A NOTE ON THE BANACH SPACES OF CALKIN AND MORREY

E. H. RoTHE

1. Introduction. Let G be a bounded domain in an n-dimensional real Eucli-
dean space, and for & > 1, let L, be the space of real-valued functions f such that
f*is summable over G. The class $, as defined by Calkin and Morrey [ 2; 6; 7]
is then the class of functions which together with their first “generalized de-
rivatives” [ 2, Def. 3.4; 7, p.4] are in L,. With a suitable norm, $, becomes a
Banach space [ 2, p.185]. Morrey proved [ 7, p. 8] that in this Banach space the
solid sphere V of radius K and with the origin as center is “weakly compact’’?).
Using this fact together with lower semicontinuity theorems, he obtained very

general existence theorems for minima of multiple integrals?®).

The object of the present note is to point out that some of the results in this
direction may be obtained by the use of general Banach space theory: the start-
ing point is the simple remark that the Banach space P, is reflexive (§2). The
weak compactness of the solid sphere V is, by Alaoglu’s theorem [1], a corol-
lary to this remark [ §3]. It now follows almost immediately that a real-valued
function I (x ), which is “weakly” lower semicontinuous, takes a minimum in V
(Theorem 3.1). In § 4 some sufficient conditions for weak lower semicontinuity
are given. Finally, as an example of the applicability of these considerations to
calculus of variation problems, a theorem on the existence of minima of multiple
integrals is given which is related to, but not identical with, the results of
Morrey referred to at the end of the previous paragraph (§ 5).

2. The uniform convexity and reflexivity of the space $,. Let ¢ denote the
point with coordinates ¢, ¢, +++ , #, of the domain G of §1. Let f(¢) = f(o)(t)
be an element of B, and f(i) (¢)(i=1,2,+++,n) its first generalized deriva-
tive with respect to t;. Let || f|| be defined by the equation

@.1) |m|“=fc SS9 (e |%ds.

i=0

1See [ 7] for Morrey’s definition of weak compactness. The weak topology used in
the preseut paper is defined in §3.

2See [7, Chap. IIT], where also the relation to the results of Tonelli is discussed.
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We then have:

LeEmMA 2.1. Let a > 1. With the norm defined by (2.1) the space of classes

of functions of %a equivalent under this norm is a Banach space®,

From now on $§, will always denote the Banach space of Lemma 2.1, and it

will always be supposed that o > 1.
THEOREM 2.1. The space R, is uniformly convex™.

Proof. Let L, be the Banach space of classes of equivalent functions f
which are defined in G and for which

(2.2) {}; |flodeyt/e

exists. L is uniformly convex [3, p.403, Corollary]. Since a finite “uniformly con-
vex”’ direct product of uniformly convex spaces is uniformly convex [3, p.397-
398] it follows that the direct product of L, taken (n + 1) times by itself, that is,
the space P, of (n + 1)-tuples fo,fi,ecsfn (fL€ Ly v=0,1,+-+n) with the norm

{fc Z: I, 1%de

is likewise uniformly convex. This proves the theorem since 4 is obviously a

1/2

linear subspace of .

Since a uniformly convex space is reflexive [5; 8], we have the following

corollary to Theorem 2.1.
COROLLARY. For & > 1, Bis reflexive.

3. The compactness of the sphere V. We recall first a few well-known defini-
tions and facts. Let E be an arbitrary Banach space in the strong topology, that
is in the topology induced by the norm of the space. Let K be a positive number,
and V be the solid sphere ||x|| <K of E. By V. we denote then the topological
space whose elements are those of ¥/ and whose topology is induced by the
following neighborhood definition: A neighborhood of the point x4 of V is de-
termined by a positive number € and a finite number of linear continuous func-

tionals /; (%), »++ , I, (%), and consists of all points x of V for which

3See [ 2, p.185]. The definition of the norm given by Calkin is slightly different
from the one used in the present paper. However, the proof of Lemma 2.1 is essentially
unaltered.

4For the definition of the term ‘““uniformly convex” see [ 3].
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1;(x) = L(x))] < € (i=1,2---,n).

If E is the conjugate space of another Banach space F, E = F*, we denote
by V;‘( the topological space whose elements are again those of V, but whose
topology is induced by the following neighborhood definition: A neighborhood of
a point x, of V;; is determined by a positive number € and a finite number of

elements fi, «++ , f; of F, and consists of all points x of V. for which
l2(f;) - = (f)] < € (i=1,2,++,n).

A well-known theorem of Alaoglu [ 1, Theorem 1.3] states that V;‘( is compact.

Since for a reflexive space we have V, = Vlz‘ , we obtain:
LEMMA 3.1. IfE is reflexive then Vy is compact.

Since a strongly closed convex subset of V is also closed in the weak to-
pology (that is, in the topology of V) we have as a consequence of Lemma 3.1

the following:

LEMMA 3.2. Let C be a convex subset of V which is closed in the strong to-
pology, and Cy the same set in the topology of V. Then Cy is compact.

An easy consequence of Lemma 3.2 is:

LEMMA 3.3. Let C and CK have the same meaning as in Lemma 3.2, and let
I(x) be a real-valued function which is lower semicontinuous in Cy. Then I (x)

reaches a minimum in some point of C.°

The preceding lemmas, together with the corollary to Theorem 2.1, now yield

the main result of the present section:

THEOREM 3.1. Let C be a bounded closed convex subset of B,. Let the
norms of the elements of C be bounded by the positive constant K. Let V and V
have the same meaning as in the first paragraph of this section, with E replaced
by Bo and denote the set C in the topology of Vg by Cy. Then Cy is compact,
and a real-valued function I (x), which is lower semicontinuous in Cy, reaches a

minimum in C.
4. Sufficient conditions for lower semicontinuity, We prove now:

THEOREM 4.1. Let C and Cy have the same meaning as in Theorem 3.1,

5For a proof that Lemma 3.2 implies Lemma 3.3 see [9, p. 423-424] .
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and let [(x) be a real-valued function defined on C. Then the following condition
is sufficient for the lower semicontinuity of I(x) on Cp (and therefore, by
Theorem 3.1, for the existence of a minimum of 1(x) on C): to each xy € C

there exists a bounded linear functional [ (x) such that
(4.1) I(x) = (%)) 2 l(x —x)
for all x € C.

Proof. By definition of the lower semicontinuity we have to prove: to any

given € > 0 there exists a neighborhood N (x, ) of x, in ¥ such that
(4.2) I(x) - I(x)) 2~ €

for all x in the intersection, N(x,) n C. But by (4.1) the inequality (4.2) will

certainly be satisfied if we choose
N(xo) = {x' [ (%) ~ l(xo)l <€ x €Vl

THEOREM 4.2. With the same notations as in Theorem 4.1 tet [(x) have
first and second order Fréchet differentials D(x, h) and D?(x, h, k) at every

point x of C. Moreover, let
(4.3) D*(x, h, h) 2 0 for x € C.
Then [(x) is lower semicontinuous in Cy.

Proof. From the Taylor expansion [ 4, Theorem 5],
1 r o,
[(x, +h) - l(xo) = D(xy, h) + 3 Jo D*(x, + th, h, h) dt,
together with (4.3), we obtain
l(x0 + h) - l(xo) > D(xo, h).
This inequality shows that the assumptions of Theorem 4.1 are satisfied with

).

l(x—xo) = D(xo, x = %

3. An application to a multiple integral variational problem. l.et G be the
domain of § 1 with points £ = (t,, +++ , £, ). For each p=1, 00, mlet z,(¢)€
B, and let il be the space of classes of equivalent m-tuples z = (z,(¢), «+-,
2, (t)) with the norm
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2] e
] dt] .

LEMMA 5.1. Theorems 3.1 and 4.1 still hold if L4 is replaced by .

d

Z
dty

5.1 nzn=[j S e
G p=1 v=1

This lemma is obvious from the proofs of the theorems in question.
THEOREM 5.1. Let
f(t1 2y P) = f(tls cey tnr_zl9 a2 Dyttt pmn)

be a real-valued function of the indicated variables with the following proper-

ties:

(1) fis defined fort =(ty, «++, t,) € G and for all values of the real vari-
bles zyy ppv (=1, ¢+« ,mj v=1, «++, n), and for the same domain of the vari-
bles df/dtv, df/dz,, and df/dp,v are supposed to exist;

(2) if z#(t) € %athen the functions of t obtained by replacing z by zp'( t)
and Puv by az#/aty in f, af/az“, and af/apw are in L,B’ where B is defined by

/B +1/a =1;
(3) e(t’ 2y zO’ P Po) 2 o,
where by. definition

e(t’ 2, ZO’ P Po) = f(ty 2y P) - f(t’ zO’ PO)

m n
0 0
-2 [fz“(t’ z°,p0)(zﬂ_zz)+ > fPuv(t’ % p )(P#v—p“y)l.
m=1 v=1
Under these assumptions, if

dz 8zm
l(z)=—/;‘f[tl,-u,tn, zl(t),---,zm(t), - , vee } dt,

at Jt

1 n

then there exists a

z(l) = 2(1)(t) = [z(ll)(t)’ ey Z;nl)(t)]
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in the sphere
(5.2) llzll < K
such that

1(z) > 1(z(VD)
for all z in the sphere (5.2).

Proof. By Lemma 5.1 and Theorem 3.1, it will be sufficient to prove that
I(z) is lower semicontinuous at each point z° of the sphere (5.2). To such z°
we define the linear functional [(¢) of

£ =12, (0), eee s (D]

by setting

m n c?é'
z(¢)=/ z [(fz“>0 Eot 2 o)y =t des
v=1

G pu=1 atv

where the symbol ( )0 indicates that the arguments are

0 0
Logeee, tn’ 201(5)9 Sty z(r]n(t)’ azl/atl’ ey azm/atn,

1?

and where

=14, (), -0, L (D] €T,

The assumption (2) assures us that the linear functional /() is bounded. From
the definition of /() and the assumption (3) we obtain

I1(z) = 1(2°) = 1(z2-2°) + e 2 U(z - 2°).

Thus the assumption (4.1) of Theorem 4.1 is satisfied, and the theorem to be
proved follows from Theorem 4.1 in conjunction with Lemma 5.1.

REFERENCES

1. L. Alaoglu, Weak topologies of normed linear spaces, Ann. of Math. 41 (1940),
252-267.

2. J. W. Calkin, Functions of several variables and absolute continuity I, Duke Math.
J. 6(1940), 170-186.

3. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-
414.



A NOTE ON THE BANACH SPACES OF CALKIN AND MORREY 499

4. L. M. Graves, Riemann integration and Taylor’s theorem in general analysis,
Trans. Amer. Math. Soc. 29 (1927), 163-177.

5. Sh. Kakutani, Weak topology and regularity of Banach spaces, Proc. Imp, Acad.
Tokyo, 15 (1939), 169-173.

6. C. B. Morrey, Jr., Functions of several variables and absolute continuity, Duke
Math. J. 6(1940), 187-215.

7. —————, Multiple integral problems in the calculus of variations and related
topics, University of California Publications in Mathematics, New Series, Vol. 1 No. 1
(1943), 1-130.

8. B. J. Pettis, A proof that every uniformly convex space is reflexive, Duke Math.
J. 5(1939), 249-253.

9. E. H. Rothe, Gradient mappings and extrema in Banach spaces, Duke Math. J.
15 (1948), 421-431.

UNIVERSITY OF MICHIGAN








