
ON THE GROWTH OF FUNCTIONS HAVING POLES OR ZEROS
ON THE POSITIVE REAL AXIS

H. D. BRUNK

1. Introduction. Let Γ denote the boundary of a region Δ containing a right

half of the real axis, and f{z) a function holomorphic in Δ except possibly for

simple poles on the positive real axis* Through the residue theorem, the integral

makes correspond to f(z) a Dirichlet series whose coefficients are the residues

of f (z\ at its poles It is the purpose of this paper to exhibit some immediate

applications, using this familiar device, of the theory of asymptotic Dirichlet

series to a study of the growth of functions with poles of bounded order, or

zeros of at least a certain order, on the positive real axis. Let the poles, or

zeros, occur at points z - λΛ, where 0 < λn t oc. Theorems 2A and 2B, in § 3 ,

relate the growth of leading coefficients in the Laurent developments about the

points z - λn to the growth of f (z) in Δ. Theorems 3A and 3B, in § 4 , apply to

functions of exponential type in the right half-plane outside Δ, satisfying much

weaker growth conditions in Δ. Theorem 3A may be thought of as stating that

such a function, with a specified rapidity of decrease on the imaginary axis, is

holomorphic if it does not have poles of too great order; while Theorems 3A and

3B together may be regarded as saying that if such a function has " z e r o s " of

minimum order too great for its growth on the imaginary axis, poles counting as

negative zeros, then it vanishes identically. (The emphasis on this aspect of

Theorem 3A and this interpretation of the uniqueness conclusions of Theorems

3A and 3B were suggested by the referee.)

2. Definitions, the fundamental inequality, and properties of the function

C ( z ) . Let \λn\ (n = 1, 2, ) be a sequence of positive numbers, strictly

increasing without bound (0 < λn t oo), such that

(1) lim sup — = D* < oc.
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Let Δ denote a region in the complex z-plane (z = x + iy) bounded by

y - g*(x\ y a - g ' U ) , and % = α ( 0 < α < λ ι ) ,

where g (%) and g~(x) are defined for x > α, positive for Λ; > α, continuous,

bounded, and satisfy Lipschitz conditions: there exists a constant K such that

(3) \g\x

| g" (x + Δx ) - g" (x) | < KI Δx I,

for x > α, Λ: + ΔΛ; > a. Denote by Γ the complete boundary of Δ, by Γ + the part

of Γ in the upper half-plane, and by Γ" the part of Γ in the lower half-plane.

Let { Mn\ (n = 1, 2, ) be a sequence of positive constants, and set

p(σ) = sup (λnσ - log Mn).
n > l

Following the notation introduced by Mandelbrojt [ 6 ] , we shall say that the se-

quence \Mn\ has the uniqueness property (U.) if, for some positive number 77,

(U) p(σ)emtησdσ = 00.

(The absence of the lower limit indicates that the relation is to hold provided

the lower limit is sufficiently large.) If, in particular,

log Mn

lim inf < oc,

then p (σ) = 00 for σ sufficiently large, so that (U) holds. If

lim 0 0 .

let the sequence { M°n \ (n = 1, 2, ) be defined so that log M£ is the greatest

monotone, nondecreasing, convex function of n which is not greater than log Mn
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Mandelbrojt has shown [6; cf. also 7, §1.8, III - V ] that condition (U) is equi-

valent to

for some positive 77.

If n is a positive integer, the sums Σ ^ = 1 a^ exp(~λ£s) {m >_ n) are said

to represent a function F(s) with logarithmic precision Pn(σ) in a region con-

taining points with arbitrarily large real part if for s in that region and for x

sufficiently large,

(4) inf sup
m> n σ> x

F(s)~ < exp(-p n (x)).

Mandelbrojt has proved [7, § 3 7] a theorem relating the growth of the function

F{s) to the growth of the coefficients an. This theorem contains as a very

special case the following theorem, sufficient for the needs of the present paper.

THEOREM 1. Let the sequence { λ n } satisfy ( 1 ) . Let σ0 and σ 1 be real

numbers^ and R a positive number greater than D*9 such that F(s) (s = σ + it)

is holomorphic in the half-plane σ >_ σ0, and continuable analytically throughout

the strip

S : |f I <πR9 σ > σ t - R.

For each positive h9 let there exist a constant Ah such that the sums ΣLk~ι

ajc exp(—λfcs) (m > n) represent F(s) in σ >_ σ$, \t \ <_ h with logarithmic

precision pn(&) ~ -̂ Λ satisfying

(5) ί°° pn{σ)emηησ dσ = oo

for some positive η.

Then there exists a constant B, depending on R, such that

(6) \ a n \ <BλnA*M(σl9R)exj>(λnσι),

where M (σi9 R ) denotes the maximum of \ F ( s ) \ in the circle \ s — o χ | <>/ϊ.
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Let C(z) denote the entire function [ 1 , p. 267] Π~=i ( l - z 2 / λ ^ ) . The

following well-known properties of C(z) will be useful in extending to functions

with poles of bounded order and to holomorphic functions the results obtained

for functions with simple poles by the device described in the introductory

paragraph,

I For every positive number e, and for z sufficiently large [ 1, p 267],

(7) \C(z)\ < exp[(D" + e ) | z | ] .

II. //

inf (λn+ί-λn) > 0,
n> 1

and e (r) is a nonincr easing^ positive function of r such that

(8)
log e (r)

inf > - oc,
r> o r

then there exists a constant K > 0 such that

(9) \C(z)\ > exV(~K\z\)

for z exterior to every circle centered at a point z = ± λn and having radius

e ( λ B ) .

Proof of II. This property of C(z) follows easily from inequalities of

Mandelbroit on the numbers An [7, §3.3, II] . If

inf ( λ n +! — kn ) > h and sup — <, C ,
n n λn

then there exists a constant K± depending on C and on h but otherwise inde-

pendent of the particular sequence { λn }, such that

log Λ* = log Π

hence

Π 1 - — K i λ n
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Let z = re1 = x + iy, and suppose (without loss of generality, s ince C(z) i s

even in z ) that z l ies in the half-plane x > 0, exterior to each circle, centered

at a point λ^ and of radius e

U - A* I > e ( λ A ) U = l, 2,. . ).

Fix z, and, if r >_ λ i , choose n so that λ π < r < λn+ι. Then

(10) π 1 - > π τ2

1

since this inequality holds for corresponding factors. Define a sequence { λ^ \:

kk f θ Γ k < n>

For the sequence { λ^} we have also

(/ = 1 ,2 , . . . ) .

k
inf /λ, , t ~λ, ) > h and sup — < C,

so that

(π) Π π > exp ( -

From (10) and (11) it follows that

π 1 - exp (-Kir).

If λ Λ + ι > 2r, then

1 - 1 -
3

4

whereas if λn + ι < 2r, then
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1 -
e ( 2 r )

2r

Also

z2

1
λ2

n

Hence

(12)

If r < λ i , we define

> exp v-
. [ 3 e ( 2 r ) l

^ ) min ~ , .
L4 2r J

λ ί = Γ> λ l = λA (A = 2, 3,

and find that

Π
A:=2

^ ϊ Π -fc) > exp (-/

so that

-a)' λ ΐ
exp(-Kιr) >

From (8) and (12) it then follows that there exists a constant K such that

( 9 ) \C(z)\ > eKr = e - κ N .

III. // liπin^oo n/λn = D > 0, and θ Φ n π for every positive integer n, then

[1, p. 279]

(13) lim [log I C(reiθ) \ ]/r = πD | sin 01.
r-»oo
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3. Growth theorems.

LEMMA 1. Let f {z) satisfy the following hypotheses:

(14) f(z) is holomorphic in Δ except for simple poles with residues a^ at

points z = λf ( λ = s l , 2 , •••), and is continuous on the boundary Γ o / A :

(15) there exists a constant (X such that f ( z ) = 0{eax) as z—» oo on Γ ;

(16) there exist positive constants Mn, and rectifiable curves γn, of uniformly
bounded length, joining Γ" and Γ , such that x >_λn and \ f(z ) \ < Mn for z on

yn U = l , 2 , . . . ) .

Then

(17) the integral (1/2 πi) Jγ> f(z) e'zs dz (s = σ + it) ( Γ being traversed

from z = oc along Γ and out along Γ" to z = oc again ) converges for σ > (X to a

function F (s) holomorphic in σ > C(

(18) if

n-*oo λ Λ

then there exists a sequence \n>ji\ of positive integers such that for σ suf-

ficiently large, Σ, tχ aj e x p ( —λys) converges to F(s) as k — » o o ; if, further,

inf (λn+i - λ n ) > 0,

then the series Σ ^ αy exp(-λys) converges to F(s) for σ sufficiently large;

(19) if

log Mn
= oo, 111 < A, am/ σ > CX + δ,

Λ_»oo λ n

where h, 8 are arbitrary positive numbers, then there exists a constant K = K(h, S)

such that

F(s)~ Σ ak exp(~;
k=ι

< KMn e x p ( - λ n σ ) ( n = 1, 2, • • . ) •
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Proof. Let Δ n denote that one of the two regions bounded by Γ and by γn

which contains λi9 λ2 , ,λ n, and let Vn denote its boundary. By the residue

theorem,

(20)
2πi

/ (z) emZS dz = 22 ak exp(-λks)<

Denote by Γ ^ and Γ^ those parts of Γ + and Γ" (cf. page 2) respectively which

do not belong to Γn. By ( 1 5 ) , there exists a posit ive constant C t such that

where A; is a bound on g*{x) and on g" (x) The function g + (x) sat is f ies the

Lipschitz condition ( 3 ) , so that if | ί | < A, there exis ts a positive constant

C2 = C2 (h) such that

/

'oo /
-a)x dx.

Finally, if also σ > α + δ? there exists a positive constant C3 = C^ih, δ),

such that

(21)
2πi Jr:

f(z)e~zsdz < C3 exp(α λn) exp (~-λnσ).

It follows that

converges to a function F + (s), holomorphic in σ > Cί Similarly, if | ί | < h

and σ >_ OC + δ, there exists a positive constant C4 = C4{h, δ ) , such that

(22)

The integral

1 f
T7i JT:

(z)e-"dz < C4 exp (α λn) exp (- λn σ).

2πi
-I f(z)e zsdz
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therefore also converges, to a function F~(s) holomorphic in σ > Oί, and we

have F(s) = F + (s) + F" (s); the proof of ( 1 7 ) is complete.

We have also

1
f(z)e-zs dz

< exp (k I ί I ) e x p ( - λ π σ ) ,
2 77

where L is a uniform bound on the lengths of the curves γn, and k is a bound

on g (%) and on g~(x). Thus if | ί | < Λ, there exists a positive constant

Cs - C5(Λ), such that

(23)
2πi

f(z)e-zsdz < C5 Mn

Suppose now that

hm mi
**n

Then from (20), (21), (22), and (23) it follows that there exists a constant C6

and a sequence { n^ \ of positive integers, such that

l i m 2 1 a j e x P (~~λj6 ) - F ( s )

for σ sufficiently large. If in addition

inf (λn+! - λπ) > 0,

it follows from a result of Mandelbrojt [7, §3.10, V] that Σ̂ χ α& exp(-λ£<s)
converges to F(s ) for σ sufficiently large. This completes the proof of (18).

If, on the contrary,

hm
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then there exists a positive constant C7, such that exp ( α λ n ) < C7Mn (n = 1,

2, ••• ). It then follows from (20), (21), (22), and (23) that if 11 | < A, and

σ > α + δ, there exists a positive constant K = K(h, 8) such that

exp(-λ^s)

1

< KMn exp(-λ π σ) (n « 1, 2, . . . )

This completes the proof of (19) and of Lemma 1.

THEOREM 2. Let f(z) satisfy the hypotheses of Lemma 1, and let the

sequence \Mn\ have the uniqueness property (U). Then for every positive

number δ,

(24) Iβfih" o (λnΛ^ exp[(α + δ + £Π λn]) as n—> GO.

// further

inf ( λ n + ι - λ n ) > 0 ,

ίAe series Σα^ exp(-λ^s) converges to F(s) for σ sufficiently large,

which implies that

/ o r x ,. log |α Λ |

(25) hm sup < oo.
λ

Thus it is clear that if

inf (AΛ+i — λfj) > 0 ,

and the residues a^ increase so rapidly that

ton l θ g | α n l

n -+

then the bounds ΛίΛ of the function f (z) on the curves γn must increase so

rapidly that the sequence \Mn\ fails to satisfy the uniqueness condition ( U ) ,

that is, so rapidly that for every positive number η9 the series

[ λ n + ι - λ B ]
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converges.

Proof of Theorem 2. If

,. . - logMπ

lim mi < oo,

it follows from equations (20), (21), (22), and (23) that if

0 < δ ' < δ, σ > α + δ', and \t\ < h ,

then there exist a constant C = C(h9 δ'), a constant b, and a sequence \n^ \

such that

czj exp(-λys) C e x p [ - λ Λ , ( σ - b)]

It follows then from the definition (4) that for each δ ' and hf and each positive

integer n, the sums Σy = 1 aj exp (- λjs ) (m >_ n) represent F (s ) in σ >^ (X + δ ' f

| ί | < h9 with infinite logarithmic precision. The inequality (6), with Oχ = OC +

δ ' + D\ then yields (24). If

lim —r - oc ,

then (19) and Theorem 1 imply the conclusion (24). Mandelbrojt has shown

[7, §3.3, III] that if

inf ( λ π + 1 - λ j > 0,
τ ι > i

then

log Λ*
sup — — < oo,

Λn

which, with (24), implies (25) (cf. [ l , p.4]), and completes the proof of

Theorem 2.

THEOREM 2A. Let p be a positive integer, and let f (z) satisfy the hypo-

theses of Theorem 2, except that the poles at points z = λn need not be simple,
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but none is of order greater than p. Let an,-p denote the coefficient of the lead-

ing term α π > m p / ( z — λn)
p in the Laurent development of f(z) about z~λn (n =

1, 2, )• Let the curve γn referred to in hypothesis (16) of Lemma 1 lie

entirely between x — λn and x = λn + d for some fixed positive constant d

(n = 1, 2, )• Then for every positive number 89

( 2 6 ) I an>mp I = o ( λ £ AJP exp L VCC + 0 + U ) Kn\) as n—»oo.

// further

inf (λn + x - λn) > 0,
n > l

then

log | o Λ , - p l
(27) lim sup < oo.

n -* oo λ n

The added hypothesis on the curves γn is not very stringent. In fact, since

these curves have uniformly bounded length, and since γ lies to the right of

the line x = λn, there exists such a constant d as is required, if only each of

the curves γn has at least one point within a fixed distance independent of n

from the corresponding point z = λn.

THEOREM 2B. Let p be a positive integer, and let f(z) satisfy the hypo-

theses of Theorem 2, except that f(z) is holomorphic in Δ, with zeros at

points z = λn of order at least p. Let aUfp denote the coefficient of the leading

term aUfp(z - λn)
p in the Taylor series development of f about z = λn (n = 1,

2, ). Let the boundary of Δ satisfy the further condition that

. log g + ( r ) . logg'(r)
lim inf >— oo, and lim mi > - oo.

Let there exist a nonincreasing, positive function e(r) of r such that

log e(r)
inf > - o o ,

r > o

and such that the curves γn referred to in hypothesis (16) of Lemma 1 do not

penetrate circles of radius β(λn) about the points z = λn. Further, let there

exist a positive constant d such that \z\ < λn + d for z on γn. Then for
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every positive number δ,

( 2 8 ) | α Λ f P | = o ( λ ; p A*mp e x p [ ( α + D" + δ ) ] λ π ) as n —>oo.

// further

inf ( λ Λ + i — λn) > 0 ,

then

( 2 9 ) lim sup < cc.

Proof of Theorems 2A and 2B. If

where / = p for Theorem 2A, and / = - p for Theorem 2B, then f {z) has simple

poles at points z = λ Λ . The coefficient of the leading term in the Taylor ' s ex-

pansion of C(z) about the point z = λn has absolute value 2/λn Λπ» so that

the res idue of / (z ) at z - λn has absolute value

7-ι

It follows from properties I and II of the function C(z) that / (z) sa t i s f ies

hypothesis ( 1 5 ) of Lemma 1» and that, s ince , for z on y β , | z \ — λn has a bound

independent of n9 there exist posit ive constants A and B such that

I / * (z ) I < Af̂  = A Mn exp ( β λn ) for 2 on y n .

One readily verifies that if the sequence { Mn \ has the uniqueness property ( U ) ,

so a l so does the sequence {Mn }. Indeed,

p * ( σ ) = sup (λnσ - log Mn)
n > 1

= sup 1 λn(σ ~ β ) - log Mn - log A \ = p (σ - β ) - log A .
71 > I

Thus the function / (z) satisfies the hypotheses of Theorem 2. Conclusion
(24) applied to the coefficients α^ yields (26) and (28). Further, the ratio
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(log An)/λn is bounded below; for if L = sup^ > i k/λk, then

l λ * oo j i A v oo / / 2 \ 2

τr= Π
^̂

sin πiLλn \
= — < • . expULλ,,).

πιL\n πLλi

Therefore (25) implies (29). Also, as was seen in the proof of Theorem 2, if

inf (λfl+i - λ Λ ) > 0,

then (log An)/\n is bounded above, so that (25) implies (27). This completes

the proof of Theorems 2A and 2B

4. Functions of exponential type in the right half-plane outside Δ . The fol-

lowing lemma gives conditions on f (z) sufficient in order that the function

F(s) defined in Lemma 1 shall be continuable analytically throughout a hori-

zontal strip.

Let D denote the complement in the half-plane x > 0 of the region Δ, and

D its closure.

LEMMA 2. Let f(z) satisfy the hypotheses of Lemma 1, and also the fol*

lowing:

(30) f {z) is holomorphic in D9 . continuous in D;

( 3 1 ) | / ( e ) | = O ( β α l z l ) a s \z\—too inD;

( 3 2 ) there exists a positive constant βχ such that \f(iy)\ = O ί e x p ί - ^ y ) )

as y —> oo

( 3 3 ) there exists a positive constant β2 such that \f(iy)\ = 0 ( e x p ( j 3 2 y ) )

as y —» - oc

Then the function F(s) defined in Lemma 1 is holomorphic in the strip - β2 <

t < βχ9 and uniformly bounded in every closed interior strip.

Proof. Let K* denote the curve extending from z « oo along the y-axis to

the origin, and along the tf-axis to x = α, and K' the curve traversed from x = a
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along the #-axis to the origin, then along the lower half of the y-axis. Let

and

Fι(s)=FΪ(s) + F{(s) = ~ / / ( z ) e - " ώ .
27Γί Jic»

By hypotheses (32) and (33), there exist constants A* and A " such that

1 ro
— / f(z)e-zsdz
ί π i Ji oo

and

1 r-joo /Ί
— / f(z) e z s dz <A~
πi Jo •/-

exp(j8 y) exp(ίy) dγ.

The functions F*(s) and F f ( s ) are therefore holomorphic in the half-planes

t < βχ and ί > — j3 2, respectively, and their sum /*\(s ) is holomorphic in the

strip - β 2 < ί < βχ\ and, for every positive number e, F t ί s ) is uniformly

bounded in the strip -β2 + € < t < β{ - 6. Let Cr

+ denote that part in D and

above the Λ>axis of the circle of radius r centered at the origin, traversed in a

clockwise direction. Let G? denote the boundary of the region above the x-axis,

bounded by the #-axis, Γ+, Cr

+, and the positive y-axis. Define similarly Cr" and

Gr below the Λ -axis. The contours Gr and Gr" enclose parts of D, in which f {z)

is, by hypothesis, holomorphic, so that

(34)
2πi

( 2 ) e " z s dz s 0.

The integral

1

2 771

defines the function F ( s ) , which was seen in Lemma 1 to be holomorphic in

the half-plane σ > 0L From (34) and the definitions of F+ (s ) and F* (s ) it

follows that
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2 π i [ F Ϊ ( s ) - F + ( s ) } = Γ + f - f f { z ) e - z s d z ,
Jioo JC? Jlr

where ΓΓ is traversed along Γ from z = oo to the intersection of Γ + with C*,

and where the path of integration for the first integral lies on the y-axis. It

has already been seen, that the first and last integrals tend to 0 as r —> oo,

for s in the quarter-plane σ > Oί, t < βχ To show Fχ(s ) = F (s ), it is therefore

sufficient to show that, for s on a continuum in the region σ > (X, t < βι9 the

second integral,

fc; /(«)••"ώ.

tends to 0 as r —>oo. By hypothesis (31), there exists a constant B such that

ί f(z)e'zs dz < Be^l ί"'* + [ ^ r e x p { - r ( σ cos θ-tsinθ)\dθ\

I Jc+ LΛ) '77/4 J

<Brear eΓl'l Ϊ^^ exp (-σr cos θ) dθ + ί"'* exp (rt sin θ)dθ\
~~ I Jo Jττ/4 J

if σ > 0, and

f(z)e'zsdzf \ p ( r \ t \ ) e x p l ^ ) p

c+ 4 I \y/ 2 / \yfl

if α > 09 t < Oo Thus if

t = - ί0 < - α V~2, and σ > \~2 (a + t0 ) ,

then the integral approaches 0 as r — » oo. It follows that F i ( s ) = F ( s ) . Simi-

larly, for s on a suitable horizontal line in the upper half-plane and for σ suf-

ficiently large we have

2 77i Jcf
z ) e"zs dz —> 0 as r —> oo ,

so that F{(s) = F"(s). Hence ^ ( 5 ) ^ / ^ ( 5 ) , and this completes the proof

of Lemma 2

THEOREM 3A Let f(z) satisfy the hypotheses of Theorem 2A and in
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addition (30) - (33), with βt > πpD\ β2 > πpD\ Then aR _k = 0, 1 < k < p

(n - 1, 2, ), so that f (z) is holomorphic in x > 0. If, further,

lim — = D = D* > 0,

then / ( z ) s 0.

THEOREM 3B. Let f(z) satisfy the hypotheses of Theorem 2B and in

addition (30) - (33), except that βt > - πpD\ β2 > - πpD\ Suppose further

that

lim — = D = D* > 0.

Then f ( z ) = 0 .

Proof of Theorems 3Λ α̂ G? 3B. As in the proof of Theorems 2A and 2B, set

f * ( z ) = f ( z ) [ C ( z ) V m l ,

where j = p for Theorem 3A and / = — p for Theorem 3B. It has been shown in

the proofs of Theorems 2, 2A, and 2B, that for each pair of positive numbers

δ and h, the associated function F (s) i s represented in σ >_ CC + δ, \t\ < A

by the sums

α^ e x p ί - λ ^ s )

with a logarithmic precision satisfying (5) . Moreover, by properties I and III

of the function C(z), since βt > πjD* and β2 > πjϋ', the function f (z)

satisfies the hypotheses of Lemma 2, with β* > πD* and β* > πD\ The con-

clusion of Lemma 2 then states that F ( s ) can be continued analytically

throughout a strip \t\ < πR, for some R > D*, in which it is uniformly bounded.

It follows, then, from conclusion (6) of Theorem 1 ( - c ^ arbitrarily large) that

α* = 0, hence aR m = 0 (Theorem 3A) or α = 0 (Theorem 3B) (n = 1, 2, ).

Successive applications of this result show that under the hypotheses of Theo-

rem 3B, f {z) = 0; this completes the proof of Theorem 3B. Successive applica-

tions to the function in Theorem 3A show that aR m^ - 0, 1 < k < p, so that

f {z) is holomorphic in x > 0. If then in addition
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lim — = D > 0 ,

Theorem 3B applies, and f (z) = 0. This completes the proof of Theorem 3A.

If f(z) is holomorphic in x > 0, and / (z) = 0 ( e α l 2 ' ) as \z\ —> oo for

some a > 0 and for x > 0, then f(z) sat i s f ies the hypotheses of Theorem 2

with constants Mn = K e x p ( α λ Λ ) for some constant K; this sequence \Mn\

clearly has property ( U ) . If / is such a function, and

p = 1, λn = 7i, and α = - β t = - β 2 ,

then Theorem 3B yields as a specia l case a theorem of Carlson (cf [ 8 , p . 1 8 6 ] ) .

Theorem 3B contains also a more general result noted by Boas [ 2 , p. 844] as a

consequence of Carleman's theorem. Both assume that f(z) has zeros at points

z ~ λn, and that f (z) is of exponential type in the entire half-plane x > 0. The

hypotheses on the sequence { λn \ of the last-mentioned result are essent ia l ly

the same as in Theorem 3B.

We observe that Theorems 3A and 3B may be interpreted as relating the

growth of / on the y-axis to the maximum order of poles, or minimum order of

zeros, of / a t points λn sufficient to imply f= 0. In this connection it is interest-

ing to note that Theorem 3B contains also a result of Boas in which f (z) is

assumed to have zeros of order 2 at points z = λn = 2n This latter result Boas

generalized in a different direction [ 3 ] . Fuchs [ 4 ] , retaining the hypotheses

that f(z) is of exponential type throughout the half-plane x > 0 and has zeros

at points z = λn, used Carleman's theorem and properties of the function

exp(2z/λk)

kλ λ^ + Z

to give conditions on the sequence { λn \ which are necessary and sufficient in

order that the only function satisfying these hypotheses shall vanish identically.

Professor S. Mandelbrojt has kindly called to the author's attention recent work

of Kahane [ 5 ] who has further generalized Carlson's theorem.

At the suggestion of the referee, the special case of Theorem 3A corres-

ponding to Carlson's theorem is stated as a corollary of Theorem 3A.

C O R O L L A R Y 3 A . If f(z) is holomorphic in x > 0 , except for poles of

maximum order p at points z-n i n - 1 , 2 , ) on the x axis9 if f (z) - 0 ( e a ' z ' )
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i n x > 0 for some real n u m b e r Ci9 a n d f ( i y ) = 0 ( e " ^ ' ^ ' ) a s \ y \ — > oc for

some positive n u m b e r β > π p 9 t h e n f ( z ) = 0 .
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