
CONCERNING TOTAL DIFFERENTIABILITY OF

FUNCTIONS OF CLASS P

E. M. B E E S L E Y

1. Introduction. Since 1900 some eight or more writers have formulated

conditions under which a function of two real variables shall be said to be of

bounded variation. In two papers Adams and Clarkson [ 1, 4] examined and

compared most of these definitions. In particular, they established the relations

T n M 3 P D A, P n M = P,

where T9 P, and A represent respectively the classes of functions which are of

bounded variation in an extended Tonelli sense [ l ] , in the sense of Pierpont,

and in the sense of Arzela [ 4 ] , and M stands for the class of plane measurable

functions. An explicit definition of the class P will be given presently. For

other definitions see Clarkson and Adams [ 4 ] .

Burkill and Haslam-Jones [2] have shown that each function in A is totally

differentiable almost everywhere. Adams and Clarkson [ l ] have proved that

each function in 7" nΛί is approximately totally differentiable almost everywhere,

although not necessarily totally differentiable anywhere. The question of

whether each function in P is totally differentiable almost everywhere has been

left open; the object of the present paper is to settle this question.

Saks [6] has shown that in a certain subset E C T nM, suitably metrized,

the functions which are nowhere totally differentiable form a residual set. One

might naturally raise the question as to the category of the set PnE, for if

this set were of second category in E, our question would be answered at once;

but it turns out that P n E is of first category in E,

In this paper (see § § 3 , 4, and 5) we show by exhibiting an example con-

structed along lines suggested by A. P. Morse that there exist functions which

are in P and which are nowhere totally differentiable. We then show (see

§ § 6 - 1 0 and §11) that functions which are nowhere totally differentiable

form residual sets (complements of sets of first category) in the classes P n C

and PnE, where C represents the class of functions continuous on the unit
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square. These two results may be compared in the following manner. The first

shows that nowhere totally differentiable functions are relatively numerous in

a large set of functions. The second shows that nowhere totally differentiable

functions are also relatively numerous in a highly restricted subset of the

larger set. Since different metrics are used, the first result does not imply the

second. Finally it can be shown that P r\ E is of first category in E. All category

proofs depend upon the theorem of Baire which states that a complete metric

space is of second category in itself.

2. Notations and preliminary definitions. Let Rx and R2 denote Euclidean

one-space and two-space, respectively. In R2 we shall use rectangular cartesian

coordinates. We shall usually employ the letter p, sometimes with superscripts

or subscripts, to denote a point in R2, and x and y with corresponding super-

scripts or subscripts to denote the coordinates of the point. By p (p, p ' ) we mean

the Euclidean distance ( ( % - % ' ) 2 + ( y - y ' ) 2 ) I / 2 . Ifp is a point and E is a set,

by p(p9 E) we mean the inf of numbers of the form p (p} p ' ) , where p ' G E.

Unless otherwise stated, the letters n9 m, k9 h9 ί9 j$ K9 N9 M9 v, λ will denote

nonnegative integers. By the unit square in R2, we mean

[ ( * , y) I (0 <x < 1) (0 < y < 1 ) ] .

We shall denote this set by /, and throughout the paper shall be concerned

only with points of this set.

2.1. DEFINITION. Let / be divided into λ2 congruent squares. We call

this partition the λ-net. Each^ subdivision is called a λ-cell and is considered

as a closed region. The cells of the λ-net can be ordered; we designate them

by the index v (v - 1, 2, , λ2 ).

2.2. DEFINITION. Let / be a real-valued function on the unit square. Let

ω (/ ) be the oscillation of / on the î th cell of the λ-net. Let

let

λ Λ

If there exists a finite number A such that P(f) < A, then f is said to be of
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bounded variation in the sense of Pierpont, and we write f G P.

This is Hahn's version of Pierpont's definition [5 , p. 539], stated for the

unit square, Clarkson and Adams [4] have shown that the Hahn version is

equivalent to the definition as given by Pierpont.

2.3. DEFINITION. Let E be an open set in R2, f a function on E, and p

a point of E. If there exist functions R on R2 and S on Ri9 and finite numbers

A and B such that

I i? ( * ' - * , y ' - y ) | <S{p(p,p')); for e a c h p ' G R2;

for each p' £ E,

then / is totally differentiate at p [3 , p. 644].

We note that if / is totally differentiable at p, then the numbers A and B

above are the ordinary partial derivatives of / at p. Also the directional deriva-

tive of / must exist in each direction.

3. The function F In this section we shall define the function mentioned

in § 1. We first define a sequence of integers and state some of its properties.

3.1. D E F I N I T I O N .

Q(n)=22n (n = 1, 2, 3 , . . . ) .

3.2. L E M M A . Q(n)2 = Q(n+ 1 ) .

The proof is evident from the definition.

3.3. L E M M A .

N

£ Q(n) < 2Q(N).

This can be proved by induction.
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3.4. LEMMA.

£ Q(n)'1 < (Q{N)-irι.
n=JV

Proof.

n=N

£ £ " =«?(Λf)-ir ι .
τι=o n=i

3.5. DEFINITION. For each positive integer n, let

= [* I i/<?(n) < x < ί/ρ(n)+ l / ρ ( n + l ) ] (» = 0, 1, 2, . . , Q(n)-l)

») < y < ;/<?(n) + i/ρ( r e + i ) ] (/ = o, 1 ,2, . . . , ρ ( n ) - i ) ;

O(n-l)

En = U £/;
i,/ =o

If p € £„ , let

If p G 7 - En, let

For each point p £ I, let
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Let us consider this definition from a geometric viewpoint. One sees at

once that the graph of each function Fn is a surface consisting of Q in) right

square pyramids of altitude 1/Q(n) erected on those cells of the Q (n + 1 )-net

whose lower left corners coincide with the lower left corners of the cells of

the Q (n)-net, while the surface is of height zero at all other points. We also

notice that the slope of each lateral edge is y/~2 Q(n), and that the slope of a

line on a lateral face and perpendicular to a base edge is 2Q(n) The function

F is the sum of a uniformly convergent series of nonnegative continuous func-

tions, and therefore we can deduce the following result.

3.6. THEOREM. F is continuous and nonnegative.

We shall devote the next two sections to showing that F is of bounded varia-

tion in Pierpont's sense and also is nowhere totally differentiable.

4. F is of bounded variation in Pierpont's sense.

4.1. DEFINITION. For each positive integer k and for each point p £ 1 let

k

= Σ Fn(p)>
7 1 = 1

= Σ

C l e a r l y F ( p ) = S^ ( p ) + Rk ( p ) a n d , r e c a l l i n g 2 . 2 . we h a v e t h e f o l l o w i n g

l e m m a s .

4.2. LEMMA. For each positive integer λ and each positive integer k9

Proof. Let I(ι/) denote the ι/th cell of the λ-net. For each v we then have

ω^(F) - sup | F ( p ) - F ( p ' ) | = sup I S^.(p ) - S^ip') + ̂ ( p ) — R^if') \

< sup | S A ( p ) - S A ( p ' ) | + sup | Λ A ( p ) - / ? A ( P ' ) | = ω i ( S A ) + ω J ( / i j ) .

The remainder of the proof is evident.
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4.3. LEMMA. For each λ,

limsup Pχ(Sk) >_Pλ(F).
/c—»oo

Proof. Since each function Fn is nonnegative and since the convergence is

uniform, for each positive e there exists K such that for each k > K and for

each point p,

0 < Rk(p) < 7 .
λ

It follows that for each k > K9 we have P^iR^) < 6, and in view of 4.2 we have

and the lemma follows.

4.4. LEMMA. For some finite number A and for each λ,

oo

Σ Pλ(Fn) <A.
n = l

Proof. Let λ be a fixed positive integer. Let the λ-net be constructed and

its cells ordered. If λ >̂  4, then for some integer N > 0 we must have

Q(N) < λ < ρ(/V + l ) .

If n > N + 1, then l/Q(n) < l/Q(N + 1) < 1/λ and therefore each cell of

the λ-net must contain at least one point at which Fn attains its maximum,

1/Q{n), and at least one point at which Fn attains its minimum, zero. Con-

sequently, we conclude that for each v,

and hence that

4 . 4 . 1 P λ ( F n ) = Σ, fi4(Fn)/λ = λ 2 ( l / ρ ( n ) ) / λ = λ/Q(n)

v=l

Since Q{N) < λ < Q(N + 1), the oscillation of F^ will be zero except on
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at most 4Q ( Λ ) 2 λ-cells. On these cel ls we must have

It follows that

4.4.2 Pλ(FN) <4Q(N)2/(Q(N)λ) = 4Q(N)/λ < 4 .

If 1 < n < N, then 1/λ < l/Q(N) < l/Q(n) and the oscillation of Fn will

be zero except on at most Q(n)2 ([λ/Q(n + 1)] + 2 ) 2 cells. (The symbol

" Vλ/Q (n + 1)] " means "largest integer not exceeding λ/Q(n+l)" ) On

these cells,

*>$(Fn) < λ ~ l Q ( n Y l - 2 Q ( n + l ) = 2 Q ( n ) / λ 9

and hence

4 . 4 . 3 P χ { F n ) < Q ( n ) 2 ( [ λ / Q ( n + l ) ] + 2 ) 2 ( 2 Q { n ) / λ ) / λ .

< 2 Q ( n ) ( Q ( n ) 2 / λ 2 ) \ ( λ / Q { n + l ) ) + 2 \ 2

= l 2 / Q ( n ) \ \ l + ( 2 Q ( n + l ) / λ ) \ 2 < { 2 / Q ( n ) \ ( l

since n + 1 < N, and hence Q{n + 1) < (?(/V) < λ.

If N > 1, we have, in view of 4.4.1, 4.4.2, and 4.4.3,

oo N-l

n = l n=ί

iV-1

< Σ, 18/(?(n) + 4

< 18 Σ < ? ( * ) " 1 + 4 + Q(N•

In view of 3.4, this yields

4.4.4 " Γ /\ ( F Λ ) < 18 ( 0 ( 1 ) - I ) " 1 +4-+
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< 10 + ( l ~ l / ρ ( l ) r ι = 10 + 4/3 < 12.

If /V = 1, we have (recalling 4.4.1 and 4.4.2)

n-2

As before, we use 3.4 to obtain

oo

4.4.5 Σ P λ ( f » ) ^ 4 + < ? ( 2 ) ( < ? ( 2 ) - i r 1 = 4 + 16/15 < 12.

If 1 < λ < 3, then

oo oo λ oo

4.4.6 Σ ^ λ ( f » ) = Σ E ^ ( F « } / A < Σ λ / < ? U )

oo

= λ Σ, Q(*rι < λ/(ρ(D-D = λ/3 < i.
71 = 1

Comparing 4.4.4, 4.4.5, and 4.4.6, we see that for each λ

oo

Σ Pχ(Fn) < 12

and our proof is complete.

4.5 T H E O R E M . F e P.

Proof. In view of 4.3, the proof of 4.2, and 4.4, we have for each λ,

k

Pλ(F) < limsupPλ(SA) < limsup Σ P λ ( F " ) = = Σ Pχ(Fn)<
/c-»oo A;-»oo n = ι n=ι
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5. F is nowhere totally differentiable. We introduce the following notation:

Pn= [p\Fn(P) > 0 ] , Zn = [ p | Fn(p) = 0 ] .

If A is a set, then A is the closure of the set A, and A - B is the set consisting

of those points which are in A and are not in B.

5.1. LEMMA.

oo oo oo oo

/= n u (PB-p n + 1)u u n pnu u n (zn+ι-pn+ι).
k = l n=k /c=l n-k k-\ n-k

Proof. If p E /, then one of the three following cases must occur:

(1) If k is sufficiently large, then for each n > k there exists an open

neighborhood of p such that for each point p ' in that neighborhood, Fn{p') - 0.

(2) If A; is sufficiently large, then for each n > k there exists a sequence

of points converging to p and such that for each point p ' of this sequence,

Fn(p') > 0.

(3) For each k, there exists n > k and a sequence of points converging to

p such that for each point p' of that sequence, Fn(p') > 0 and Fn+ι(p') = 0.

Since each function Fn is continuous, (1) implies

oo oo

P e u n ( z π + ι - p n + ι ) ,

k-\ n=k

and ( 2 ) implies

oo oo

P e U Π P Λ .
A;=l rc=/c

Existence of the sequences mentioned in case (3) and continuity imply

that for some n exceeding each k, p must be either an inner point or a boundary

point of a region where Fn is positive and Fn + ι vanishes. Hence in this case,

oo oo

p e n u ( P n - p n + ι ) .
/c = l n=k

5.2. LEMMA. If p € (Pn " Λz+i) then there exists at least one point pn with
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the following properties:

5.2.1

5.2.2 \Fn.k{p)-Fn.k(Pn)\ <2Q(n-k)/Q(n + 2) (k = 1, 2 , . . , n - 1)

5.2.3 \Fn(p)-Fn(pn)\=2Q{n)/Q(n + 2);

5.2.4 \Fn+k(p)-Fn+k(Pn)\=O U = l , 2, 3, - . . ) .

Proof. Let the coordinates of p be denoted by x and y. Consider the four

points whose coordinates are

U + ρ U + 2 ) " 1 , γ + Q(n + 2Ti), {x-Q{n + 2)'\ y + Q (n + 2 Γ ι ) ,

We require that pn shall be included in (Pn - Pn+ι), and also that the line

segment joining p to pn shall either have no point other than p in common with

any diagonal of that cell of the Q(n)-net to which the points belong, or shall

coincide with one diagonal of that cell and shall have no point other than p in

common with the other diagonal of the cell. When the latter situation obtains,

we say that the segment in question does not cross any diagonal of the cell.

In view of the structure of the set and the fact that

Q{n + 1) > ρ ( 2 ) = 16,

we see that at least one of the four points must satisfy these conditions, and

we select any one of these as pn.

Evidently, 5.2.1 is satisfied. The line segment joining p and pn is parallel

to some diagonal of each cell of each net, and in the sense of the preceding

paragraph "does not cross any diagonal", nor does it cross the boundary of

any cell of the Q(n - k)-net for 0 <_ k < n - 1. If the line segment joining p

to pR "does not cross any diagonal" nor cross the boundary of any cell of the

Q{n - k )-net, then it is the projection of a line on the surface representing

Fn-k'i which lies either entirely on a horizontal plane or entirely on one side

of a pyramid. In the latter event, one can easily calculate | Fn.k{p) - Fn-k^Pn^ l>

recalling the remarks following 3.5. It follows that for 1 < k <_ n — 1 we must

have either

\Fn-k(p)-Fn.k(Pn)\ = 0,
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U - k)\

= 2Q(n-k)/Q(n

Therefore 5,2.2 is verified. Also since p and pn are in Pn-Pn+ii w e have, in

particular,

that is 5.2,3 holds. Furthermore, for the same reason we must have

Since the points p and pn are similarly placed in their respective cells of the

Q(n + k)-net for each k > 2, we have also

= Fn+k(pn) (A = 2, 3 , 4 , . . . ) .

and these last two relations imply 5.2.4. This completes the proof.

5.3. T H E O R E M . //

CO OO

P e n U Pn-Pn+ι,

/c = l n=k

then F is not totally differentiable at p.

Proof. There exists a sequence of integers { nχ \ such that for each λ,

p £ Pn\~ Pn\ + ι ^ e consider the points ! p n X 1 satisfying the conditions of

5.2 and whose existence is guaranteed by 5.2. We have, recalling 3.3 and 5.2,

\F(p)-F(P

Fn(p)-Fn(pnχ)\
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n\-l

n\-l

> 2Q(n\)/Q(n\

n\-ί

(n)/Q(nλ + 2)

2)
n = l

We then have

\F(p)-F(Pnχ)

and hence

l i m s u p I F(p) - F(p. ) \ p(p$pn.)'ί > l i m Q {n\) = oc .
λ—>oo λ—> oo

As λ —> oo, p n λ —> p, and hence in view of 2.3 the proof is complete.

5.4. LEMMA. //

P £ 0 Pn

n=h

then there exists an integer k and for each integer λ there exists a point

satisfying the following conditions:

5.4.1

5.4.2

p(p, p λ ) =
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5.4.3 ^ + λ + m ( p λ ) = 0 , U = 0 , 1 , 2 , . . . ),

5.4.4 \Fm(pλ)-Fm(p)\ <Q(m)/Q(k + λ), (m = 1, 29 39 . . . , k + λ - 2 ).

Proof. Let k be the least integer which permits representation of the co-

ordinates of p in the form {a/Q(k), b/Q(k))9 where a and b are integers. In

view of the structure of the set Γin=h Pn such an integer must exist. We then

let pχ be the point whose coordinates are

{ i a / Q { k ) \ + { l / 2 Q ( k + λ ) \ , { b / Q ( k ) } + \ l / 2 Q ( k + λ ) } ) .

Clearly 5.4.1 is satisfied, and since p is a corner of some cell of the Q (m)-net

for m >_ k, 5.4.2 can be verified by direct computation. Similarly, since p\ is

a corner of some cell of the Q{m)-nel for m > k + λ, 5 4.3 is evident. One

sees from the construction of pχ that the line segment joining p and pχ "does

not cross any diagonal" (see 5.2) of any cell of any Q (m)-net for m < k + λ — 1.

The segment joining p to pχ either underlies a flat portion of the surface repre-

senting Fm or is parallel to the projection of a portion of a lateral edge of a

pyramid. It follows that for such m, either

\Fm(Pλ)- Fm(p)\ =Q(m)/QU + λ),

or

Fm(pχ) = Fm(p) = 0.

Consequently 5.4.4 is verified and the proof is complete.

5.5. THEOREM. //

oo oo

P G u n pn

h-\ n=h

then F is not totally differentiate at p.

Proof. Since

oo oo

P G u n Fn,

h-l n=h

for some h we must have
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n p n .
n=h

Then in view of 5.4 there exist points pχ (λ = 1, 2, 3,

conditions of 5.4 are fulfilled for each λ. We have then

\F(Pλ)-F(p)

/c+λ-2

n-l

) and k such that the

Since p is a corner of the Q(m)-net for m > k9 Fm{p) = 0 for such m, and, in

view of 5.4, we have

F ( P λ ) - F ( P ) | >
/c+λ-2

/c+λ-2

/c+λ-2

It follows that

l i m s u p | F ( p λ ) - F ( p ) | p ( p , p λ ) " 1 > lim sup V ^ ζ ϊ U + λ - 2 ) { ζ>U + λ - 2 ) - 2 ί
λ λ

lim sup (? (7z) = oc.



CONCERNING TOTAL DIFFERENTIABILITY OF FUNCTIONS OF CLASS P 183

Since l i m ^ ^ ^ (p, pχ) = 0, the proof is complete.

5.6. LEMMA. //

P G n ( z Λ + ι - Λ ι + ι )
n=k

then on each half-line having p as its initial point9 there exists a sequence of

points \pχ\ such that for each λ9

5.6.1 pip9 pχ) < \J~2/Q ik + λ) ,

5.6.2 Fk+mW = ° ( m = l> 2 , 3 , . . . ) .

Proof. Let C ( λ ) denote that cell of the Q(k + λ)-net which contains p and

also contains points of the half-line in question other than p. Since p G Z, +\ —

P, +^ for each λ, p must be either an interior point of some cell or a boundary

point of two cells, hence there exists one and only one cell satisfying these

requirements unless the half-line considered is the boundary, in which case

either cell may be taken. We let p\ denote the point other than p in which the

half-line under consideration intersects the boundary of C ( λ ) . If the half-line

is a boundary, we take either of the adjacent corners of C ( λ ) as pχ. Condition

5.6.1 is evident. If m >^ λ, then pχ is a boundary point of some cell of the

Q (k + m )-net and hence for such m

If 1 <_ m <_ λ then p and pχ belong to the same cell of the Qik + m )-net since

C ( λ ) can have inner points in common with at most one cell of each lower

order net. Since p G Z,+m - Pfc+Tn for such m, we conclude that

for if F^.+mipχ) > 0 then we must conclude that p £P^m, which is contrary

to our hypothesis.

5.7. LEMMA. If

p G Π ( Z Λ + ι - P π + ι )
n=k
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then for each λ there exists a point p\ such that

5.7.1 ρ(p,Pλ)<yf2/Q(k + λ

5.7.2 ^ + m ( P λ ) = 0> 0 <m <

5.7.3 Fk+λ(Pχ)=l/Q(k + λ),

5.7.4 Fk+m(pχ) = O,m> λ .

Proof. Let C(λ) denote any cell of the Q(k + λ)-net which contains p.

Let the coordinates of the lower left corner of this cell be denoted by xχ and

yχ. Let pχ be the point whose coordinates are

λ + l ) } , yχ +

Evidently 5.7.1 is satisfied. Since p and pχ are contained in the same cell

of the Q(k + m )-net for m < λ and since

p e n (

5.7.2 is also satisfied. Moreover 5.7.3 follows at once from 3.5; and since pχ

is a boundary point of some cell of the Q{k + m )-net for m > λ, 5.7.4 also

follows from 3.5.

5.8. LEMMA. //

Pef] (Zn+ί

n=k

then R^ is not totally differentiable at p.

Proof. Lemma 5.6 implies that dR^/dx and dR^/dy either must fail to exist

or must be equal to zero. Hence if R^ is totally differentiable at p we must

have

\Rk(p')-Rk(P)\
lim sup — — = 0.

However, 5.7 implies
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\Rk(p')-Rk(p)\
lim sup :> 1/V2 > 0,

and we conclude that R, is not totally differentiable at p.

5.9. T H E O R E M . / /

oo

p e n ( z Λ + 1 - p n + l ) ,

n-k

then F is not totally differentiable at p.

Proof. We recall that F (p) = ̂ ( p ) + Rk(p). K SA is totally differentiable

at p, 5.8 implies that F is not. We therefore need only to consider a point p at

which S, is not totally differentiable. In view of 2.3, we see that there must

exist at least one direction in which the surface representing S^ has no tangent

line. On the other hand, it is clear that this surface has half-tangents in every

direction. Now if F is totally differentiable at p, then its graph must possess a

tangent line in each direction. Also 5.6 implies that if F possesses a half-

tangent, then it must coincide with the half-tangent of S,. Since the half-tangents

of 5^ are distinct in at least one direction, it follows that F can have no tangent

line in this direction and is not totally differentiable there. This completes the

proof.

In view of 5.1, 5.3, 5.5, and 5.9 we have:

5.10. THEOREM. If p <E /, then F is not totally differentiable at p.

Thus F is a function in the class P n C which is nowhere totally differenti-

able.

6. The space P n C. Having already established the existence of at least

one continuous function of class P which is nowhere totally differentiable, we

now show that in certain spaces the subset of all such functions is a residual

set. Our proofs will be based upon the well-known theorem of Baire. We retain

the notation of the preceeding sections (cf. § § 1, 2). Let C represent the space

of all continuous functions defined on /. As is well known we can norm the

space by letting

c = sup I / (p ) I .
P e i
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Under this norm the space C is complete. If / G P n C, we let

(cf. 2 .2) . Clearly | | / | | = 0 if and only if / ( p ) = 0 for each p G /. One can

easi ly show that this is a proper norm for the space P n C. If / and g are two

functions of P n C , we define a distance ρ{f$ g) in the usual manner, letting

7. Completeness of PnC. In this section we show that the space P n C is

a complete space when metrized as is indicated above.

7.1. L E M M A . //

777, ΓZ —* o o

l im P(L)

exists.

Proof. In view of 2.1, we see that

> I sup I / m ( p ) - / m ( p ' ) | - s u p | / π ( p ) - / π ( p ' ) |
() K)

It follows that

We have then
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that is

\P(fJ-P(fn)\<P(fm-fn),

and our lemma clearly follows.

7.2. T H E O R E M . PnC is complete.

Proof. If

then

This implies the existence of a continuous function / such that

lim | | / n - / | | c = 0.
n —»oo

We shall show that / G P n C and that

I™ I I / W I I = 0 .

?ve note that for each positive e and each integer λ there exist integers M and

Λ; having the properties:

7.2.1 M > N;

7.2.2 for each n > N and each v,

7.2.3 P(fM) < lim inf P(fn) + e.
72 —» (X)

Property 7.2.2 implies that for each n > Λ;,

PλW<PλW+ e<

In particular,
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and consequently 7.2.3 implies

Pλ(f) < l iminf P(fn) + 2 e .
71->oo

Since this must hold for each 6 and each λ, we conclude that

P(f) < liminf P(fn).
n —»oo

In view of 7.1, this implies / G P. Also, since

777 —> o o

for each n, we conclude that

P(f-fn)< limjnf / M / m - / n )

and hence that

lim P ( / " - / „ ) < lim ^ ( / m - / n ) = 0

We have then

lim I I / W J I = 0 ,
77->©o

completing the proof.

8. Preliminary lemmas. If a function is totally differentiable at a point,

then its graph is a surface which has a non-vertical tangent plane at that point.

It follows that the surface must have a non-vertical tangent line in each direc-

tion. We let:

8.1 ϋ = PnCn[f\ for each p G /, lim sup ' \ \ f (p ) - / (p 0 \/p (p, p ' ) }= oc].

Clearly, if / G ί/? then / is nowhere totally differentiable. For each positive

integer K9 let Λ^ be defined as follows:



CONCERNING TOTAL DIFFERENTIABILITY OF FUNCTIONS OF CLASS P 1 8 9

8.2. DEFINITION. If / G P n C and if for some p Gl and each p ' such that

p(p, p ' ) < I/A', we have

p )

then f£Aκ.

8.3. LEMMA.

oo

P n C - ί i = U 4 K .

Proof . If / G A κ for s o m e A', t h e n fe(PnC-U).

C o n v e r s e l y , if / € ( P n C - £/) , t h e n for s o m e p o i n t p G / ,

I / ( P ) / ( P ) |
lim sup — < oo,
P'-^P pyp> v )

and hence for some integer Λ'

hm sup < /v - 1
P ' - P p(p> p')

It follows that for some positive δ, p(p9 p') < 3 implies

- < N.
p(pi p")

If K is any integer exceeding both N and 1/δ, we must have f € Aκ, and our

proof is complete.

8.4. LEMMA. For each K, Aκ = Aκ.

Proof. We suppose {/ } to be a sequence of functions and K a fixed integer

with f ^Ajζ for each n andfJ n

Since P n C is complete ( s e e 7.2) there exis ts / s u c h that / G P n C and
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Urn^ \\fn-f\\ = 0 .

We must show that / E A^. Since fn E A& for each n, there exists a sequence of

points p (n = 1, 2, 3, ) with the properties

8.4.1 pn E / for each 72;

and

8.4.2 if p(pn, q) < 1/Λ' with q E /, then

This sequence must have at least one limit point p and a subsequence \ pn \

converging to it. Let p ' be an interior point of I vάth pip, p ' ) < l/K, and for

each v let p ^ be a point having the property that p(pnv* Pnv} - p(p* ?') a n ( ^

so placed that the directed line segment from pny to p'ny shall have the same

direction as that from p to p'. Then clearly the sequence \p'nv\ converges to

p ' , and, since p ' is an interior point of /, there exists N such that v > N im-

plies p'nv E /. We note also that for each ι/, p (p, pny ) = p (p', P ^ v ) Since

our sequence of functions converges uniformly, for each positive 6 there exists

an integer Nx such that for each v > Nγ and each q E /,

8.4.3

Moreover since / is uniformly continuous, there exists N2 such that for v > max

(N,N2),

8.4.4 \ f ( P ) - f ( P n u ) \ < e, \ f ( p ' ) - f ( p ' n v ) \ < e .

For 1/ > max (/V, /Vla iV2 ), we have p'nv S /, and relations 8.4.2, 8.4.3, and

8.4.4 hold. It follows that

+ \fn,(pnv)-fnv(pnv)\ + \fnjp'nv)-f(pnv)\ + \f (pήv) - f (p')\

< e + e + K p(pnv, p'nv)+ e + e= Kp(p, P ' )

Our lemma clearly follows.
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9. The s e t s Λκ are nowhere dense. The whole of this section is devoted

to a method for constructing functions which we shall need in our proof that

the s e t s A% are nowhere dense.

Let n be a fixed positive integer. Construct the Q(n)-net ( cf. 3.1, 2.1) and

order its cel ls in any manner whatever. In particular, this ordering may be

entirely independent of position. We let l(k) (k = 1, 2, ••• , Q(n)2) represent

the kth cell . In each of these cells we construct a subnet as follows: On the

kth cell we superimpose those cells of the (x){n + k)-net which have inner

points in common with that cell . Since Q(n + k) is divisible by <x) (n), there

are exactly 0{n + k)2/Q (n)2 cel ls in the kth subnet. Evidently we may order

the cells of each subnet. We do so, again in any manner, and agree to let

I{kf m) represent the mth cell of the kth subnet, where

m = 1, 2, 3, . . . , Q(n,+ k)2/Q(n)2; k = 1, 2, 3 , . . , Q (n ) 2 .

9 .1 . CONSTRUCTION. Let N be a sequence of positive integers and let

e be a sequence of positive numbers. Let R(k> m9 j) ( = 1, 2, 3, , N (n))

be a set of N (n) open regions, disjoint or not, and each having points in com-

mon with I(k, m). Now if e(n) is a sufficiently small positive number, then for

each triple (k, m, j) such that

( 1 <k <Q(n), 1 < m < Q(n + k ) 2 / Q { n ) 2 , 1 < / < Λ' U ) )

we can d e t e r m i n e a p o i n t p(k, ms j) a n d an o p e n c i r c u l a r r e g i o n C{k, m} j)

with c e n t e r a t p (k, m) j) and d i a m e t e r e (n) and s u c h t h a t

9 . L 1 C ( k , m , j ) C R ( k , m , j ) n I ( k 9 m ) ;

9.1.2 if; ^ j2 then C{k, m9 ]\) and C(k9 m, ; 2 ) are disjoint;

9.1.3. no straight line has points in common with more than two of the regions

C ( k, A/?, ) .

Since the number of regions 1\ (k9 m9 j) is finite, it is clear that the indicated

construction can be carried out. \\e shall call any system of circular regions

constructed in the manner just described a system of type Bn.

9.2. DEFINITION. Let there be given a system of type Bn; let p G /. If

for some triple (k9 m9 j) we have p (p, p (k9 m9 j)) < e (n )/2 then
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. , , Q(n) ί 2p(p,p{k,m,j))
bnip) = QU7Γ) j 1 — )

otherwise let

bn(p) = 0.

The function bn just defined is called a function of type Bn.

Evidently the graph of this function is a surface consisting of a finite number

of right circular cones, each cone being erected over one of the circular regions

of the system, and of a plane of height zero elsewhere. The height of each cone

on /(A) is Q{n)/Q(n + k ), (1 < k < Q {n ) 2 ). We note that with each system of

type Bn there is associated one and only one function of type Bn We also note

that the only properties of the sequence Q which have been employed in this

section are that Q (n) is an integer and that Q(n + k)2/Q in)2 is an integer for

1 < k < Q(n), andzz = 1, 2, 3, . . . .

9.3. THEOREM. // / is a function of type Bnί then f G P nC.

Proof. T o show t h a t / G P we must prove that the s e q u e n c e P\(f) ( λ = 1,

2, 3, ) is bounded. We n o t i c e t h a t in view of 9.1.1 we have

e ( n ) < l/Q(n + Q(n)2).

We consider four cases.

Case I. 1 < λ < Q{n).

We have here l/Q(n) <^ 1/λ, and it follows that each cell of the Q{n)-net can

have points in common with at most four cells of the λ-net. Since the oscillation

of / on a cell / (k ) cannot exceed Q (n )/Q (n + k), we have

TQUTΪ)

Q(n)2

 k Q(n)2

~k

Q(n)
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Case II. Q (n ) < Q {n + k0 ) < λ < Q (n + k0 + 1) < Q U + Q (n ) 2 ) < l/e {n ) .

Since equality cannot hold simultaneously between the second and third and the

third and fourth members, we conclude that k0 < Q(n)2. Now if k > k0, we

have 1/Q (n + k) <^ 1/λ. The cell I(k) has points in common with at most

([λ/Q(n)] + 2 ) 2 cel ls of the λ-net, and on these cells the oscil lation of / does

not exceed Q (n)/Q {n + k) It follows that the contribution of the cel ls l{k),

k - k0 + 1, , Q {n)2, to the sum P\{f ) is at most

Q(n)2

)] + 2) 2 Q(n)/QU

Using the inequalit ies

1 _ 2k° - 2k < - k + k0 ,

which are valid if k0 >^ 0 and k >_ k0 + 1, we have

Qin)

QM2

 1I λ2 | 4λ \ Q(n)

Γ λ W ( π ) 2 +Q{n) 4

Q(n)2

ΊQ(n)

Q(n)Q{n+k) Q(n + k) λQ(n + k)J

Q(n + ko + l) 4 4 Q U )

Q(n)Q(n + k) + Q(n + k) + Q (n + ko)Q (n + k)
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Q(n)2 Q{n)2-k0

<9 £ ρurA+*o = 9 Σ,
k=ko+ι k=ι

We now consider the cells /(A;) for k = 1, 2 , ••• , &0. For such /c we have

1/λ < l/(/(rc + A;). Since e(n) £ 1/λ, each circle C{k9m,j) can have points

in common with at most four cells of the λ-net. Since each I(k) contains exactly

N(n) Q {n + k)2/Q (n)2 such circles, we conclude that for each cell there are

at most 4/V (n) Q (n 4- k)2/Q (n)2 cells of the λ-net on which the oscillation of

/ is not zero. Furthermore on these cells the oscillation cannot exceed

Q (n)/Q (n + k), and we conclude that the contribution of these cells to P\(f)

is certainly not greater than

*» 1 N(n)Q{n + k)2 Q(n)

ζ 4
k% λ Qin)2 Q(n + k)

Since 1/λ < l/Q (n + k0 ), this sum is in turn dominated by the sum

*o W(n)Q(n + k)

ζT[ Q(n + kQ)Q{n) #

Recalling 3.3, we may simplify this as follows:

ô W(n)Q(n + k) Win)

=
(n + ko)Q(n) Q(n)Q(n

V (n + k )

Q(n)Q(n

~ Q(n)Q(n + k0)

Combining the two estimates obtained above, we have
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9 8/VU) 9 + 8Λ ;U) Γ7/VU)
9.3.2 Pχ(f) < + < < — .

- < ? U ) - 1 Q ( n ) ~ Q ( n ) - l - Q ( n ) ~ l

C a s e I I I . Q ( n + Q ( n ) 2 ) < Q ( n + k ) < λ < 1 / e ( n ) .

Here the argument used in obtaining the second estimate in Case II applies

directly yielding an estimate for the entire sum P\(f). There are minor changes

in computation which we give here:

4/VU) n + Q(n)2

4 Λ ' U )

2 p ( . t ? ( . ) ) < .
- Q(n)Q(n + k0) " Q(n)

Case IV. l/e(n) < λ .

Consider one circular region C (k^m, j). Its diameter is e ( r c ) ? so it can have

points in common with at most ( [ λ e ( r c ) ] + 2 ) 2 cel ls of the λ-net. Over this

region the graph of / is a right circular cone, the slope of whose element is

2Q(n)

Q(n + k)e(n)

Since the longest line segment in each λ-cell is of length \/~2/λ, the oscillation

on each λ-cell is at most

2y/2Q(n)

Q(n+ k)e(n)

It follows that the contribution to P\(f) of any one circle is at most

([λ.(.,1 + 2) £ .
λ Q(n + k)e(n)

Since the kth c e l l of the Q {n)-net c o n t a i n s Q (n + k )2/Q {n ) 2 s u b - c e l l s , and

s i n c e e a c h s u b - c e l l c o n t a i n s N (n) of the c i r c u l a r r e g i o n s C (k,m, j), we h a v e

(n)
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2 / 2 / V U ) <*£ Q{n
Ύ~ \e(n) + 7

n) \ λ /
Q(n) ~

— έ Q U + k ) ( 3 β ( π ) ) 2

Upon examining the relations 9.3.1, 9.3.2, 9.3.3, and 9.3.4, we conclude that,

for each λ,

This clearly implies / £ P; and since / is evidently continuous, our theorem

follows.

As an immediate consequence of the proof of the preceding theorem we

have:

9.4. C O R O L L A R Y . If fn £ Bn for each n and if

N(n)
lim = 0,

n-oo Q(n)

then

lim P(fn) = 0.

9.5. REMARK. If in 9.2, the expression Q (n)/Q (n + k) is replaced by

h(n)Q (n)/Q (n + k), where h(n) is any positive number, 9.3 still holds as
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d o e s 9 . 4 i f w e r e p l a c e N ( n ) / Q ( n ) b y h ( n ) N ( n ) / Q ( n ) .

10. U is residual in P n C. We are now in position to prove:

10.1. THEOREM. For each positive integer K9 Λ^ is nowhere dense in

PnC.

Proof. Suppose / £ P n C; Jet n be any fixed positive integer. We shall now

construct a function of type Bn (see § 9 ) . We construct the Q (n)-net and the

subnets as specified in § 9 and retain the notation there employed. Since / is

continuous on /, there exists within or on the boundary of each cell of each

subnet at least one point at which / assumes a maximum for that cell. More

precisely, for each pair U, m) 1 < k < Q (n), 1 < m < Q(n + k)2/Q(n)2 ,

there exists a point q {k$ m) such that

q{k9 m) G ϊ (k9 m);

if p el(k, m), t h e n f(q(k, m)) - / ( p ) > 0 .

Furthermore since / is uniformly continuous, there exists a positive number

r (n) such that if p (p^ q ) < r (n), then, for k < Q (n) ,

For each pair {kf m) let Cί{k> m) be a circular region of radius r(ra)/2 and

with center at q {k$ m). Let N {n) = 1, and let the region Rik^m^l) be the

interior of the set /{k? m)r\ <x(k9 m) . We now make any permissible choice of

the points p (ksm$ 1) and the number e (n) and define a function of type Bn which

we shall call gn. In view of 9.2 and earlier remarks in § 9, it is clear that

that infinitely many permissible choices must exist. We note in pass ing that

our choice of the regions R(k,m,l) has assured satisfaction of the inequality

e {n) <_ r (τ ι )

We can evidently repeat this process for each n ( let t ing N (n) = 1 for each n)

and obtain a sequence of functions {gn\ * For each n and each p £ l$ let
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The sequence \fn\ is evidently uniformly convergent to / in the ordinary sense,

and in view of 9.4 we see that

l i m \\fn-f\\ = l i m | | gn\\ = 0 .
n -* oo

We s h a l l now c o n s i d e r a s e t A^ and s h a l l s h o w t h a t for n s u f f i c i e n t l y large

no funct ion fn can b e l o n g to A%. L e t p G / ; t h e n for s o m e p a i r {k9 m), we h a v e

p£l(k9m). F o r s i m p l i c i t y , l e t v = p{k9m9l)9 a l s o l e t q = q(k,m). Now if

p £ I(k9 m) — C (k$ m9 1 ) , we have

= gn(v) + f(v)-f(q) +f(q)-f(p)

>gn(v)+f(v)-f(q).

Since p(v9 q) < r{n),

f(q) _ f(v) < ρ ( n ) / 3 O ( n + A;).

In a d d i t i o n , gn(v) = ^ ( TZ )/() (rc + A:); h e n c e t h e a b o v e y i e l d s

Since p(p s f ) < yf~2/Q (n + k), it follows that

10.1.1
p(v,p) - 3 / 2

On the other hand, suppose p G C (&, m, 1). We now let e represent the point in

which the directed line segment from v to p extended intersects the boundary

of the region C {k9m9 1). We have then

10.1.2 pie, p) + p(p$ υ) = e{n)/2,

a n d a l s o g ( e ) - 0 . R e c a l l i n g t h a t e ( n ) < r ( r ι ) , w e h a v e , i n v i e w of 9 . 2 ,

1 0 . 1 . 3 \ f n ( v ) - f n ( p ) \ = \ g n ( v ) + f ( v ) - g n ( p ) ( )

>\gn(v)-gn(p)\-\f(v)-f(P)\

2Q(n) Q(n)
> pip, v)

e(n)Q(n + k)
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Since p (p s v) = (e (n )/2) — p (p, e ), we see by direct computation that

p , e ) — ,
e(n)Q(n + k)

and hence we have

10.1.4 \fn(p)-fn{e)\ = \

2<?U)

Since υ$ p, and e are collinear points on a radius of a circular region lying

entirely within l(k9m)9 we see that

p , v ) < l / 2 Q ( n + k ) a n d p ( p , e ) < l / 2 Q ( n + k ) .

Consequently, if p{p,v) > e ( n ) / 4 , 10.1.3 yields

l / n W ^ p ! (?(n) Q(n)

p(p?v) "" 6 ζ ί ( n + k)ρ{p? v) ~~ 3

Also, if p ( p, e ) >_ e (n )/4, 10.1.4 implies

14(P)-/,(^)1 Q{n) Q(n)

10.1.6 >̂  > .
pip^e) 6Q(n + k )p {p$ e ) 3

In view of 10.1.2, either 10.1.5 or 10.1.6 (or both) must hold. Combining this

with 10.1,1, we may now assert that for each p £ / there exists p ' with

p(psP')

and

pptp') 3

ΐt is easily established that if

n > log (log 3£/log 2)/log 2 9
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then fn does not belong to Aχ9 and hence Aκ is nowhere dense since each

element of the space P n C is a limit point of the complement of A^ .

Recalling now that

Pn C-U = U Ak

k=ι

and the theorem of Baire, we have:

10.2. THEOREM. U is aresidual set in P n C.

Otherwise stated, the set of functions in P n C which are nowhere totally

differentiable is a residual set.

11. Category of nondifferentiable functions in P nE. We now turn our atten-

tion to the space P n E9 where E is the set of functions mentioned in § 1 and

introduced by Saks [β] Let 11/Ίlβ t>e the least upper bound of the total varia-

tions of / along all line segments in /. The set E shall consist of all functions

/ having the properties:

/ is absolutely continuous along each line segment in I;

\\f\\E < oo;

if p is a boundary point of I? then f (p ) = 0 .

We let ρ(f? g) = | |/—g Hβ The space E is metric, complete (to be proved in

the following section), and linear, and convergence in this metric implies con-

vergence in the classical metric for the space C In view of 9.1.3 and 9.2, it is

clear that Bn C PnE. More precisely, if / G Bn then

<2Q(n)/Q(n

If we let

we have a proper norm in PnE. Using this norm and corresponding metric, we

need only make appropriate minor changes in the preceding sections to obtain

analogous results in PnE culminating in the following theorem.

11.1. THEOREM. In the space PnE there exists a residual set of functions
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each element of which is nowhere totally differentiable.

12. Completeness of E. In this and the next section we shall show that

P r\E is of first category in E with respect to the metric used by Saks and which

we have defined in the preceding section. As before we use the theorem of

Baire.

12.1. T H E O R E M . E is complete.

Proof. If s is a line segment in / and / any function in E, then by Ts ( / )

we mean the total variation of / along the segment s If { / I is a sequence of

functions of E with

miim_ l l / m -U f i -o ,

then for each positive 6 there exists a positive integer N such that for each
n > N, for each k > 0, and for each line segment 5 in /,

Since each function in E vanishes on the boundary of /, this implies that for

such n and k and for each p E /?

It follows that there exists a continuous function / such that for each n,

»™ l l / n - W l c - I I W I I c
k —too

In view of the well-known semi-continuity property of the total variation for

functions of one real variable, we have for each segment s

liminf Ts(fn-fn+k)>Ts{fn-f).
k —* °o

Since

it follows that
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12.1.1 l im \\fn-f\\E = 0.

We now need only show that / is absolutely continuous along each segment in

/ , that 11/* 11 £ < oc, and that / vanishes on the boundary of / . Let s be a line

segment in /; let € > 0 be given. In view of 12.1.1, there exists N such that

for n > N,

12.1.2 Ts(fn-f) < 6/2.

Also since /jy + 1 is absolutely continuous on s, there exists 8 > 0 such that if

{ /; J (i = 1, 2, , m) is any set of intervals on s, the sum of whose lengths

does not exceed 8, then

m

Σ Th(fN+l)<e/2.

Also in view of 12.1.2,

m

•{) < e/2.
1=1

We then have

m m m

i=1 ι=l i=1

Since this holds for each set of intervals the sum of whose lengths i s less than

8, we conclude that / is absolutely continuous along s. Also since lim^ _̂  o o

T(fn) clearly exists, we conclude that H / H ^ < oc and since / clearly must

vanish on the boundary, our theorem is proved.

13. Category oΐPnE in E.

13.1. DEFINITION. For each positive integer N9 let

WN = £ n [ / | P ( f ) < N ] .

Clearly

oo

P π £ = U WN.

JV = 1
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13.2. LEMMA. For each N9 Wjy = ̂W

Proof, Let / be a sequence of functions of Wjy convergent in our metric.

For each λ and v, and /, fn E P,

13.2.1 * / ( / ) = sup | / ( p ) - / ( p ' ) |

= sup I / ( P ) - / > ) + / > ) - / > ' W / > ' ) - / ( p ' ) |
P,p'e ι(v)

< sup | / n ( p ) - / Λ ( p ' ) | + sup | / ( P W n ( p ) |
P , p ΐ / M pE/(v)

+ sup | / ( p ' ) - / Λ ( p ' ) |

λ ( / ) + 2 . sup

As noted in the proof of the preceding theorem, there exists f £ E such that

i™ l l / n - / l ! £ = o.
72—• oo

This implies that

and hence if a positive integer λ and a positive number e be given, there exists

M such that for each n > M and each p E /,

Π e/2λ.

Also since / G IFyy for each n, we have

Pλ(fn)<P(fn)<N.

Hence if n > M we have, recalling 13.2.1,

pλ(f)= Σω^(f)/\< Σ ω i ( / n v λ + Σ 2 S U P ι/(p)-/ n (p)l/λ
î  = l v=l v = l p E l(v)
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It follows that

P(f) = sup Pλ(f) <
λ

and hence that / eWN, completing the proof.

13.3. LEMMA. For each N, E -WN = E.

Proof. Let λ be a fixed positive integer. Let the λ-net be constructed and

its cells denoted by / ( v ) {v = 1, 2, , λ 2 ). For each v, let C{v) be an open

circular region entirely within l{v), and in addition let these λ2-circular regions

be so constructed that no straight line shall have points in common with more

than two of them. Let / be an arbitrary function of E, and let

Let gχ be a function whose graph is as follows: Over each circle C{v) it is a

right circular cone of height 0χ(f) + λ" ι / 2 ; at all other points its value is

zero. Let fχ(p) ~ f (p) + gχ(p) for each p G / then

Clearly fχ G E. Also,

\\f\-f\\E~ Wsλ\\E

Therefore,

λ—» oo

For each v9

Hence
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P ( f ) > λ I / 2

Let N be any integer; then if λ > N2, we have Pχ (fχ) > N, and hence fχeE-

It follows that each set E — Wjy is dense in E,

13.4. THEOREM. PnE is of first category in E.

Proof. In view of 13.1,

oo

PnE = U WN.

By 13.2, for each Λ/,

By 13.3,

It follows that P rι E is a union of closed sets which are nowhere dense in £,

and our proof is complete.
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