
AN EXAMPLE CONCERNING UNIFORM BOUNDEDNESS

OF SPECTRAL MEASURES

S H I Z U O K A K U T A N I

1. Introduction. Let 3C = {x \ be a Banach space with a norm \\x | | . A bound-

ed linear operator E which maps 3C into itself is called a projection if E2 = £ .

We do not require that \\E\\ < 1, where

P l l = sup \\Ex\\.
\\χ\\< i

Let B = { σ \ be a Boolean algebra with a unit element 1. We denote the zero

element of ID by 0, and two fundamental operations in 0 by σ t u σ 2 and α j Π ^ .

A family \E(σ) \ σ E Q\ of projections E (σ) of 3C into itself is called an X-

spectral measure on 13 if the following conditions are satisf ied: ( i ) £ ' ( 0 ) =

0 ( = zero operator ), ( ϋ ) £ ( l ) = l ( = unit operator), ( i i i ) E (σj n σ2) = E{σγ )E(σ2)

for any σl9 σ2 E 13, ( i v ) σγ n σ 2 = 0 implies E (σγ Ό σ2) = E (σ ±) + E {σ2) An

3C-spectral measure | £ ( σ ) | σ G β j is said to be uniformly bounded if there

exis ts a constant K < oc such that 11 E (σ) \ \ < K for all σ G 13.

Let 13 = { σ}, 13'= ί σ ' i be two Boolean algebras with a unit element, and let

13* = 13 ® 6 ' be the Kronecker product of 13 and 13 . Now 13* may be considered

as the Boolean algebra of all open-closed subsets <τ* of S*, where S* = S x S ' is

the topological Cartesian product of two Stone representation spaces S, S ' of

13, 13 , respectively. Every element σ* E 13* is expressible in the form:

n

i . l ) σ*= U σ. xσf

where σ̂  G 13, a? G 13 ' (ι = 1, , π ) .

Let \E{σ) I σ G 13 ! and [E'(σ') \ σ ' G l 3 ' } be two 3C-spectral measures on

13, B ' , respectively, which are commutative with each other; that i s ,
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for any σ G ά, σ'G Ϊ3 . Let us put

n

(1.2) F(σ*)= Σ£(σ.U'(σ;)
ί = l

if σ* G 13* is of the form (1.1) and if σi x σf' (i = 1, •• ,N ) are disjoint. Then

it is easy to see that F(σ*) is uniquely determined (although the expression

(1.1) with disjoint σ. x σ ' is not necessarily unique), and j f' (σ* ) j σ* G 13* j

is an 3£-spectral measure on 13*; {F(σ*) | σ* G IS*} is called the direct product

%-spectral measure of \E ( σ ) | σ G 13 } and \ E ' ( σ ' ) | σ ' G fc ' } .

It was asked by N. Dunford [2] whether the uniform boundedness of {E (<τ) |

σ G B } and \E'{σ') \ σ'e 13 Ί implies that of | F ( σ * ) | σ* G 13* }. This question

was answered in the affirmative by J. Wermer [5] in case 3£ is a Gilbert space.

The main purpose of this note is to show that the answer is negative if 3C is a

general Banach space; that is, we want to prove the following proposition:

PROPOSITION. There exists a Banach space 3C and a commutative pair of

uniformly bounded ^spectral measures for which the direct product ^spectral

measure is not uniformly bounded.

Such an example will be given in § 3. In our example, the Banach space 3C

is given as a cross product space C(S) ® C (S ') of two Banach spaces of

continuous functions which will be defined in § 2 This Banach space is not

reflexive and hence it remains open to decide whether the answer to the question

is positive or negative in case 3C is a reflexive Banach space.

2. The Banach space C(S)® C(S'). Let S = ί s }, S ' = \s'\ be two compact

Hausdorff spaces. Let C(S), C(S') be the Banach spaces of al] complex-valued

continuous functions γ (s ), z (s ') defined on S9 S' with the norms

l l y l l ^ = max | y ( s ) | , I M L = m a x | * ( s ' ) | .
s£S s'£S'

L e t

S * = SxS' = \s* = {s,s')\s eS, s ' e S ' l

be the topological Cartesian product of S and S', and let C(S ) be the Banach

space of all complex-valued continuous functions

%(s* ) = x (s$ s ')
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def ined on S w i t h t h e norm

| | * Hoc = m a x \x(s* ) I .
s* £ 5*

Now C(S), C(S ) may be c o n s i d e r e d a s c l o s e d l i n e a r s u b s p a c e s of C(S*) by

i d e n t i f y i n g y(s)eC(S), z(s')eC(S') wi th x ( ss s ' ) E C ( S * ) d e f i n e d by

x(s,s') = γ{s)9 x(s,s') - z ( s ' ) ,

r e s p e c t i v e l y .

C o n s i d e r C(S ) a s a normed r i n g with t h e norm | | Λ ; | | O C T h e n C(S) a n d

C(S ) are c l o s e d s u b r i n g s of C ( S * ) . L e t C ( S ) ® C ( 5 ) be t h e s u b r i n g of

C ( 5 ) a l g e b r a i c a l l y g e n e r a t e d by C(S) a n d C(S ); t h a t i s 9 the s e t of a l l func-

t i o n s x (s^ s ' ) E C ( S * ) of the form:

( 2 . 1 )

where γ {s) E C {S)9 Z((S')EC(S) ( i = l 3 •• 9 τz). From the Stone-Weier-

s t r a s s theorem it follows that C(S)®C(S') is dense in C(S*).

Let us now introduce a new norm on C (S)®C (S ) defined by

where inf is taken for all poss ible representations of x(s,s') E C (S)®C (S )

in the form (2 .1 )•

It is easy to see that | | | * | | | i s a norm on C ( 5 ) ® C (S ) and sat is f ies

L <

for a l l x(s,s')eC(S)®C(S'). L e t C(S)®C(S') be t h e c o m p l e t i o n of

C (S)®C (S ) with respect to the norm | | | * | | | . The completion C (S) ® C (S )

is obtained from C(S)®C(S') by means of Cauchy sequences in C (S)®C (S )

with respect to the norm | | | * | | | . Since a Cauchy sequence with respect to | | | * | | |

is a Cauchy sequence with respect to H^H^? we may consider C (S) ® C (S )

as a subset of C (S* ):

LEMMA 1. Let C (S) ® C {S ) \\e the set of all functions x0 ( s * ) E C ( 5 )

for which there exists a sequence {xn ( 5 * ) | n = 1 ? 2 , ••• i of functions from
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C (S)(x)C (S') with the following properties:

( i ) l i m | | # 7 i — * o I loo = 0 , t h a t i s l i m x n ( s * ) = % * ( s ) uniformly o n 5 * ;
n —»oo 7i—» oo

( i i ) lim 111 xm - xn \ \ | = 09 ί/mί is, ! xn \ n = 1, 2, }
m9n-* oo

i s α Cauchy sequence with respect to the norm \\\x | | | .

If we put

| | | * o III = l i m I I K I I I ,
7Z —» o o

ίΛeτι C ( S ) ® C ( S ) is a Banach space with respect to the norm \\\x \\\ and con-

tains C ( S ) ® C ( S ) a s a dense subset.

The proof is easy and so it is omitted. It is interesting to observe that

C (S) ® C (S ) is a normed ring with respect to the norm 11| x \\ |.

C (S) ® C (5 ) is called the minimal cross product Banach space of C{S)

and C(S ). It is easy to see that the minimal cross product Banach space

S ® 3 of anY two Banach spaces 9) and 3 c a n he defined in a similar way.

D ® 3 i s o n e of the cross product Banach spaces defined and discussed by

R. Schatten and J. von Neumann [3; 4 ] .

3. Construction of an example. Let us now consider the case when both S

and S are Cantor sets. Let S = S be the set of all real numbers s of the form

(3.1) s = 2
3 2 3"

where en (s ) = 0 or 1 (n = 1, 2, ). Let 13 = { σ \ be the Boolean algebra of all

open-closed subsets σ of S.

Let S* = S x S be the Cartesian product of S with itself, and let 13 = { σ* i be

the Boolean algebra of all open-closed subsets σ* of S*. It is clear that B* =

B ® B ; that is, B* consists of all subsets σ* of 5* which are expressible in the

form (1.1), where σ/, σ[ £ 6 (i = 1, , π ) .

For each σ E 6, let φσ(s) be the characteristic function of σ, and put

E ( σ ) x ( s , s ' ) = φ ( s ) x ( s , s ' ) , E ' ( σ ) x ( s , s ' ) = φ ( s ' ) x ( s , s ' ) .
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It is clear that E(σ), E'(σ) are projections of X = C(S) φ C(S') into itself,

and that \E ( σ ) | σ G 13 }, { E '(σ) \ σ G 13 ί are X-spectral measures on 13. Both of

these spectral measures are uniformly bounded since E ( σ ) , E (σ) have norm 1

for any σ G l3 with σ ^ 0. Since

EU)E'(σ') = E\σ')E{σ)

for any σ ? σ ' G To, we can consider the direct product X-spectral measure

ί f ( σ * ) | σ * G B * } , defined on B* = 6 0 1 3 . We shall show that { F (σ*) | σ* G B* }

is not uniformly bounded.

Let us define a sequence of functions { pn ( s* ) | n = 0, 1, 2, \ defined on

5* = S x S as follows: p ( s * ) s Ion S*, and

(3.2)

where €,(s) is the kth. coefficient in the expansion (3.1) of s. It is easy to see

that pn(s*) takes only the values ±1 and belongs to C(S)(x)C(S ) for n = 0, 1,

2, . Let us put

σ* = U * | p Λ ( s * ) = l j U = 0,1,2, . . . ) .

Then σ* G B* for n - 0,1, 2, , and it is easy to see that

pn = { 2 F ( o * n ) - I ) p 0 (n = 0 , 1 , 2 , - . . ) .

Thus, in order to prove the proposition of § 1, it suffices to prove the following

lemma:

LEMMA 2. Let S be the Cantor set. Let {pn(s*)\ n = 1, 2, \ be a se-

quence of functions defined on S = S x S bγ ( 3 . 2 ) . Then

l i m I! I Pn 111 = ° ° ,
ft —» oo

where the norm \\\ pn \\\ °f Pn * s defined by ( 2 . 2 ) .

In order to prove this lemma, let us put

ex(s) € 2 ( s ) e Λ ( s )

2 2 2 2n
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Then ί = τ ( s ) is a mapping of S onto the closed unit interval

/ = U | 0 < t < 1 !

which is one-to-one except for a countable set. Let

μ(σ) =m(τ(σ))

be a measure defined on B - \ σ ί which corresponds to the Lebesgue measure m

on /. Let us consider the L2-space L2 (S; μ) on S with respect to the measure μ,

where the norm is given by

(3.4) lly||2 =

Let o^ be the open-closed subset of S consisting of all s G S such that

(3.5)

We observe that

i - 1
a = i , .• f 2 Λ ) .

2"

μ(σ\n)) = Tn

a n d t h a t pn(s$s ' ) i s c o n s t a n t ( = e)

2 ). Further, if we p u t

( i = 1, •• , 2 n )

. = ± 1 ) on e a c h σ t x σ-n (i9 j = 1, ,

(3.6)

for ES and s'Eσjn) ( / = 1, -•• ,2n), t h a t i s , p^n)(s) = e\j) if s G σ\n\ then

~ ^ ( s ) ( / = 1 , , 2 7 1 ) f o r m a n o r t h o - n o r m a l s e t i n L2(S;μ).the functions

Consequently, by Bessel's inequality,

(3.7) I. p (s,s')y(s)μ(ds) μ(ds')

2n
P{n)(s)γ(s)μ(ds)
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for any y (s ) £ L2 (S; μ). From this it follows that

(3.8) p(sss')y(s)z(s')μ(ds)μ(ds')
n

IIΛ

V
II

V
li

u
L

1

— •

h

I
lly

p (5

IMi ^ i i 2

2

! )

) [μ(ds') [ \z(s')

for any y ( s ) , z ( s ) £ C(S). From (3.8) it follows further that

<3-9> l ί f pΛs,s')x(s,s')μ(ds)μ(ds') <J—.\\\:
I Js Js ~ \ 2n

for any x(s,s') £C{S)®C{S'). Since

p (5,5 ' ) G C ( 5 ) 0 C ( S / ) and (p ( s , 5 ' ) ) 2 = 1

on S x S , we obtain, by setting x ( s , s ' ) = pn (s, s') in (3.9), that

(3.10) ip n \ i i > (n = 1,2,

and hence lim „ _ oo 111 pn 111 = oo .

4. Remarks. Let us consider the bounded linear operators Ts T defined on

C{S)® C(S') by

(4.1) Tx(s,s') =f{s)x(s,sf),

(4.2) T'x{s,s') = f(s')x(s,s'),

where f (s) is a continuous function defined on S by

, e i ( s )
(4.3) f ( s ) = 3 I + + +

• ) •
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It is easy to see that T9 T are spectral operators of sca lar type and are given

by

(4.4) T = / f(s)E(ds),

(4.5) Ί* = [ f(s')E'(ds'),

where \E (o) \ σ G B ! and {E (σ) \ a E B } are a commutative pair of uniformly

bounded spectral measures defined in § 3.

It i s poss ible to show that T + T is not a spectral operator of scalar type.

In order to show this we first observe that the range 5** of / ( s ) + / ( s ' ) on

S* = S x S ' is a totally disconnected se t . Let B* be the Boolean algebra of all

open-closed subsets <τ* of S os the form:

α* = {s* = (s,s')\f(s) + / ( s ' ) e σ * * } ,

where α** i s an open-closed subset of S**. It suffices to show that the family of

projections { F (σ* ) | σ* G 13 } is not uniformly bounded.

For each rc, let { η^n' | i = 1, 2, } be a sequence of period 2n; thus

Further, let the sequence consist only of + 1 and - 1 such that (ηf1 , •••,

^ ) runs through all 2 n different sequences of length n consist ing of + 1 and

- 1 as ΐ runs through 1, , 2n The existence of such a sequence was proved

by N.G.de Bruijn [ l ] . Let us put

(4.6) πn(s*) = πn(s9s') = η ^ ,

if seσ\n\ s ' G σ j ^ U, j = 1, , 2 " ) . Then \πn ( s * ) | ra = 1, 2, ! is a

sequence of functions from C(S) (x)C {S ) taking only the values + 1 and - 1

such that the se t

σ * = \s*\πn(s*) = + l ! e B£ for n = 1,2, ••• .

Thus, by the same reason as in § 3 , it suffices to show that

lim 11| ΠΊi UI = oo .
n -* oo
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Let us put

= πn(s,s')

if s'e σ(jn\ Then {ήn)(s)\j = 1, , 2Λ ! is a set of functions from L2 (S; μ)

such that

is an orthonormal system for ί = 1, , 2Λ - rc + 1. This follows from the fact

that

implies

(4.7) π^ (s)μ{ds)

I 2n

- ft

(The last equality holds because

happens 2n~ι times and

happens 2""1 times as i runs through 1, , 2n.)

Thus, for any y G L 2 ( S ; μ ) , BesseΓs inequality

(4.8)
i+n- 1

f π*jnHs)y(s)μ(ds)

holds for i = 1, , 2" - /ι + 19 and hence
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(4.9) / I j πn(s$s')y(s)μ(ds)\2μ(ds')

TT I f π(

j

n)(s)y{s)μ(ds)\i

* ? ( [ τ l •')

n

From this follows, exactly as in § 3, that

(4.10) I / πn(s9s')x(s,s')μ(ds)β(ds') < J - | | |%|
1 J S JS ~ Y n

for any x (s9 s ' ) G C (S ) ® C {S )? and hence

for ^ = 19 29

REFERENCES

1. N. G. de Bruijn, A combinatorial problem, Nederl. Akad. Wetensch., Proc. 49,
(1946), 758-764, Indagationes Math. 8 (1946), 461-467.

2. N. Dunford, Spectral operators, Pacific J. Math. 4(1954), 321-354.

3. R. Schatten and R. Schatten-J. von Neumann, The cross space of linear transforma-
tions I, II, III, Annals of Math. 47 (1946), 73-84, 608-630; 49(1948), 557-582.

4. R. Schatten, A Theory of cross spaces, Annals of Math. Studies, No. 26, Princeton,
1950.

5. J. Wermer, Commuting spectral measures in a Hilbert space, Pacific J. Math. 4
(1954), 355-361.

YALE UNIVERSITY




