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Introduction. Let (Ω, 3 , μ) be a probability space; that is, Ω is a collection

of elements u9 v9 w, 3, a σ-algebra of subsets of Ω; and μ, a countably

additive measure on 3 with μ(Ω) = 1. Let x be a function defined on Ω, having

values on the real line extended by the adjunction of +oo and ~oo. Let x be

measurable with respect to 3 We say that the expectation of x exists if one of

the integrals

J x+dμ, jx~ dμ

is finite where x\ x" are the positive part and the negative part of x, respective-

ly. The expectation of x, E{%|, is then defined to be equal to the integral

fx dμ. Let 3 t be a σ-algebra of subsets of Ω with 3 t C 3. For every A G 3 l f

the equation

φ(A) = f xdμ
JA

defines a countably additive set function φ on c3t which is absolutely continuous

with respect to the contraction of μ to 3 1 . By a generalized form of the Radon-

Nikodym theorem there is an extended real-valued function y defined on Ω which

is measurable with respect to 3i and satisfies the equation

φ{A) = ί ydμ
JA
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for every A £ 3 ι [ 3 ] . Such a function is unique within μ-measure 0 and is de-

fined to be the conditional expectation of x relative to 3 λ , denoted by K{x | 3 i }.

The integral or expectation of x, Έ*\x], is then the special case of conditional

expectation of x relative to 3 l f where

3 x - \ Ω, null s e t } .

In the following we shall list some properties of conditional expectation

[2, Ch. 1; 6, Ch. 5 l : x, y9 z9 xn9 ••• are extended real-valued, measurable func-

tions whose expectations exist.

CE 1. If CC is a finite real number, then

(1) E l α ^ l S j = α E U | 3 i l

almost everywhere. If x is nonnegative almost everywhere, then (1) is true for

either finite or infinite (X.

C E 2 . If

E{*} > - oo, E l y } > - oo,

then

E { * + r I 3 J = E U I 3 J + E{y | 3 j

almost everywhere.

CE 3. If x > y almost everywhere, then

E U | 3 , } > E { y | 3 J

almost everywhere.

CE 4. The relation

| E U | 9JI < E { | ^ | I 3 J

holds almost everywhere. Therefore, if x is equal to a bounded function almost

everywhere then E {x \ 3 ί } is also.

CE 5. If x is measurable with respect to 3 t and x is equal to a bounded

function almost everywhere, and y has finite expectation, then
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(2) S

almost everywhere. If x, y are nonnegative, then (2) is true for any x which is

measurable with respect to 3 t .

C E 6 . If

E{xn\ > - oo

for all 7if and xι < x2 < ••• almost everywhere, then E{xn \ r3ι\ converges

almost everywhere to E { Λ | S i l , where Λ; = limn_+ o o xn almost everywhere.

CE 7. If p >_ 1, then

| E U | 3 i l | p < E U * l p l 3 t }

almost everywhere. Therefore, if

E l | * l p i < oo,

then

E i | E U | 3 i ! | p l <oo;

and if

E\\xn\P\ <αo

for every n and

lim E { | * π - * l p ί = 0,
n-»oo

then

lim E { | E { ^ I 3 J ~ E { ^ | 3 , ϊ | p ϊ = 0 .
71

In this paper we shall study the relation of the conditional expectation with

a transformation T on some spaces of measurable functions into themselves

satisfying the conditions:

T(x + y) = Tx + Ty,

TOLx - CίTx, where α is a constant ,



5 0 SHU-TEH CHEN MOY

T(x Ty) = (Tx) (Ty).

Under the restrictions that the transform of a function which is equal to a

bounded function almost everywhere is also equal to a bounded function almost

everywhere, and that T satisfies a certain continuity condition, we are able to

identify such a transformation as the one which takes x to E{#g | 3 j}, where

g is a measurable function and 3 ^ is a σ-algebra of subsets of Ω with 3 7 C 3.

This is an attempt to answer the search for an appropriate definition of average

which would be desirable for the establishment of a mathematical theory of the

dynamics of turbulence [5, 7] In the past, J Kampe' De Feiriet has studied the

transformation on the collection of real functions which takes only a finite

number of values [4] Garret Birkhoff and John Sopka have studied the trans-

formation on the space of continuous functions on a compact Hausdorff space

[ l , 8] Garrett Birkhoff also treated the subject from an abstract algebraic point

of view [ l ] Since the modern treatment of fluid dynamics theory is based on

probability theory, it seems to the author that a probability solution is the

natural one

In the first section of this paper we shall consider the transformation on

the space of nonnegative measurable functions into itself. In some respect it

is analogous to the integration theory of nonnegative functions. In the second

section we consider T as a linear continuous transformation on Lp into Lp. In

the case of L1 it is also proved, if Tl = 1 and 11 Tx \ \ ι < 11 x \ \ ι where 11 111

denotes the L 1 norm, then Tx is the conditional expectation of x relative to a

σ-algebra of subsets.

1. Transformation on the space of nonnegative measurable functions. Let

& be the collection of all nonnegative, expended real-value<J functions on Ω

which are measurable with respect to 3. Elements of & are denoted by x, y9

z9 . Two functions are considered equal if they are equal almost everywhere.

By x = y or x > y we mean that x = y almost everywhere or x > y almost every-

where, respectively. When we say that x is bounded we mean that x is equal to

a bounded function almost everywhere. We shall use the symbol xn—*x to mean

that

lim xn(w) = x(w)
n-

for almost all w in Ω. Addition and multiplication in & are ordinary pointwise

addition and multiplication with the conventions that (X + 00 = 00 for every non-

negative number (X, and α oo=oo if Cί > 0, (X 00 = 0 if Cί = 0. Thus & is

closed under addition and multiplication. We shall use symbols (X, jS, to
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denote nonnegative real numbers. We shall use the same symbols to denote

functions which take on a constant value Oί, β, almost everywhere.

We are considering a transformation T on & into & satisfying the following

conditions:

T l . a) T (x + y) = Tx + Ty for every pair of elements x9 y in &.

b) T(Xx = QίTx for every nonnegative number α and every x in ii.

T2 If x is bounded then Tx is bounded.

T3. T (x Ty) = ( Tx) ( Ty) for every pair of elements x9 y in A

T4. // { xn \ is a nondecreasing sequence of elements of & for which xn —> x

then Txn —> Tx.

If T£ is the transformation which takes x to E{# | 3 t }, then by CE 3 7£ is

a transformation on & into A CE 1 and CE 2 imply that Tg satisfies the con-

dition T l ; CE 4 implies that Tg satisfies the condition T2; CE 5 implies that

T% satisfies the condition T3; and CE 6 implies that TE satisfies the con-

dition T4. Therefore the transformation which takes x to the conditional ex-

pectation of x relative to a σ-algebra of subsets ^ x C 3 satisfies T l , T2, T3,

and T4. It is easy to check that the transformation which takes x to E{#g | 3 t },

where g is a nonnegative measurable function with E l g l S j } bounded, also

satisfies T l , T2, T3, and T4. We shall prove that the last example is actually

the most general form of a transformation satisfying T l , T2, T3, and T4.

LEMMA 1.1. The inequality x > γ implies Tx > Ty.

Proof. If y is finite valued almost everywhere, then

Tx = T(γ + U-y))= Tx+ T(x-y) > Ty.

If y is not finite valued, let

A = [w : y (w) = oo];

then x(w) = cc for w G A. Let x\ y' be defined as x\w) = x (w) for w £ A,

x'{w) = 0 for w £ A; y'(w) = y (w) ίor w £. A, and y'(w) = 0 for w € A. Then
T x ' > _ Ty\ L e t 2 b e a f u n c t i o n d e f i n e d a s z(w) = cc if w £ A9 z{w) = 0 if

w i. A; then

x = x' + z, y = y' + z f

and
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Tx = Tx' + Tz > Ty' + Tz = Ty.

LEMMA 1.2. If xn—>x9 then Tx < lim inf Txn .
n

Proof. Let

yΛ = inf [xi : * > n];

then y^ < Λ;̂  for every n and } yn \ is a nondecreasing sequence of elements for

which yn —> x. By T4, Ίyn —> Tx. But by Lemma 1.1, Tyn < Txn for every

n; hence

Tx < lim inf Txn.
n

LEMMA 1.3. // xn —>x and xn < γ for every n where γ and Ty are finite

valued, then Txn —» Tx.

Proof. By Lemma 1.2,

Tx < lim inf Txn
n

and

T (y — x) < lim inf T (y — xn).
n

By Lemma 1.1, Txn < Ty for every n and Tx < Ty hence the second inequality

can be written as

Ty - Tx < Ty — lim sup T%Λ

n

that is,

ΓΛ; > lim sup Txn.

Now we have

lim sup Txn < Tx < lim inf Ίxn
7i n

hence

Txn
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LEMMA 1.4. Let 8 be the totality of elements y of kfor which T (xy) - y Tx

for every x G J$.

i tf yX9 y2

 e £» t n e n Ύ\ + y 2

 a n d y% * y2

 G ^ ; α n c^ */" y t < y2

 w i t n ^ 2

bounded, then y 2 — y\ £ S •

2. // α > 0, y G 8 , ίAeΛ αy G 8 .

3. // {yπ } is α nondecreasing sequence of elements with yn G 8 /or every

n and yn —> y, ίΛen y G 8 .

4. // \yn\ is a sequence of elements in 8 with yn —> y α/ιc? iAere is a

bounded function z for which yn < z for every n9 then y G 8 .

Proof. 1. We have

and

T(χyiy2) = yί T(Λ;y2) = y1 y2 T ĉ.

If y2 is bounded and y t < y2 , then

y2Tx=T(xy2)=T[x(yi +y2^yι)'\ = T(xyt) + T[^(y2 ~yt)]

= y 13T«+ Γ [ % ( y 2 - y j ) ] .

If Λ; is bounded, then T% is bounded. We have

y2Tχ-yιT
χ = ( y 2 -yt)Tx = Γ[Λ;(y 2 - y f ) ] .

The last equality is true for all bounded x, and therefore is true for all x.

2. Clearly

T(xOLy) = α Γ U y ) = OLyTx.

3 We have T(xyn) = y^Γ* f°Γ every n. Further, T(xyn) and y n ^ are non-

decreasing sequences with T (xyn ) —> T (xy), by T4; and ynTx —> y ΓΛ. Hence

T(xy) = y ΓΛ.

4. We have T(xy ) ~ynTx for every n If Λ; is bounded, then xz is bounded

and xyn < xz for each n. By Lemma 1.3, T(xyn ) —> T(^y). On the other hand,

we have ynTx —*yTx. Hence T(xy) = yΊx. The equality is true for all bounded
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x9 and therefore is true for all x by T4.

We remark that 1. implies that any nonnegative polynomial P (y), of a bound-
ed y G 8 (that is, P{y(w)) > 0 for all w G Ω) is also in 8 .

The following lemma is obvious by T3.

LEMMA 1.5. For each x G k9 Tx e 8 .

LEMMA 1.6. Let 3 ^ be the collection of all sets E G 3 whose characteristic

functions χE are in the 8 of Lemma 1.4. Then 3 γ is a σ-algebra of subsets

ofΩ.

Proof. We shall establish:

1. Clearly, 1 G 8 for iTx = T (x l ) ; hence Ω G 3 T .

2. If Eί9 E2 G 37, then Eγ nE2 G 3^ by Lemma 1.4 and the equation

^Eι nE2 ~~ ^E i * ^E2 *

3. If £ i , E2 € 3 j , then Ex - E2 G 37 by the equality

XE\~E2 ~~ ^ £ j XEi Π £ 2

and Lemma 1.4.

4. If £ 1 , E2 G 3 y, then £ 1 u £ 2 G 3 ^ b y Lemma 1.4 and the equality

^E\ U E2 ~~ ^ £ i E2 XE1 Π J?2 *

B y i n d u c t i o n , for a n y f i n i t e n u m b e r of s e t s E ί 9 E 2 9 ••• E n G 3 ^ ,

n
U £ f G 3 T .

j=i

5. For a sequence of sets El9 E2f , En9 in 37 .

00

U £ „ € 3 Γ .

For, by 4,
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U Ei

and

is a nondecreasing sequence for which

LEMMA 1.7. Let ϊfl be the collection of all nonnegative functions which are

measurable with respect to 3 ^ . Then til C 8

Proof. Functions which are linear combinations with nonnegative coef-

ficients of characteristic functions of sets in 3 j are in 8 . For any element of

lΐl there is a nondecreasing sequence of such functions converging to it; there-

fore, by Lemma 1.4, it is in S .

LEMMA 1.8. Let y G 8 and y be bounded. Let Oy be the least σ-algebra

with respect to which y is measurable. Then 3y C 37, or, equiυalently, y G ϊfl.

Proof. Let Φ be a nonnegative continuous function on a finite interval con-

taining the range of y We want to prove Φ ( y ) G 8 . We may assume that

0 < α < Φ ( y ) < β,

for Φ ( y ) + α G 8 with (X > 0 implies that Φ(y)' G 8 , by Lemma 1.4.

Since y is bounded by the Weierstrass theorem there is a sequence { Pn(y)}

of polynomials such that Pnίy) converges uniformly to Φ ( y ) . We may assume

Pn(y(w)) > 0 for all wGΩ; therefore, by Lemma 1.4, Pn(y)eS. for each

n, and Φ(y) G 8 .

For each E G 3y, there is a sequence \Φn(y)\ of continuous functions of

y with 0 <Φ n (y(M>)) < 1 for each n and w for which

Hence, again by Lemma 1.4, γE G 8 that is, E G 3^,.

LEMMA 1.9. For each x G k9 Tx G lΐl.
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Proof. Let {xn \ be a nondecreasing sequence of bounded functions for
which xn —> x. Then { Txn } is also a nondecreasing sequence of bounded
functions, and Txn —> Tx. By Lemma 1.5 and Lemma 1.8, Txn € tfl for every
7i therefore Tx € ϊtl.

THEOREM 1.1. // T is a transformation on the collection & of all non-

negative measurable functions on a probability space (Ω, 3 , . μ ) into itself

satisfying Tl, T2, T3, T4, then T is of the form

Tx = EUg/3Γ},

where Oγ is a σ-algebra of subsets of Ω with 3 j C 3 and g is a nonnegative

measurable function for which E { g | 3 7 } is bounded.

Proof. Consider the set function v on 3 defined by

*A dμ,

where -χA is the characteristic function of A; then Tl, T2, T4 imply that v is

a finite measure on 3. For a linear combination of characteristic functions

with nonnegative coefficients

Σ ai

we have

\t=l / 1=1

Hence for each x G &,

/ Txdμ = / xdv.

Since v is absolutely continuous with respect to μ, by the Radon-Nikodym

theorem there is a nonnegative function g for which

f
A

for every A G 3 Therefore for each A; € &,

f gdμ
A
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JTx dμ = Jxg dμ.

For every E E 3 γ ,

J Txdμ=JχE Txdμ = J T(xγE)dμ = JxχEgdμ = J^ xgdμ.

The previous equality and the fact that Tx is measurable with respect to 3y

(Lemma 1.9) imply that

Tx = E {xg I 3 γ \.

In particular, Tl = E{ g | 3χ }; hence E{ g | 3 γ \ is bounded.

REMARK. The representation Tx ~Έ>\ gx \ 3 χ } is not unique. For example,

if g(w) a= 0 for w EE, where E € 3χ and μ ( £ ) > 0, and we let

3 ' = [ £ u F : F G 3 T , F n £ = ̂ ] u [ F : F € 3 T , F n £ = 0 ] ,

then E { %g I 3 j } = E {xg I 3 ' I for every x in &.

COROLLARY 1.1. / / ίAe collection of nonnegative constant functions is

invariant under T satisfying T l , T2, T3, T4, ίΛeτι, except for the trivial case

Tx = 0 /or αZZ Λ, the range of T is fit, ατiί/ g of Theorem 1.1 satisfies

E{g I 3 T } = α ,

where (X = Tl 5̂  0. In particular, ifΎl = 1, then T is a projection of k on^ί .

Proof. Tl must not be 0. For if Tl = 0 then

Jgdμ = / T l dμ = 0.

Therefore g = 0, and Tx = 0 for every Λ; . For each y € lΐl,

7> = E ί y g | 3 r } = y Eίg\ 3 τ ί = α y ;

therefore

This fact together with Lemma 1.9 implies that Hi is the range of T.

If Tl = 1, then
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T2x = 7 ( 1 . Tx) = TxΎl = Tx;

that is, T2 = J. Hence T is a projection in this case.

2. Transformation on the space Lp. Let Lp, p > 1, be the usual space

of all real pth power integrable functions on the probability space (Ω, 3, μ).

If the transformation discussed in the previous section takes functions in Lp in-

to functions in Lp, then it can be extended to be a linear transformation on

Lp into Lp by defining Tx = Tx* — Tx"9 where %+, x" are the positive and nega-

tive parts of x, respectively; therefore we still have the same representation

Tx = E\xg\ Sτ}

for every x in Lp with a nonnegative function g for which E{ g | S j } is bounded.

The restriction that T transforms nonnegative functions into nonnegative func-

tions is the same as that Ί be order preserving; that is, if x > y then Tx > Ty.

In this section we shall consider a transformation on Lp into Lp similar to the

previous one, but with no restriction that the order is to be preserved. We shall

employ the usual norm topology in Lp and assume the transformation to be con-

tinuous in norm topology. We are able to prove with essentially the same argu-

ment as in the'previous section that the same representation

Tx =

is to be arrived at, but with a function g which is no longer nonnegative.

We shall state the assumptions precisely. In the following, elements of Lp

are denoted by x, y, z, . As before, two functions are considered equal if

they are equal almost everywhere. A function is said to be bounded if it is equal

to a bounded function almost everywhere. The symbols CX , β, are to denote

both real constants and functions which take a constant value almost every-

where. For a sequence of functions \xn j we shall use the expression "xn —> x

in Lp" to denote

lim I I xn - x \pdμ = 0.
n—»oo J

T is to be a transformation on Lp into Lp satisfying the following conditions:

T ' l . T is linear; that is9

T(ax + βy) = OiTx + βTγ.

T ' 2 . If x is bounded, then Tx is bounded.
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T ' 3 . T {x Ty ) = ( Tx ) ( Ty) for every pair x, y of bounded elements of Lp .

T ' 4 . T is continuous; that is? if xn —> x in Lp then Txn —> Tx inin

From the properties of the conditional expectation CE 1, CE 2, CE 5, CE 6,

and CE 7, we see that the transformation which takes x to E[x [ 3 t ] satisfies

the foregoing conditions.

LEMMA 2.1. Let 8 be the totality of elements y of Lp for which T(xy) = yTx

holds for every bounded x in Lp. Then c is a closed linear subs pace of Lp.

Moreover? if y^ y2 G S and γχf y2 are bounded, then yχ y2 E 8 ; therefore

every polynomial of a bounded function in 8 is also in 8 .

Proof. The proof that C is a linear set and closed under multiplication of

bounded functions is similar to that of Lemma 1.4. To prove that it is a closed

subset of Lp, let yn—> γ in Lp and γn G C for every n; then xyn—» xγ in Lp

for every bounded x, and hence T (xyn) —> T (xy) in Lp, by T '4 . On the other

hand, if x is bounded, then Tx is also bounded by T ' 2 ; hence

in Lp, Since

ynTx —>y Tx

yTx = Txyn

for every n, we have γTx — Txy; that is, γ E C. Hence 8 is a closed subset of

V
LEMMA 2.2. For each x G Lp> Tx £ 8 .

Proof. By T ' 3 , if x is bounded then Tx G 8. If x is not bounded, there is a

sequence \xn } of bounded functions for which xn —>x in Lp; then Txn —> Tx

in Lp, by T ' 4 . Now Txn G 8 for each n, and the fact that 8 is closed (Lemma

2.1), imply that Tx G 8 .

LEMMA 2.3. Let "5T be the collection of all sets E G 3 whose characteristic

functions -χ are in 8 ; ίΛerc 2)j is a σ-algebra of subsets of Ω.

The proof is the same as that of Lemma 1.6 except that we have to use the

fact that 8 is a closed subset of Lp and
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in Lp to prove that Oγ is closed under countable unions.

LEMMA 2.4. Let lΐl be the totality of elements of Lp which are measurable

with respect to the 3 τ of Lemma 2.3 9 then lΐl C 8 .

Proof. Linear combinations of characteristic functions of sets of S j are

in 8 . The facts that the totality of such functions is dense in lU, and that 8 is

a closed subset of Lp, imply that tΐl C 8 .

LEMMA 2.5. Let y G 8 and y be bounded. Let 3y be the smallest σ-algebra

of subsets of Ω with respect to which y is measurable. Then 3y C ̂ γ ors equi-

valently, y G lΐl.

Proof. Let Φ be a continuous real function on a finite interval containing

the range of y. Since y is bounded, by the Weierstrass theorem there is a se-

quence { Pn(y) \ of polynomials of γ for which Pn[y (w )] converges to Φ[y (w )]

uniformly in w Hence Pn(y) —»Φ(y) in Lp; therefore, by Lemma 2.1, Pn(y) G 8

for every n, and Φ (y ) G 8 .

For each E G 3y, there is a sequence {Φ n (y) } of continuous functions of

y for which Φ π ( y ) —>y in Lp, where -χ is the characteristic function of E.

Hence, again by Lemma 2.1, γ € & ', that is, E G 3 ̂ .

LEMMA 2.6. For each x G Lp, Tx G ΊΠ.

Proof. For each x G Lp there is a sequence \xn\ of bounded functions in

Lp for which xn —>x in Lp Hence Txn —> Tx in Lp by T '4 . By T '2, 7Λ;Λ is

bounded for every n By Lemma 2.2 and Lemma 2.5, Txn G lΐl for every n Since

lΐl is a closed subset of Lp9 Tx G lΐl.

THEOREM 2.1. // T is a transformation of Lp into Lp satisfying T Ί , T ' 2 ,

T ' 3 , T '4 , then T is of the form

Tx = E\xg\ 3 T 5 ,

where 3 j is o σ-algebra of subsets of CL with 3 j C 3 and g G Lq$ where

1/p + \/q = 1, for which E{ g \ 3 ^ } is bounded (in the case of p = 1, then g is

a bounded function )•

Proof. We consider the function £ (x) defined on Lp by

<i(χ) == I Tx dμ.
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T Ί implies that Ίis linear. Also, "t is continuous, for if χn—¥χ in Lp then

Txn —> Tx in Lp, which implies Txn —> Tx in L t therefore

^ U n ) = y T̂ ĉί/x —> jTx dμ = -£(#).

Now /C can be expressed as

^(Λ) = J xg dμ,

where g £ Lq with 1/p + l/<7 = 1. (In the case p = 1, g is bounded almost every-

where.) Hence,

J Tx dμ = j xg dμ

for every x E Lp. The same argument as in the proof of Theorem 1.1 shows that

7 * « E U g | 3 T J f

and that E { g \ 3 τ } is bounded.

THEOREM 2.2 //p = 1, cmd T satisfies the further conditions that

T l = 1 a m / 1 1 7 * 1 ^ < 1 1 * 1 ^

/or every x E L t , where

WxW^ f \ x \ d μ ,

then

Tx = EU I S τ}

/or every x%

Proof. Consider the set function v defined on S by

v{E) = Ί{γ_) = / Tχc dμ,
EJ * k.

where v is the characteristic function of E, and /t is the linear functional

defined in the proof of Theorem 2.1. Since Ί is continuous, v is a completely

additive set function. Tl = 1 implies that v(Ω) = 1. For any set E 6 3 ,



6 2 SHU-TEH CHEN MOY

Now we want to show that v{E) = μ (E) for every E £ 3 . First we shall prove

\v(E)\ = μ ( £ ) .

Suppose

\v(E)\ < μ(E)

for a certain E then

l = μ(Ω) = μ(£) + μ ( Ω - £ ) > | v(E) I + I v(Q - E) I

This is a contradiction. Hence

\v(E)\ = μ(E).

Now for any £, we have either

v{E) = μ(E) or »/(£) =~

Suppose

v{E) = - μ(£) ;

then

v ( Q - £ ) = 1 + μ ( £ ) .

This is possible only when μ(£) = 0. Therefore

for every E G 3 .

The fact that v Ξ μ implies that the g in Theorem 2.1 is equal to 1 almost

everywhere, for

J 8'
E
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Hence the theorem is proved.
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