency

of 1/r* for all v.

Proof. By application of Theorem 1 and the Niven-Zuckerman paper [3],
this result follows immediately.

THEOREM 3. A necessary and sufficient condition that a k-tuple 3 be

normal to scale r is that 3 be simply normal to the scales r, 1% ««+ .

Proof. This theorem follows immediately from Theorem 1 and a theorem of

S. S. Pillai [ 4].

THEOREM 4. Let P be any permutation of the digits 0,1, «++ ,r -1, and
let Po be the number obtained from o by performing this permutation on all
the digits of d.

If B=(0ty, Gyy +oey Gy) is normal to the scale r, then so are:

Y This result can be obtained easily by a counting process.
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(1) (Clyy oovy Cljuygy POy, Cliggs sors Gk),

(2) the k-tuple obtained from [3 by the application of P to the k-digits by,
b2m> bsm’ cee, glving B'-

Proof. Since applying P to ¢, replaces each sequence of digits of ¢; by a

prescribed other sequence of digits, (1) follows immediately.

To prove (2), one proceeds as follows. Form y, the correspondent number
to 3. Then y is normal to scale r¥. Now, considering y to be written to scale
r%, form the m-dimensional correspondent & of y. This is normal to scale r,
but the mth component of 8 is formed from the imth k-digits of 8 (i =1, 2, «++).
Performing the alterations (2) on 3 will merely replace each digit of the mth
component of 8 by another uniquely. Call the resulting number 6°. Thus a one-

to-one correspondence will exist between sequences of m-digits of & and those

of 6.

Given € > 0, there exists an N such that every fixed sequence of m-digits

of length s, say cg, of & satisfies the condition

<€ for n >N,

n ms

where n._ is the number of occurrences of the sequence c¢; among the first n
m-digits of 8. Under the correspondence, since a fixed sequence in & cor-
responds to a fixed sequence (not necessarily the same ) in §’, we have

4
Ne g 1

n r

< e for n > N .

ms

Thus &’ is normal to scale r. Thus by Theorem 1, 3 is normal to scale r.

3. An application of uniform distribution theory. We now need some more

definitions.

DEFINITION 6. The symbol {f(x)} represents the nonnegative fractional

part of the real function of a real variable f(x).

DEFINITION 7. [2, p.90]. Let n be a given integer, and O an infinite
sequence of intervals Q) +++ (a < x < b) (a and b integers). Let the number
N = N(Q) be the number of lattice points [x] of (J, where N(Q) increases with-
out bound the ¢ run through 9.

To each ( let there correspond a system of n real functions f,(x), which

are defined for each lattice point [x] of Q. This function system
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F(x, n) = [f(x)]

is said to be uniformly distributed (mod 1), or u.d. (mod 1), in the intervals
Q of < if for each fixed set of numbers Yo Yor oot Voo with 0 <y, <1, the

number

N = N (D) = N (Q5 v vys oee s v,)
of lattice points [x] of () for which

0 <if;t <y (i=1,2 ++,n)
satisfies the condition

’\”(0)
N@Q)

n
i=1

as () runs through the infinite sequence J.

Levma A [2, p. 901 If the system [f,(x)] is defined at each lattice point

[x] of the intervals Q, and &;, 3; are real numbers, where
ziﬁiﬁai+l (i=l’2,'°',n)’

and

N’(Q) = N'(Q; O‘l’ﬁl; 0(29 B2; LR am Bn)

is the number of lattice points of () satisfying
<{fi(x)}<‘8i (i’—']-’z’""n)y

and [f;(x)] is u.d. (mod 1), then

LEvmA B [2, p.92, Th. 71. The system [fi(x)] is u.d. (mod 1) if and only
if, for each fixed set of integers (hy, hyy <+ hy) # (0,0, ¢+, 0),
i Z eZWi(hlfl(x)**---+hkfk(x))
N(Q) x)C o

= 0.

lim
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Levuma C [2, p.94]. The real function f(x) of a real variable x is u.d.

(mod 1) if for each fixed q=1, 2, -, the function f(x +q)—f(x) is u.d.

(mod 1).

THEOREM 5.2 The k-tuple 3= (Cy, Ggy o+« 5 Ug) is normal to scale r_if

and only if the function system defined by

filx) = c;r* (i =1,2,2,k)

is u.d. (mod 1),

Proof. Assume that

Lf (), f(x)y oees [ ()] = F x5 k)

is u. d. (mod 1). Consider the sequenceof /k-digits

cmcypeyenecs = layay ver g, bybyeesbgyooeydidy eeds],

the a; from o, b; from Uy, «++, d; from ¢y We shall count the occurrences

of ¢ in B. Let
b; s d; 1
—5 e € = ; —i; and 7 = —-

el_z:— };

Llr

The frequency of occurrence of the sequence of digits ¢ in B is the frequency
with which

€ <Uf; () < e+

forall i=1, 2, ..., k. From the conclusion of Lemma A this frequency is

1
(i+77—€z)—n71 -—k
i=1

~.
it I B
-

By Theorem 2, 8 is normal to scale r.

Now assume that (G, Clgy +++, CGf) is normal to scale r. We must show

that the frequency of x’s such that

t, ()} <y for 0 <7n, <1

2This theorem in one dimension was proved by D, D. Wall [ 5].
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is 7,1 772 cee T

Case 1. Suppose first that 7, and 7, and «-. and 7, are terminating deci-
mals in the scale r. Extend the shorter ones among these terminating decimals
to the length of the longest, say m, by adding 0’s. There are 7, r™ sequences
of m digits which, regarded as decimals, are less than 7,; thus there are
U ERE nkrkm that must be counted. However, each of these sequences
of k-digits of length m occurs in 8 with frequency 1/r*™, and thus the frequency

ism n, -1, as was desired.

Case 2. Suppose now that 5, is nonterminating for some i. Pick a sequence
of terminating decimals 7;];. —s 1, for every i=1,2,..., k. We know by Case 1
that the frequency for each j is
n]l'r]]z...n]k_)nlnzoconk aSj—)@o
COROLLARY. The k-tuple 3= (Cly, Cps+oe, Of) is normal if and only
. k .
if =1 ki &; is a normal number for all

(h hy"',hk)%(oaos""o)'

1>
Proof. The result follows from Lemma I3 and Theorem 5.

DEFINITION 8. If B=(0y, Gy +++, &p), then (m;)B is defined to be
the k-tuple (m G, m, Xy ey my Gy

THEOREM 6. If B=(c, Uy «++, &) is a normal k-tuple, and A is a non-
singular k x k matrix with rational elements, then the transformed k-tuple y = 8 A

is normal,

Proof. By Theorem 5 and Lemma B, when we take lattice points of the form
(m1 s

component ¢; is multiplied by a nonzero integer m;. To show that multiplication

my hyy «eeymy b ), B is transformed to a new normal k-tuple if each

of a component by a nonzero rational preserves normality, we first note that
any such rational can be expressed in one of the forms b/r°, b/r° (r’~1), where
b is an integer. (For 1/b has a scale r expansion containing a period of length

t, while s depends on the point at which periodicity begins.)

Now multiplication by an integer b preserves normality, as shown above.
Division by r® is normality-preserving from the definition. We consider division
by r!~1. Let & be normal to scale r. Then it is normal to scale r’. Taking &

as written to scale rf, we conclude that (r'9 - 1)5/(r* = 1), for any positive
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integer g, is also normal to scale r!, since the operation involved is multiplica-
ger q, ’ P p

tion by an integer. Then by tlie corollary to Theorem 5,

rf -1

k
Z hi Uy rtx

t
r—1 1=1

is u.d. (mod 1) for all
(h1shz"°°’hk) #(0,0,...,0).

By Lemma C,

is u.d. (mod 1). Thus by the corollary to Theorem 5, 8/(r‘~1) is normal to

scale rf, and hence, by Corollary 2 to Theorem 1, to scale r.

We have shown that multiplication of ¢; by a rational preserves normality. By
choosing A; =hi'+h].' in Lemma B, we can show that replacement of o, by
&;+ &; preserves normality. Interchange of two «’s does not affect normality.
Thus the elementary operations of which multiplication by the matrix A is

composed preserve normality.
THEOREM 7. Almost all k-tuples are normal.

Proof. This theorem follows immediately from the foregoing Theorem 5,
and Theorems 8 and 15 of [ 2; pp. 92 and 94 ].

THEOREM 8. The set of numbers simply normal to no scale is noncountable.

Proof. 1t is not difficult to show that the set of numbers simply normal to
a given scale forms a set of the first category [ 1, p.134]; the sum of a count-
able number of sets of the first category is also of the first category [ 1, p. 1371,
and thus the complementary set has the cardinal number of the continuum [1,

p. 1361, and is thus noncountable.
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