ON THE GROWTH OF FUNCTIONS HAVING POLES OR ZEROQS
ON THE POSITIVE REAL AXIS

H. D. BRUNK

1. Introduction. Let I" denote the boundary of a region A containing a right
half of the real axis, and f (z) a function holomorphic in A except possibly for
simple poles on the positive real axis. Through the residue theorem, the integral

1 -ZS
m/Ff(Z)e dz

makes correspond to f (z) a Dirichlet series whose coefficients are the residues
of f(z) at its poles, It is the purpose of this paper to exhibit some immediate
applications, using this familiar device, of the theory of asymptotic Dirichlet
series to a study of the growth of functions with poles of bounded order, or
zeros of at least a certain order, on the positive real axis. Let the poles, or
zeros, occur at points z = \,, where 0 < A\, ? . Theorems 2A and 2B, in $3,
relate the growth of leading coefficients in the Laurent developments about the
points z = A, to the growth of f (z) in A. Theorems 3A and 3B, in $4, apply to
functions of exponential type in the right half-plane outside A, satisfying much
weaker growth conditions in A. Theorem 3A may be thought of as stating that
such a function, with a specified rapidity of decrease on the imaginary axis, is
holomorphic if it does not have poles of too great order; while Theorems 3A and
3B together may be regarded as saying that if such a function has ‘‘zeros’’ of
minimum order too great for its growth on the imaginary axis, poles counting as
negative zeros, then it vanishes identically. (The emphasis on this aspect of
Theorem 3A and this interpretation of the uniqueness conclusions of Theorems

3A and 3B were suggested by the referee.)

2. Definitions, the fundamental inequality, and properties of the function
C(z). Let {A,} (n=1,2,-..) be a sequence of positive numbers, strictly
increasing without bound (0 < A, % ®), such that

(1) lim sup %:D'<oo.
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Let

AZ
(2) A= T [ —2
k#n

Al -2
Let A denote a region in the complex z-plane (z = x + iy ) bounded by
y=g+(x), y=—g(x), and x=a (0 <a < A,),

where g*(x) and g"(x) are defined for x > a, positive for x > a, continuous,
bounded, and satisfy Lipschitz conditions: there exists a constant K such that

(3) lgf(x + Ax)-g*(x)| < K|Ax]|,
lg"(x+Ax)~g (x)]| < K|Ax],

for x > a, x + Ax > a. Denote by I" the complete boundary of A, by I"'* the part
of T in the upper half-plane, and by I'" the part of I" in the lower half-plane.

Let {M,} (n=1,2, ... ) be a sequence of positive constants, and set

p(c) =sup (A0 — logMy,).
n>1

Following the notation introduced by Mandelbrojt [6 ], we shall say that the se-
quence { M, } has the uniqueness property (U) if, for some positive number 7,

(V) f“’ p(0)e % do = a.

(The absence of the lower limit indicates that the relation is to hold provided

the lower limit is sufficiently large.) If, in particular,

log M,

lim inf <,

n-— oo n
then p(0) = w for o sufficiently large, so that (U) holds. If

log M,

lim -

= (x)’
n—oo )‘n

let the sequence { M} (n=1, 2, -+ ) be defined so that log M is the greatest
monotone, nondecreasing, convex function of n which is not greater than log M,.
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Mandelbrojt has shown [6; cf. also 7, §1.8, III-V] that condition (U) is equi-
valent to

Me N/(Aps+1 =An )
(U)* 2 ( ") [Antr=An] = o

for some positive 7.

If n is a positive integer, the sums 2 j=, a, exp(=Ags) (m > n) are said
to represent a function F(s) with logarithmic precision p,(0) in a region con-
taining points with arbitrarily large real part if for s in that region and for x

sufficiently large,

m

(4) inf sup | F(s)- D a exp(-X;s)} <exp(-p,(x)).

m>n o> x k=1

Mandelbrojt has proved [7, $3.7] a theorem relating the growth of the function
F(s) to the growth of the coefficients a,. This theorem contains as a very
special case the following theorem, sufficient for the needs of the present paper.

THEOREM 1. Let the sequence {A,;} satisfy (1). Let o, and o, be ‘real
numbers, and R a positive number greater than D', such that F(s) (s = o + it)
is holomorphic in the half-plane o > o0y, and continuable analytically throughout

the strip
S:|t| <aR, 0 >0, -R.

For each positive h, let there exist a constant Ap such that the sums Zzlq
ap exp(=Ags) (m > n) represent F(s) in o > oo, |t| < h with logarithmic
precision pn(o) ~ A} satisfying

(5) /w pn(a)e'noda=co

for some positive 7.

Then there exists a constant B, depending on R, such that
(6) lan| < BAp Ap M(ay, R) exp (A, 01),

where M(o, R) denotes the maximum of | F (s)| in the circle |s —o,| <R.
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Let C(z) denote the entire function [1, p.267] H‘;f:l (1~z2/Ai). The
following well-known properties of C(z) will be useful in extending to functions
with poles of bounded order and to holomorphic functions the results obtained
for functions with simple poles by the device described in the introductory

paragraph.

I. For every positive number €, and for z sufficiently large [1, p.267],
(7) |C(z)] < exp[(D" +¢€)|z]|].

1. If

inf (Ap+y—=2Ag) > 0,
n>1

and € (r) is a nonincreasing, positive function of r such that

log € (r)
(8) ke
r>o r

then there exists a constant K > 0 such that
(9) |C(z)] > exp(=K]|z]|)

for z exterior to every circle centered at a point z = A, and having radius

€ (Ag).

Proof of II. This property of C(z) follows easily from inequalities of
Mandelbroit on the numbers A, [7, $38.3, II1. If

n
inf (Ap+;=Ap) > h and sup — < C,
n no Ap

then there exists a constant K, depending on C and on % but otherwise inde-

pendent of the particular sequence { A, }, such that

)\2
. k
log Ay = log TT |———| < Kidns
k#n )\k—-)\n
hence
A,
log [T |1-—|>= KA,

k#n 22

k
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Let z=re'f=x+ iy, and suppose (without loss of generality, since C(z) is

even in z) that z lies in the half-plane x > 0, exterior to each circle, centered

at a point A and of radius € (A;):

z = Akl > e(Ag)

Fix z, and, if r > Ay, choose n so that A\, <1 < Ap+;.

22 r2
(10) H 1-— | > H 1 ——
k#n A7 k#n A

since this inequality holds for corresponding factors.

(k=1,2,+++).

Then

Define a sequence {)\Z}:

Np= Ay for k<m A= A=A (=120
For the sequence {)\Z} we have also
k
. * *
HI:f ()‘kﬂ_)‘k) > h and szp — <C,
M
so that
A:z ;2
(11) IT |1- = JI 1—— | > exp(=Kyr).
k#n )\;2 k#n, n+1 )\i
From (10) and (11) it follows that
oo z2 z2 2
€)= [T|1-—|>|1-—]||1~ exp (=K ,r).
_ 2 2 2
k=1 )\k )\n )\n+1
If Ap+1 > 27, then
z2 r? 3
1- > 1- > Z,
2 2
An+1 An+1

whereas if A,+; < 2r, then
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z2 l)‘rzzﬂ"zzl € (Ap+1) €(2r)
1- . = > > .
A+ )\;‘:ﬂ Anty 2r
Also
22 |AZ - 22| € (M)
1-.,\_2 - 22 z )‘n
n n
Hence
e(Ag) 3 €e(2r)
(12) 1C(2)] > 2 exp(=K,r) min[-—, il ]
- n 4 2r
If r < A¢, we define
A=, M=) (k=2,3,-+-)

and find that
0o * | 2
1
l 1 —( . )
k=2 )\k

(=]

[c()=T]

k=1

> exp (-K,r),

so that

\22—)\?‘ € (M)
> —-—r—CXp(-Kﬂ')Z_
z2 1

exp (-K,r).

- ()

From (8) and (12) it then follows that there exists a constant K such that

(9) |C(2)| > e kT = eKlzl,

II. If limy, L0 n/Ay=D > 0, and 6 £ nn for every positive integer n, then
[1, p.279]

(13) lim [log|C(reif)|1/r = D |sin 6].

r—oo
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3. Growth theorems.
LEMMA 1. Let f (z) satisfy the following hypotheses:

(14) f(z) is holomorphic in A except for simple poles with residues a; at
points z =X, (k=1,2,-.), and is continuous on the boundary I" of A:

(15) there exists a constant & such that f(z)=0(e**) as z — o on T}

(16) there exist positive constants My, and rectifiable curves y,, of uniformly
bounded length, joining I and I'*, such that x > A, and |f(2)| < My for z on

Y, (n=1,2,.00).
Then

(17) the integral (1/2 ni)f f(z) €2 dz (s=0+it) (I" being traversed
from z = o along I'* and out along I'" to z = ¢ again) converges fora > o toa

function F (s) holomorphic in o > «;
(18) if

log Mn

lim inf
n — oo n

< o,

then there exists a sequence {n;} of positive integers such that for o suf-

ficiently large, Z;L‘l aj exp(-Ajs) converges to F(s) as k — ; if, further,

inff (Ag4y —Ag) > O,
n>1

then the series 27 aj exp (—Ajs) converges to F(s) for o sufficiently large;
(19) if
log M,

im
n—s o0 An

=ow, |t| <k, and 0 > a + 38,

where h, & are arbitrary positive numbers, then there exists a constant K=K(h, &)
such that

n
F(s)-—z akexp(-)\ks) < KM, exp(=Ap0) (n=1,2:00).
k=1
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Proof. Let A, denote that one of the two regions bounded by I' and by y,_
which contains Ay, Ay ,e+¢ ,Ap, and let ', denote its boundary. By the residue

theorem,

1

(20) 2ni

'/l:" f(z)e?%dz = 3~ a exp(=);s).
n k=1

Denote by Iy and I}, those parts of I'* and I'™ (cf. page 2) respectively which
do not belong to I,. By (15), there exists a positive constant C; such that

< Cl ./:o eaxe-(a'x-ltlk)ldzl’

=
—_— (z)e™*S dz
'2ni L’ f n
where k is a bound on g*(x) and on g (x). The function g*(x) satisfies the
Lipschitz condition (3), so that if |¢| < A, there exists a positive constant

C, = C; (k) such that

1

mf + f(z)e'zsdz

< C;,f: e"(Tma)x gy
n

Finally, if also o > o + 0, there exists a positive constant C; = C3(4, &),
such that

1
(21) I— + f(2)e® dz| < Cy exp(a Ap)exp(=Ay0).
2mi Y1,

It follows that

1
rt f(z) e dz

2w

converges to a function F*(s), holomorphic in o > a. Similarly, if || < &
and 0 > & + §, there exists a positive constant C4 = C4(h, &), such that

—1- f(z)e %5 dz

(22)
2ai JI;

< C4 exp(aA,) exp(=A,0).

The integral

1 -ZS
2—_./;‘_ f(z)e?*%dz

ml
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therefore also converges, to a function F~(s) holomorphic in ¢ > &, and we

have F(s)=F*(s)+ F (s); the proof of (17) is complete

We have also

277;-/ f(z)e? dz

<— e-(c’x-ty)|dz|
2n

LM,
< exp (k|t])exp(=A,0),
27

where L is a uniform bound on the lengths of the curves y , and % is a bound
+

on g (x) and on g (x). Thus if |¢| < A, there exists a positive constant
= Cs5(h), such that

(23)

2—1-.- /;/ f(z)e?* dz

mi n

< Cs M, exp(=A,0).

Suppose now that

log M
lim inf 8 n

n-—oo n

Then from (20), (21), (22), and (23) it follows that there exists a constant Cg
and a sequence {n,; } of positive integers, such that

nk
lim 2 aj exp (=Ajs) = F(s)
k— o0 =

j=t

for o sufficiently large. If in addition

inf (Ap+g — Ag) > O,
n> 1

it follows from a result of Mandelbrojt [7, §3.10, V] that &7 aj exp (=Ags)
converges to F' (s ) for o sufficiently large. This completes the proof of (18)

If, on the contrary,

log Mp
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then there exists a positive constant C;, such that exp(a A,) < C; M, (n=1,
2, e+ ). It then follows from (20), (21), (22), and (23) that if |¢| < &, and
0 > 0 + 8, there exists a positive constant K = K (4, 8) such that

n
F(s)-3 a, exp(-A;s)| < K My exp(=Ag0) (n=1,2¢-4).
1

This completes the proof of (19) and of Lemma 1.

THEOREM 2. Let f(z) satisfy the hypotheses of Lemma 1, and let the
sequence {M,} have the uniqueness property (U). Then for every positive
number 8,

(24) lan|= 0o (AnAp expl(a + 8+ D) A1) as n—

If further

inf  (Aq+1=2X,) >0,
n>1

then the series 2-aj exp (=X, s) converges to F(s) for o sufficiently large,
which implies that

1
(25) lim sup og | an|

n-— o0 n

Thus it is clear that if

inf  (A\pey = Ap) > 0,
n>1

and the residues a; increase so rapidly that

log | an |

lim = o,

n— o0 An
then the bounds M, of the function f(z) on the curves y, must increase so

rapidly that the sequence {M,} fails to satisfy the uniqueness condition (U),
that is, so rapidly that for every positive number 7, the series

1/ (Ap+y = An)

o [ M
Z( ) [)\nﬂ - An]
MC

n+1
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converges.
Proof of Theorem 2. If
log Mn

lim inf
n-—oo n

it follows from equations (20), (21), (22), and (23) that if

0<86°<8, o>+ 8% and |t| <h,

then there exist a constant C = C (%, ), a constant b, and a sequence {n
such that

ng
F(s) - Z aj exp(=Ajs) | < C exp[-—)tnk(a«—b)].
it

Tt follows then from the definition (4) that for each 6 and 4, and each positive
integer n, the sums Z;’;l aj exp(=Ajs) (m > n) represent F(s) in 0> o + 3%,
|¢] <k, with infinite logarithmic precision. The inequality (6), with o, = o +
8° + D°, then yields (24). If

log Mp

lim
n — 0o )\n

then (19) and Theorem 1 imply the conclusion (24). Mandelbrojt has shown
(7, §3.3, II] that if

inf (An-f]“hn) > 0,
n>1

then

log A

n

sup < @,

which, with (24), implies (25) (cf. [1, p.4]), and completes the proof of
Theorem 2.

THEOREM 2A. Let p be a positive integer, and let f (z) satisfy the hypo-
theses of Theorem 2, except that the poles at points z = A, need not be simple,
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but none is of order greater than p. Let ay .p denote the coefficient of the lead-
ing term an,.p/(z — AP in the Laurent development of f(z) about z=A, (n=
1, 2, +++ ). Let the curve y, referred to in hypothesis (16) of Lemma 1 lie
entirely between x = A, and x = A, + d for some fixed positive constant d

(n=1,2,+..). Then for every positive number §,

(26) \an..p]=o()\ﬁ1\;p expl(x+8+DIA))  as n— .
If further
inf  (Ag+;=An) > 0,

n>1

then
log |an,-p|

(27) limsup ——b < co.

n — oo A'n

The added hypothesis on the curves y, is not very stringent. In fact, since
these curves have uniformly bounded length, and since y_ lies to the right of
the line x = A, there exists such a constant d as is required, if only each of
the curves y, has at least one point within a fixed distance independent of n
from the corresponding point z = A,.

THEOREM 2B. Let p be a positive integer, and let f (z) satisfy the hypo-
theses of Theorem 2, except that f(z) is holomorphic in A, with zeros at
points z = Ay of order at least p. Let ap,p denote the coefficient of the leading
term ap p(z —~ Ay )P in the Taylor series development of f about z =X, (n=1,
2, «++ ). Let the boundary of A satisfy the further condition that

log g*(r) log g7 ()
lim inf oeg T >— o, and lim inf 288 >— .
r— 00 r r— o0 T

Let there exist a nonincreasing, positive function €(r) of r such that

log e(r)
inf ————— >-0o,

r>o r

and such that the curves y, referred to in hypothesis (16) of Lemma 1 do not
penetrate circles of radius €(X,;) about the points z = A,. Further, let there
exist a positive constant d such that |z| < Ap + d for z on y,. Then for
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every positive number §,

(28) lan,pl=0(XP AYP expl(a+ D" +8)1X,;) as n —w.
If further

inf ()\n+1—)tn) >0,

n>1
then

log |an,p|

(29) lim sup — <.

n-— oo A'ﬂ

Proof of Theorems 2A and 2B. If
f*(z) = f(2)[C(2)VH,

where j = p for Theorem 2A, and j = — p for Theorem 2B, then f*(z) has simple
poles at points z = A;,. The coefficient of the leading term in the Taylor’s ex-
pansion of C(z) about the point z = A, has absolute value 2/, Ans so that
the residue of f*(z) at z = A, has absolute value

e 1,1(—A—2A—)'

It follows from properties I and II of the function C(z) that f*(z) satisfies
hypothesis (15) of Lemma 1, and that, since, for z on y,, | z| — A, has a bound
independent of n, there exist positive constants 4 and B such that

|f*(2)] < Mg = A My exp(BA,) for z ony, .

One readily verifies that if the sequence { M, } has the uniqueness property (U),
so also does the sequence { ¥, }. Indeed,

p*(0)= sup (A,o—logMy)
n>1

= sup {A(o-B)-logM,-logAl=plo-B)-logA4.
n> 1

Thus the function f(z) satisfies the hypotheses of Theorem 2. Conclusion
(24) applied to the coefficients a, yields (26) and (28). Further, the ratio
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(log A;,)/A,, is bounded below; for if L = sup, - , k/Ay s then

1 % 0 A2 d L2)2
—-T-2|<O ()< 1T 10
An kit A k=1 A k=1 k2
sinwiL A, 1
= < exp(mLA,).

Therefore (25) implies (29). Also, as was seen in the proof of Theorem 2, if

inf  (Ap+y = Ap) > O,
n>1

then (log Aj,)/A, is bounded above, so that (25) implies (27). This completes
the proof of Theorems 2A and 2B.

4. Functions of exponential type in the right half-plane outside A. The fol-
lowing lemma gives conditions on f(z) sufficient in order that the function
F(s) defined in Lemma 1 shall be continuable analytically throughout a hori-
zontal strip.

Let D denote the complement in the half-plane x > O of the region A, and
D its closure.

LEMMA 2. Let f(z) satisfy the hypotheses of Lemma 1, and also the fol-
lowing:

(30) f(z) is holomorphic in D, . continuous in D

(31) [f(z)] =0(ea|z|) as |z|—w inD;

(32) there exists a positive constant B, such that |f(Giy)| =0(exp(-B,y))
as y — @ ;

(33) there exists a positive constant 8, such that |f(iy)| =0 (exp(B,y))
as y — — co.

Then the function F(s) defined in Lemma 1 is holomorphic in the strip ~ 3, <

t < B,, and uniformly bounded in every closed interior strip.

Proof. Let K* denote the curve extending from z = o along the y-axis to
the origin, and along the x-axis to x = a, and K~ the curve traversed from x = a
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along the x-axis to the origin, then along the lower half of the y-axis. Let

1 -Zs hd 1 -zs
Fl+(s)=§-;; ‘/K‘Jrf(z)e dZ,Fl(S)=§-;LT /I;_f(z)e dz,

and
+ - 1 -ioo
Fi(s)=F (s)+ F{(s) = — f f(z) e dz.
2mi ioo
By hypotheses (32) and (33), there exist constants A* and 4~ such that

1 (4] oo
507 /i.m f(z)e?% dz §A+./; exp(-B,y) exp(ty) dy,

and

__1__ -/O.-imf(z) e %S dz

2ni

< A'/:O exp(B,y) exp(ty) dy.

The functions F,'(s) and F[ (s) are therefore holomorphic in the half-planes
t < B, and t > — B,, respectively, and their sum F;(s) is holomorphic in the
strip —3, < ¢t < B,; and, for every positive number €, F,(s) is uniformly
bounded in the strip 8, + € <t < B, — €. Let C; denote that part in D and
above the x-axis of the circle of radius r centered at the origin, traversed in a
clockwise direction. Let G, denote the boundary of the region above the x-axis,
bounded by the x-axis, I'*, C;, and the positive y-axis. Define similarly C,” and
Gy below the x-axis. The contours G; and G; enclose parts of D, in which f (z)

is, by hypothesis, holomorphic, so that

(34) ?2-1— f(z)e? dzz-z—}—' _f(z)e?*$dz = 0.

wi JGF wi JG;

The integral

1
r /I‘_‘+f(z)e'zsdz
ml

defines the function F*(s), which was seen in Lemma 1 to be holomorphic in
the half-plane o > «. From (34) and the definitions of F*(s) and F[(s) it
follows that
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217i[F1+(S)—F+(S)]=‘/;ir +./(.;+__/'[‘+ f(z)e-zs dz,

where I}* is traversed along I'* from z = @ to the intersection of I'* with C;,
and where the path of integration for the first integral lies on the y-axis. It
has already been seen that the first and last integrals tend to 0 as r — w0,
for s in the quarter-plane o > o, t < B, To show Fi(s)=F(s), it is therefore
sufficient to show that, for s on a continuum in the region 0 > «, ¢ < B, the

second integral,

L. 1@ e,

tends to 0 as r — . By hypothesis (31), there exists a constant B such that

< Be“’[/ﬂM + /‘w/z rexpi{-r(o cos -t sin 9)}(10]
0 /4

|/;+ f(z)e?%dz

< Br e‘"[ e fﬂM exp(—or cos 0) df +/ exp (7t sin 6)0.'9]
0 m

/4

if o > 0, and

’/;+f(z)e'zsdz

S%Br e’ [exp(rttl)exp(;-r;)+ e"p(\/r—;') ]

ifo > 0,t < 0. Thus if
t=—ty <— 0y 2, and 0 > V2 (& +¢5),
then the integral approaches 0 as r —» o. It follows that Fy (s)= F*(s). Simi-

larly, for s on a suitable horizontal line in the upper half-plane and for o suf-

ficiently large we have

1
i / f(z)e?**dz—0 as r —w,
271 Jer

so that F (s)= F (s). Hence F(s)= F;(s), and this completes the proof

of Lemma 2.

THEOREM 3A. Let f(z) satisfy the hypotheses of Theorem 2A and in
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addition (30) - (33), with 3, > npD", B, > npD’. Thena, ,=0,1<k<p
(n=1,2,+++), so that f(z) is holomorphic in x > 0. If, further,

n
lim —=D=D >0,

n—oo A.n

then f (z)= 0.

THEOREM 3B. Let f(z) satisfy the hypotheses of Theorem 2B and in
addition (30) ~ (33), except that B, >~ mpD’, B, >~ npD". Suppose further
that

D =D >0.

lim —
n-—oo Aﬂ
Then f(z) = 0.

Proof of Theorems 3A and 3B. As in the proof of Theorems 2A and 2B, set

f*(z) = f(z)[C(2)V,

where j=p for Theorem 3A and j=-p for Theorem 3B. It has been shown in
the proofs of Theorems 2, 2A, and 2B, that for each pair of positive numbers
5 and h, the associated function F*(s) is represented in o0 > o + 8, |¢t]| < h
by the sums

m
> a;: exp (=A,s) (m > n)
k=1

with a logarithmic precision satisfying (5). Moreover, by properties I and III
of the function C(z), since B, > njD" and B, > @jD", the function f (z)
satisfies the hypotheses of Lemma 2, with 81 > #D" and 8} > nD". The con-
clusion of Lemma 2 then states that F*(s) can be continued analytically
throughout a strip |¢| < #R, for some R > D°, in which it is uniformly bounded.
It follows, then, from conclusion (6) of Theorem 1 (- o, arbitrarily large) that
a, =0, hence O p= 0 (Theorem 3A) or Oy o= 0 (Theorem 3B) (n=1, 2, ¢+ ).
Successive applications of this result show that under the hypotheses of Theo-
rem 3B, f(z) = 0; this completes the proof of Theorem 3B. Successive applica-
tions to the function in Theorem 3A show that @y k= 0, 1 <k <p, so that
f (z) is holomorphic in x > 0. If then in addition
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n
lim — =D >0,

n—oo n

Theorem 3B applies, and f (z) = 0. This completes the proof of Theorem 3A.

If f(z) is holomorphic in x > 0, and f(z)=0(ealzl) as |z| — o for
some & > 0 and for x > O, then f(z) satisfies the hypotheses of Theorem 2
with constants M, = K exp(c A,) for some constant K; this sequence {},}
clearly has property (U). If f is such a function, and

p=1, A\p,=n, and o:=_Bl =”Bz’

then Theorem 3B yields as a special case a theorem of Carlson (cf.[8, p.1861).
Theorem 3B contains also a more general result noted by Boas [ 2, p.844] as a
consequence of Carleman’s theorem. Both assume that f (z) has zeros at points
z = Ay, and that f (z) is of exponential type in the entire half-plane x > 0. The
hypotheses on the sequence { A, } of the last-mentioned result are essentially

the same as in Theorem 3B.

We observe that Theorems 3A and 3B may be interpreted as relating the
growth of f on the y-axis to the maximum order of poles, or minimum order of
zeros, of f at points A, sufficient to imply f = 0. In this connection it is interest-
ing to note that Theorem 3B contains also a result of Boas in which f(z) is
assumed to have zeros of order 2 at points z = A, = 2n. This latter result Boas
generalized in a different direction [3]. Fuchs [4], retaining the hypotheses
that f(z) is of exponential type throughout the half-plane x > 0 and has zeros

at points z = A,,, used Carleman’s theorem and properties of the function

exp (2z/Ay)

H(z) = (A, —2z)
‘ };Il kTF A+ 2

to give conditions on the sequence {A,} which are necessary and sufficient in
order that the only function satisfying these hypotheses shall vanish identically.
Professor S. Mandelbrojt has kindly called to the author’s attention recent work

of Kahane [5] who has further generalized Carlson’s theorem.

At the suggestion of the referee, the special case of Theorem 3A corres-

ponding to Carlson’s theorem is stated as a corollary of Theorem 3A.

CoroLLARY 3A. If f(z) is holomorphic in x > 0, except for poles of
maximum order p at points z=n (n=1, 2, «++ ) on the x axis, if f(z) = 0 (e*'?!)
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in x >0 for some real number ¢, and f(iy):O(e"Bly‘) as |y| =« for
some positive number B > mwp, then f(z)=0.
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