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E. H. ROTHE

1. Introduction. Let G be a bounded domain in an rc-dimensional real Eucli-

dean space, and for α > 1, let L α be the space of real-valued functions f such that

/ α i s summable over G. The class 5βα as defined by Calkin and Morrey [2; 6; 7]

is then the class of functions which together with their first "generalized de-

rivatives" [2, Def. 3.4; 7, p. 4] are in Lα. With a suitable norm, ^5α becomes a

Banach space [2, p. 185]. Morrey proved [7, p. 8] that in this Banach space the

solid sphere V of radius K and with the origin as center is "weakly compact" 1 ).

Using this fact together with lower semicontinuity theorems, he obtained very

general existence theorems for minima of multiple integrals2).

The object of the present note is to point out that some of the results in this

direction may be obtained by the use of general Banach space theory: the start-

ing point is the simple remark that the Banach space ^ α i s reflexive ( § 2 ) . The

weak compactness of the solid sphere V is, by Alaoglu's theorem [ l ] , a corol-

lary to this remark [ § 3 l It now follows almost immediately that a real-valued

function /(%), which is "weakly" lower semicontinuous, takes a minimum in V

(Theorem 3.1). In § 4 some sufficient conditions for weak lower semicontinuity

are given. Finally, as an example of the applicability of these considerations to

calculus of variation problems, a theorem on the existence of minima of multiple

integrals is given which is related to, but not identical with, the results of

Morrey referred to at the end of the previous paragraph ( § 5).

2. The uniform convexity and reflexivity of the space 5βα. Let t denote the

point with coordinates ti, t2, , ^ of the domain G of § 1. Let / ( t ) = /^°' (t)

be an element of 5βα, and f^1' ( t) (i = 1, 2, , n) its first generalized deriva-

tive with respect to t(. Let | | / | | be defined by the equation

(2.1) | | / | r - f Σ, \f{i)(t)\adt.

See [ 7 ] for Morrey's definition of weak compactness. The weak topology used in
the present paper is defined in § 3.

See [7, Chap. Ill], where also the relation to the results of Tonelli is discussed.
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We then have:

LEMMA 2.1 . Let a > 1. IFî Λ ^ e τz6>/7?z defined by (2.1) the space of classes

of functions of ^ equivalent under this norm is a Banach space3.

From now on ^ α wil l always denote the Banach space of Lemma 2.1, and it

will always be supposed that OC > l

THEOREM 2,1. The space §ais uniformly convex4.

Proof. Let La be the Banach space of classes of equivalent functions /

vvhich are defined in G and for which

(2,2)
JG

exists. La is uniformly convex [3,p.403, Corollary], Since a finite "uniformly con-

vex" direct product of uniformly convex spaces is uniformly convex [ 3 , p. 397-

398] it follows that the direct product of La taken (n + 1) times by itself, that is,

the space $~ of {n + l)-tuples fOff19 9fn (/vCί/α; v = 0,1, n) with the norm

1 /a

is likewise uniformly convex. This proves the theorem since 5βαis obviously a

linear subspace of 5βα.

Since a uniformly convex space is reflexive [5; 8 I, we have the following

corollary to Theorem 2.1.

C O R O L L A R Y . For α > 1, $ α i s reflexive.

3. The compactness of the sphere F. We recall first a few well-known defini-

tions and facts. Let E be an arbitrary Banach space in the strong topology, that

is in the topology induced by the norm of the space. Let K be a positive number,

and V be the solid sphere | | x \\ < K of E. By Vκ we denote then the topological

space whose elements are those of V and whose topology is induced by the

following neighborhood definition: A neighborhood of the point χ0 of Vκ is de-

termined by a positive number e and a finite number of linear continuous func-

tionals lt (x), ••• , ln(x), and consists of all points x of Vκ for which

3See [2, p.185]. The definition of the norm given by Calkin is slightly different
from the one used in the present paper. However, the proof of Lemma 2.1 is essentially
unaltered.

4 F o r the definition of the term "uniformly convex" s e e [ 3 ]
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|Z U ) - li(x0)\ < £ (i = 1, 2, . . . , n).

If E is the conjugate space of another Banach space F, E = F*, we denote

by V*κ the topological space whose elements are again those of F, but whose

topology is induced by the following neighborhood definition: A neighborhood of

a point x0 of V^ is determined by a positive number € and a finite number of

elements fί9 , fn of F, and consists of all points x of Vχ for which

A well-known theorem of Alaoglu [ 1, Theorem 1.3] states that F^ is compact.

Since for a reflexive space we have Vκ = V£, we obtain:

LEMMA 3.1. If E is reflexive then Vκ is compact.

Since a strongly closed convex subset of V is also closed in the weak to-

pology (that is, in the topology of Vκ ) we have as a consequence of Lemma 3.1

the following:

LEMMA 3.2. Let C be a convex subset of V which is closed in the strong to-

pology, and Cκ the same set in the topology of Vκ. Then Cκ is compact.

An easy consequence of Lemma 3.2 is:

LEMMA 3.3. Let C and Cκ have the same meaning as in Lemma 3.2, and let

I(x) be a real-valued function which is lower semi continuous in C^. Then I (x)

reaches a minimum in some point of C. 5

The preceding lemmas, together with the corollary to Theorem 2.1, now yield

the main result of the present section:

THEOREM 3.1. Let C be a bounded closed convex subset of $βα. Let the

norms of the elements of C be bounded by the positive constant K. Let V and Vκ

have the same meaning as in the first paragraph of this section, with E replaced

by ^Q, and denote the set C in the topology of Vκ by Cκ. Then Cκ is compact,

and a real-valued function I (x), which is lower semi continuous in Cκ, reaches a

minimum in C.

4. Sufficient conditions for lower semicontinuity. We prove now:

THEOREM 4.1. Let C and Cκ have the same meaning as in Theorem 3.1,

*For a proof that Lemma 3.2 implies Lemma 3.3 see [9, p. 423-424] .
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and let I(x) be a real-valued function defined on C. Then the following condition

is sufficient for the lower semi continuity of I{x) on C^ (and therefore, by

Theorem 3 . 1 , for the existence of a minimum of l(x) on C): to each x0 £ C

there exists a bounded linear functional l(x) such that

(4.1) / ( * ) - / ( * 0 ) > / ( * - * 0 )

for all x €1 C,

Proof. By definition of the lower semicontinuity we have to prove: to any

given 6 > 0 there exists a neighborhood N {x0 ) of x0 in Vκ such that

(4.2) /(*) - / U o ) > - e

for all x in the intersection, N (x0) n C. But by (4.1) the inequality (4.2) will

certainly be satisfied if we choose

N(XQ) = {X\ \l(x) - Z U o ) | < € , x £ Vκ\.

THEOREM 4.2 . With the same notations as in Theorem 4 .1 let I(x) have

first and second order Frέchet differentials D(x9 h) and D2 (x, A, k) at every

point x of C. Moreover, let

(4.3) D2(χ,h,h) > 0 for x £ C .

Then I(x) is lower semi continuous in Cκ.

Proof, From the Taylor expansion [4, Theorem 5],

/ ( * „ + A ) - / ( * „ ) - D ( x . , h ) + - f D 2 ( x + t h , h , h ) d t ,
o o υ 2 Jo

together with (4.3), we obtain

!(χ0 + h) - / U o ) > D(xQ,h).

This inequality shows that the assumptions of Theorem 4.1 are satisfied with

I ( x - xQ ) = ϋ ( x Q , x - xQ ) .

5. An a p p l i c a t i o n to a mul t ip le i n t e g r a l v a r i a t i o n a l problem. L e t G be the

domain of § 1 with p o i n t s t = ( t ί 9 , tn ). F o r e a c h μ = 1, , m l e t zμ{ t) £

^5α and l e t Π α be the s p a c e of c l a s s e s of e q u i v a l e n t m-tuples z = ( zί{t)9 ••• ,

zm ( t ) ) with the norm
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(5.1) Σ Σ
dz,

dt-.
dt

LEMMA 5.1. Theorems 3.1 and 4.1 still hold if^ais replaced by Πα.

This lemma is obvious from the proofs of the theorems in question.

T H E O R E M 5.1. Let

f{t,z,p) = / ( V , ί Λ . * i ' V P l l ' ' P m J

be a real-valued function of the indicated variables with the following proper-

ties:

(1) f is defined for ί = ( ί p , ί n ) C G and for all values of the real vari-

bles zμ, pμv (μ - 1, , m; v - 1, , n), and for the same domain of the vari-

bles df/dtV9 df/dzμ, and df/dpμv are supposed to exist;

the functions of t obtained by replacing z by z (t)

e in L β, where β is defim

l/β + l/α = 1;

(2) ifzμ(t)€'%

and p by dz Jdtv in f, df/θz , and df/dp are in Lβ, where β is defined by

(3) e( ί , z, z°,p,p°) I 0,

where by. definition

e{t,z,zo,p,p°) -f(t,z,p) - / ( t , Λ p ° )

- Σ f,

Under these assumptions^ if

ίίίHz) =

ίAere exists a

t l 9 rft,
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in the sphere

(5.2) | | 2 | | < K

such that

/ U ) £ /

for all z in the sphere (5.2).

Proof. By Lemma 5.1 and Theorem 3.1, it will be sufficient to prove that

I(z) is lower semicontinuous at each point z° of the sphere (5.2). To such z°

we define the linear functional I (ζ) of

by setting
m n dζ I

- — \ dt,- f m

Σ
V = I

where the symbol ( ) indicates that the arguments are

t l , . . . , tn, z\{t), . . . , z°m{t), dz\/dtιt" , dz°Jdtn,

and where

T h e a s s u m p t i o n ( 2 ) a s s u r e s u s t h a t t h e l i n e a r f u n c t i o n a l l(ζ) i s b o u n d e d . F r o m

t h e d e f i n i t i o n oίl(ζ) a n d t h e a s s u m p t i o n ( 3 ) w e o b t a i n

H z ) - I ( z ° ) = l(z-z°) + e > Uz - z°).

Thus the assumption (4.1) of Theorem 4.1 is satisfied, and the theorem to be

proved follows from Theorem 4.1 in conjunction with Lemma 5.1.
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