ON THE NUMBER OF SOLUTIONS OF $u^k + D \equiv w^2 \pmod{p}$ Emma Lehmer

Introduction. The number $N_k(D)$ of solutions (u, w) of the congruence

$$(1) u^k + D \equiv w^2 \pmod{p}$$

can be expressed in terms of the Gaussian cyclotomic numbers (i, j) of order LCM(k, 2) as has been done by Vandiver [7], or in terms of the character sums introduced by Jacobsthal [4] and studied in special cases by von Schrutka [6], Chowla [1], and Whiteman [8]. In the special cases k = 3, 4, 5, 6, and 8, the answer can be expressed in terms of certain quadratic partitions of p, but unless D is a kth power residue there remained an ambiguity in sign, which we will be able to eliminate in some cases in the present paper. Theorems 2 and 4 were first conjectured from the numerical evidence provided by the SWAC and later proved by the use of cyclotomy. They improve Jacobsthal's results for all p for which 2 is not a quartic residue. Similarly Theorem 6 improves von Schrutka's and Chowla's results for those p's which do not have 2 for a cubic residue. Only in case k=2 and in the cases where k is oddly even and D is a (k/2)th but not a kth power residue is $N_k(D)$ a function of p alone and is in fact p-1. This result appears in Theorem 1. In case k=4, Vandiver [7a] gives an unambiguous solution, which requires the determination of a primitive root.

1. Character sums. It is clear that the number of solutions $N_k(D)$ of (1) can be written

$$N_k(D) = \sum_{u=0}^{p-1} \left[1 + \left(\frac{u^k + D}{p}\right)\right] = p + \sum_{u=0}^{p-1} \left(\frac{u^k + D}{p}\right),$$

 \mathbf{or}

$$N_k(D) = p + \left(\frac{D}{p}\right) + \psi_k(D),$$

Received July 10, 1953.

Pacific J. Math. 5 (1955), 103-118

104

where the function

(3)
$$\psi_k(D) = \sum_{n=1}^{p-1} \left(\frac{u^k + D}{p} \right)$$

is connected with the Jacobsthal sum

$$\phi_k(D) = \sum_{u=1}^{p-1} \left(\frac{u}{p}\right) \left(\frac{u^k + D}{p}\right)$$

by the relations

(5)
$$\psi_k(D) = \left(\frac{D}{p}\right) \phi_k(\overline{D}), \text{ k odd and } D\overline{D} \equiv 1 \pmod{p},$$

and

(6)
$$\psi_{2k}(D) = \psi_k(D) + \phi_k(D).$$

Other pertinent relations are

(7)
$$\begin{cases} \phi_k(m^k D) = \left(\frac{m}{p}\right)^{k+1} \phi_k(D) \\ \psi_k(m^k D) = \left(\frac{m}{p}\right)^k \psi_k(D) \end{cases}$$
 $(m \neq 0 \pmod{p})$

and

(8)
$$\begin{cases} \phi_k(\overline{D}) = -\left(\frac{D}{p}\right) \phi_k(D) \\ \psi_k(\overline{D}) = \left(\frac{D}{p}\right) \psi_k(D). \end{cases}$$
 (k even)

Also, for k odd and ρ a primitive root,

(9)
$$\sum_{\nu=0}^{k-1} \phi_k(\rho^{\nu}) = -k.$$

These relations are either well known or are paraphrases of known relations

and are all easily derivable from the definitions. If k is odd, it follows from (5) and (6) that

(10)
$$\psi_{2k}(D) = \phi_k(D) + \left(\frac{D}{p}\right) \phi_k(\overline{D}).$$

If D is a kth power residue, then so is \overline{D} and hence by (7) for k odd $\phi_k(D) = \phi_k(\overline{D}) = \phi_k(1)$, and we have

(11)
$$\psi_{2k}(D) = \phi_k(D) \left[1 + \left(\frac{D}{p} \right) \right] = \begin{cases} 2\phi_k(D) & \text{if } \left(\frac{D}{p} \right) = +1 \\ 0 & \text{if } \left(\frac{D}{p} \right) = -1. \end{cases}$$

Hence from (2) we obtain:

THEOREM 1. If k is odd and if $D=m^k$, where m is a nonresidue of p=2kh+1, then the number $N_{2k}(m^k)$ of solutions (u,w) of

$$u^{2k} + m^k \equiv w^2 \pmod{p}$$

is exactly p-1.

Since $\phi_1(D) = -1$, it follows from (11) that $\psi_2(D) = -2$, if D is a residue, and zero otherwise. Hence by (2), $N_2(D) = p - 1$ for all D. This is a well known result in quadratic congruences. We will next discuss the case k = 4, which is connected with Jacobsthal's theorem.

Jacobsthal [4] proved that if D is a residue and if $p = x^2 + 4y^2$, then

(12)
$$\phi_2(D) = -2x \left(\frac{\sqrt{D}}{p}\right), \qquad x \equiv 1 \pmod{4};$$

but if D is a nonresidue then he was able to prove only that

(13)
$$\phi_2(D) = \pm 4y$$
.

Hence for D a residue, it follows from the fact that $\psi_2(D) = -2$, using (6) and (2), that

(14)
$$N_4(D) = p - 1 - 2x \left(\frac{\sqrt{D}}{p}\right), \quad x \equiv 1 \pmod{4}.$$

However, the corresponding result for D nonresidue would read

(15)
$$N_4(D) = p - 1 \pm 4\gamma.$$

In order to eliminate this ambiguity in sign at least for some cases we now turn to the cyclotomic approach.

2. Cyclotomy. If we define as usual the cyclotomic number $(i, j)_k$ as the number of solutions (ν, μ) of the congruence

(16)
$$g^{k\nu+i} + 1 \equiv g^{k\mu+j} \pmod{p}$$

then if D belongs to class s with respect to some primitive root g (that is, if $\operatorname{ind}_g D \equiv s \pmod k$), we can write the number of nonzero solutions of (1) for k even as follows:

(17)
$$N_k^*(D) = 2k \sum_{\nu=1}^{k/2} (k-s, 2\nu-s)_k.$$

We now assume that 2 is a nonresidue and choose g so that 2 belongs to the first class, or s = 1; then

(18)
$$N_4(2) = N_4^*(2) = 8[(3,1)_4 + (3,3)_4].$$

These cyclotomic constants have been calculated by Gauss [3] in terms of x and y in the quadratic partition $p = x^2 + 4y^2$ and are for p = 8n + 5

(19)
$$16(3,3)_4 = p - 2x - 3$$
, $16(3,1)_4 = p + 2x - 8y + 1$.

Substituting this into (18) we obtain

(20)
$$N_4(2) = p - 1 - 4y, \qquad \left(\frac{2}{p}\right) = -1.$$

To determine the sign of y we recall a lemma of our previous paper [5] which states that (0,s) is odd or even according as 2 belongs to class s or not. Hence in our case (0,0) is even, while (0,1) is odd. These numbers have been given by Gauss as follows,

(21)
$$16(0,0)_4 = p + 2x - 7, \quad 16(0,1)_4 = p + 2x + 8y + 1.$$

Hence

$$p + 2x - 7 \equiv 0 \pmod{32}$$
 and $p + 2x + 8y + 1 \equiv 16 \pmod{32}$.

Subtracting the first congruence from the second we have, dividing by 8,

$$(22) y \equiv 1 \pmod{4}.$$

This makes (20) unambiguous, and returning to (2) we find by (6), since $\psi_2(2) = 0$, that for (2/p) = -1

(23)
$$\psi_4(2) = \phi_2(2) = -4y$$
, $y \equiv 1 \pmod{4}$.

Hence by (7)

(24)
$$\phi_2(2m^2) = -4y\left(\frac{m}{p}\right), \qquad \left(\frac{2}{p}\right) = -1.$$

This gives a slight strengthening of Jacobsthal's theorem, namely:

THEOREM 2. If 2 is a nonresidue of $p = x^2 + 4y^2$, where $x \equiv y \equiv 1 \pmod{4}$, then

$$\phi_2(D) = \begin{cases} -2x\left(\frac{m}{p}\right), & \text{if } D \equiv m^2 \pmod{p} \\ \\ -4y\left(\frac{m}{p}\right), & \text{if } D \equiv 2m^2 \pmod{p} \end{cases}.$$

Hence by (2) we have:

THEOREM 3. If 2 is a nonresidue of $p = x^2 + 4y^2$, $x \equiv y \equiv 1 \pmod{4}$ then the number of solutions of $u^4 + D \equiv w^2 \pmod{p}$ is given by

$$N_4(D) = \begin{cases} p - 1 - 2x \left(\frac{m}{p}\right), & \text{if } D \equiv m^2 \pmod{p} \\ \\ p - 1 - 4y \left(\frac{m}{p}\right), & \text{if } D \equiv 2m^2 \pmod{p}. \end{cases}$$

We now suppose that 2 is a quadratic residue but a quartic nonresidue, hence we may choose g such that $\sqrt{2}$ belongs to class 1 and calculate $N(\sqrt{2})$ by (18). The cyclotomic constants of order 4 for p = 8n + 1 are

(25)
$$16(3,1)_4 = p - 2x + 1$$
, $16(3,3)_4 = p + 2x + 8y - 3$.

108

Hence by (18)

(26)
$$N_4(\sqrt{2}) = p - 1 + 4\gamma;$$

but in this case y turns out to be even, so that it is not sufficient to determine y modulo 4 and it is necessary to introduce the cyclotomic numbers of order 8 to determine the sign of y. It also becomes necessary to distinguish the cases p = 16n + 1 and 16n + 9.

Case 1.
$$p = 16n + 1 = x^2 + 4y^2 = a^2 + 2b^2$$
, $x \equiv a \equiv 1 \pmod{4}$.

Since $\sqrt{2}$ belongs to class 1, 2 belongs to class 2 and by our lemma $(0,0)_8$ is even, while $(0,2)_8$ is odd. Dickson [2] gives

$$(27) 64(0,0)_8 = p - 23 + 6x.$$

Since $(0,0)_8$ is even, we have

(28)
$$6x \equiv -p + 23 \pmod{128}.$$

In order to complete our discussion it was necessary to calculate $(0,2)_8$ and $(1,2)_8$ by solving 15 linear equations involving the constants $(i,j)_8$ given by Dickson, which we list in the Appendix. We obtained

(29)
$$64(0,2)_8 = p-7-2x-16y-8a$$
, $64(1,2)_8 = p+1-6x+4a$.

Substituting p-23 for -6x from (28) into $64(1,2)_8$ we obtain

(30)
$$2a \equiv 11 - p \pmod{32}.$$

Since $(0,2)_8$ is odd we have, multiplying (29) by 3,

(31)
$$3p-21-6x-48y-24a \equiv 3p-21+(p-23)-48y-12(11-p)$$

 $\equiv 64 \pmod{128}$;

or, dividing out a 16 and solving for y, we get

(32)
$$\gamma \equiv 3(p+1) \equiv -2 \pmod{8}$$
.

Case 2. p = 16n + 9. In this case Dickson gives

$$(33) 64(0,4)_8 = p+1+6x+24a,$$

while we have calculated [see Appendix]

(34)
$$64(0,2)_8 = p + 1 - 2x + 16y,$$

$$(35) 64(2,0)_8 = p - 7 + 6x,$$

(36)
$$64(1,2)_8 = p + 1 + 2x - 4a.$$

From (35)

(37)
$$6x \equiv 7 - p \pmod{64}.$$

Substituting this into (36) we find

(38)
$$12a \equiv 2p + 10 \pmod{64}.$$

Since $(0,4)_8$ is even we obtain, using (38),

(39)
$$p+1+6x+24a \equiv p+1+6x+4p+20 \equiv 0 \pmod{128}$$
.

This gives an improvement of (37), namely,

(40)
$$6x \equiv -(5p + 21) \pmod{128}.$$

Finally substituting all this into $(0,2)_8$ which is odd, we have, after multiplying (34) by 3,

$$3p + 3 - 6x + 48y \equiv 3p + 3 + 5p + 21 + 48y \equiv 8p + 24 + 48y \equiv 64 \pmod{128}$$

or dividing out an 8 and noting that $p \equiv 9 \pmod{16}$ we obtain

$$\gamma \equiv +2 \pmod{8}$$
.

Hence the sign of y in (26) is now determined as follows if $(\sqrt{2}/p) = -1$:

(41)
$$N_4(\sqrt{2}) = p - 1 + 4\gamma$$
, where $\gamma/2 \equiv -(-1)^{(p-1)/8} \pmod{4}$.

From this we have as before by (2) and (6) for $(\sqrt{2}/p) = -1$:

(42)
$$\psi_4(\sqrt{2}) = \phi_2(\sqrt{2}) = -4y$$
, where $y/2 \equiv (-1)^{(p-1)/8} \pmod{4}$,

and we can write a slight improvement of Jacobsthal's theorem in the case in which 2 is a quadratic but not a quartic residue of p:

THEOREM 4. If 2 is a quadratic residue, but a quartic nonresidue of $p = x^2 + 4y^2 = 8n + 1$, then

$$\varphi_2(D) = \begin{cases} -2x\left(\frac{m}{p}\right) & \text{if } D \equiv m^2 \pmod{p} \\ \\ -4y\left(\frac{m}{p}\right) & \text{if } D \equiv \sqrt{2}m^2 \pmod{p}, \end{cases}$$

where $x \equiv 1 \pmod{4}$ and $y/2 \equiv (-1)^n \pmod{4}$.

THEOREM 5. If 2 is a quadratic residue, but a quartic nonresidue of $p = x^2 + 4y^2 = 8n + 1$, then the number of solutions (u, w) of $u^4 + D \equiv w^2 \pmod{p}$ is given by

$$N_4(D) = \begin{cases} p - 1 - 2x \left(\frac{m}{p}\right) & \text{if } D \equiv m^2 \pmod{p} \\ \\ p - 1 - 4y \left(\frac{m}{p}\right) & \text{if } D \equiv \sqrt{2m^2} \pmod{p}, \end{cases}$$

where $x \equiv 1 \pmod{4}$ and $y/2 \equiv (-1)^n \pmod{4}$.

In order to obtain an improvement on Jacobsthal's theorem in the case in which 2 is a quartic residue, or to improve the results for ϕ_4 and ψ_4 in order to obtain N_8 , it appears necessary to examine the cyclotomic constants of order 16, or to go through a determination of a specified primitive root as in Vandiver [7a]. The known results for ϕ_4 and ψ_4 are as follows:

$$\phi_4(D) = \begin{cases} -4a\left(\frac{m}{p}\right) & \text{if } D \equiv m^4 \pmod{p} \\ \\ 0 & \text{if } D \equiv m^2 \not\equiv m_1^4 \pmod{p} \\ \\ \pm 4b & \text{otherwise,} \end{cases}$$

and

$$\psi_4(D) = \begin{cases} -2x\left(\frac{m}{p}\right) - 2 & \text{if } D \equiv m^2 \pmod{p} \\ \pm 4y & \text{otherwise.} \end{cases}$$

It follows from this that

$$(43) N_8(D) = \begin{cases} p - 1 - 2x - 4a\left(\frac{m}{p}\right) & \text{if } D \equiv m^4 \pmod{p} \\ p - 1 + 2x\left(\frac{m}{p}\right) & \text{if } D \equiv m^2 \not\equiv m_1^4 \pmod{p} \\ p - 1 \pm 4b \pm 4y & \text{otherwise.} \end{cases}$$

3. Case k=3. The known results for the case k=3 can be stated as follows:

(44)
$$\phi_3(D) = \begin{cases} -2A - 1 & \text{if } D \text{ is a cubic residue} \\ A \pm 3B - 1 & \text{if } D \text{ is a cubic nonresidue,} \end{cases}$$

where $p = A^2 + 3B^2 = 6n + 1$, $A \equiv 1 \pmod{3}$.

This can be obtained either by summing the appropriate cyclotomic constants of order 6, or by using the results of Schrutka or Chowla, as was done in Whiteman [8]. From this it follows by (2) and (5) that

(45)
$$N_3(D) = \begin{cases} p - \left(\frac{D}{p}\right) 2A & \text{if } D \text{ is a cubic residue} \\ p + \left(\frac{D}{p}\right) (A \pm 3B) & \text{if } D \text{ is a cubic nonresidue.} \end{cases}$$

We are again faced with an ambiguity in sign in case D is a cubic non-residue, which can be resolved in case 2 is a cubic nonresidue. For in this case by (9)

(46)
$$\phi_3(1) + \phi_3(2) + \phi_3(4) = -3.$$

By (44), $\phi_3(1) = -2A - 1$, while Chowla proved that $\phi_3(4) = L - 1$, where $4p = L^2 + 27M^2$, $L \equiv 1 \pmod{3}$. Hence by (46)

(47)
$$\phi_3(2) = 2A - L - 1$$
 (2 a cubic nonresidue).

Hence by (7) we can write a slight generalization of Chowla's or Schrutka's theorem:

THEOREM 6. If 2 is a cubic nonresidue of $p = A^2 + 3B^2$, and if $4p = L^2 + 27M^2$, $A = L = 1 \pmod{3}$, then

$$\phi_3(D) = \begin{cases} -(2A+1) & \text{if } D \equiv m^3 \pmod{p} \\ 2A - L - 1 & \text{if } D \equiv 2m^3 \pmod{p} \\ L - 1 & \text{if } D \equiv 4m^3 \pmod{p} \end{cases}$$

Using (5) and (2) we obtain the corresponding theorem for $N_3(D)$:

THEOREM 7. If 2 is a cubic nonresidue of $p = A^2 + 3B^2$, and if $4p = L^2 + 27M^2$, $A \equiv L \equiv 1 \pmod{3}$, then

$$N_3(D) = \begin{cases} p - \left(\frac{D}{p}\right) 2A & \text{if } D \equiv m^3 \pmod{p} \\ \\ p + \left(\frac{D}{p}\right) L & \text{if } D \equiv 2m^3 \pmod{p} \end{cases}$$

$$p + \left(\frac{D}{p}\right) (2A - L) \text{ if } D \equiv 4m^3 \pmod{p}.$$

For k=6, it follows from (10) by substituting the values for $\phi_3(D)$ from (44) (remembering that D and \overline{D} are either both cubic residues, or both non-residues), that:

(48)
$$\psi_{6}(D) = \begin{cases} -(2A+1)\left[1+\left(\frac{D}{p}\right)\right] & \text{if } D \text{ is a cubic residue} \\ (A-1)\left[1+\left(\frac{D}{p}\right)\right] \pm 3B\left[1-\left(\frac{D}{p}\right)\right] & \text{otherwise.} \end{cases}$$

Substituting this into (2) we have

$$(49) N_6(D) = \begin{cases} p - 2A \left[1 + \left(\frac{D}{p} \right) \right] - 1 & \text{if } D \text{ is a cubic residue} \\ p + A \left[1 + \left(\frac{D}{p} \right) \right] \pm 3B \left[1 - \left(\frac{D}{p} \right) \right] - 1 & \text{otherwise.} \end{cases}$$

In case 2 is a cubic nonresidue, however, we can substitute more exact values for $\phi_3(D)$ from Theorem 6 into (10) to obtain:

THEOREM 7. If 2 is a cubic nonresidue of $p = A^2 + 3B^2$ and if $4p = L^2 + 27M^2$. $A \equiv L \equiv 1 \pmod{3}$, then

$$\psi_{6}(D) = \begin{cases} -(2A+1)\left[1+\left(\frac{D}{p}\right)\right] & \text{if } D \equiv m^{3} \pmod{p} \\ \\ 2A+L\left[\left(\frac{D}{p}\right)-1\right]-\left[1+\left(\frac{D}{p}\right)\right] & \text{if } D \equiv 2m^{3} \pmod{p} \\ \\ \left(\frac{D}{p}\right)2A-L\left[\left(\frac{D}{p}\right)-1\right]-\left[1+\left(\frac{D}{p}\right)\right] & \text{if } D \equiv 4m^{3} \pmod{p} \end{cases}.$$

Substituting these values into (2) we obtain:

THEOREM 8. If 2 is a cubic nonresidue of $p = A^2 + 3B^2$ and if $4p = L^2 + 27M^2$, $A \equiv L \equiv 1 \pmod{3}$, then the number of solutions of $u^6 + D \equiv v^2 \pmod{p}$ is given by

$$N_{6}(D) = \begin{cases} p - 1 - 2A \left[1 + \left(\frac{D}{p} \right) \right] & \text{if } D \equiv m^{3} \pmod{p} \\ \\ p - 1 + 2A + L \left[\left(\frac{D}{p} \right) - 1 \right] & \text{if } D \equiv 2m^{3} \pmod{p} \\ \\ p - 1 + \left(\frac{D}{p} \right) 2A - L \left[\left(\frac{D}{p} \right) - 1 \right] & \text{if } D \equiv 4m^{3} \pmod{p} \end{cases}.$$

4. Congruences in three variables. In conclusion we can apply our results to the number of solutions of congruences in three variables. We have:

THEOREM 9. The number $N_{k,k}(D)$ of solutions (u, v, w) of

$$(50) u^k + Dv^k \equiv w^2 \pmod{p}$$

is

$$N_{k,k}(D) = \begin{cases} p^2 & \text{if k is odd} \\ \\ p^2 + (p-1)\left[1 + \left(\frac{D}{p}\right) + \psi_k(D)\right] & \text{if k is even.} \end{cases}$$

Proof. Replacing D by $D\nu^k$ in (2) and summing over $\nu = 1, 2, \dots, p-1$, we obtain

$$\sum_{\nu=1}^{p-1} N_k(D\nu^k) = p(p-1) + \left(\frac{D}{p}\right) \sum_{\nu=1}^{p-1} \left(\frac{\nu}{p}\right)^k + \sum_{\nu=1}^{p-1} \psi_k(\nu^k D).$$

By (7) this becomes

$$\sum_{\nu=1}^{p-1} N_k(D\nu^k) = p(p-1) + \left(\frac{D}{p}\right) \sum_{\nu=1}^{p-1} \left(\frac{\nu}{p}\right)^k + \psi_k(D) \sum_{\nu=1}^{p-1} \left(\frac{\nu}{p}\right)^k.$$

But

$$\sum_{\nu=1}^{p-1} \left(\frac{\nu}{p}\right)^k = \begin{cases} 0 & k \text{ odd} \\ p-1 & k \text{ even,} \end{cases}$$

while the number of solutions with $\nu = 0$ is p for k odd and 2p-1 for k even. Hence

$$N_{k,k}(D) = \begin{cases} p(p-1) + p = p^2 & \text{for } k \text{ odd} \\ p(p-1) + (p-1) \left[\left(\frac{D}{p} \right) + \psi_k(D) \right] + 2p - 1, k \text{ even.} \end{cases}$$

Hence the theorem.

Using the expressions derived for special values of k earlier we can write down the following special cases:

$$N_{2,2}(D) = p^2$$
.

By (14),

$$N_{4,4}(D) = p^2 - 2x \left(\frac{\sqrt{D}}{p}\right)(p-1)$$
 if $\left(\frac{D}{p}\right) = +1$, $x \equiv 1 \pmod{4}$.

By (24),

$$N_{4,4}(2m^2) = p^2 - 4y(p-1)$$
 if $\left(\frac{2}{p}\right) = -1$ and $y \equiv 1 \pmod{4}$.

By (42),

$$N_{4,4}(\sqrt{2}m^2) = p^2 - 4y(p-1)$$
 if $\frac{\sqrt{2}}{p} = -1$ and $y/2 \equiv (-1)^{(p-1)/8} \pmod{4}$.

By (48),

$$N_{6,6}(m^3) = p^2 - 2A\left[1 + \left(\frac{m}{p}\right)\right](p-1).$$

By Theorem 7,

$$N_{6,6}(2m^3) = p^2 + \left\{2A + L\left[\left(\frac{m}{p}\right) - 1\right]\right\} (p-1)$$

$$N_{6,6}(4m^3) = p^2 + \left\{\left(\frac{m}{p}\right)2A - L\left[\left(\frac{m}{p}\right) - 1\right]\right\} (p-1)$$
if 2 is a cubic nonresidue.

By (43),

$$N_{8,8}(m^4) = p^2 - \left[2x + 4a\left(\frac{m}{p}\right)\right](p-1).$$

We note that $N_{6,6}(m^3) = p^2$ if m is a nonresidue. It can be readily seen that this is a special case of a general theorem, namely:

THEOREM 10. If k is oddly even and D is a k/2th power residue, but not a kth power residue, then

$$N_{k,k}(D) = p^2$$
.

This follows from Theorem 9 and the fact that the corresponding $\psi_k(D)$ is zero in this case by (11).

We hope to take up the cases k = 5 and k = 10 in a future paper.

APPENDIX: Cyclotomic constants of order 8.

The 64 constants $(i, j)_8$ have at most 15 different values for a given p. These values are expressible in terms of p, x, y, a and b in

$$p = x^2 + 4y^2 = a^2 + 2b^2$$
, $(x \equiv a \equiv 1 \pmod{4})$.

There are two cases.

Case I. p = 16n + 1.

116 EMMA LEHMER

Table of $(i, j)_8$

ji	0	1	2	3	4	5	6	7
0	(0,0)	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
1	(0,1)	(0,7)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1, 2)
2	(0,2)	(1, 2)	(0,6)	(1,6)	(2,4)	(2,5)	(2,4)	(1,3)
3	(0,3)	(1,3)	(1,6)	(0,5)	(1,5)	(2,5)	(2,5)	(1,4)
4	(0,4)	(1,4)	(2,4)	(1,5)	(0,4)	(1,4)	(2,4)	(1,5)
5	(0,5)	(1,5)	(2,5)	(2,5)	(1,4)	(0,3)	(1,3)	(1,6)
6	(0,6)	(1,6)	(2,4)	(2,5)	(2,4)	(1,3)	(0,2)	(1, 2)
7	(0,7)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,2)	(0,1)

These 15 fundamental constants $(0,0), \dots, (2,5)$ are given by the relations contained in the following table.

64(0,0)	p - 23 - 18x - 24a	p-23+6x
64(0,1)	p - 7 + 2x + 4a + 16y + 16b	p-7+2x+4a
64(0,2)	p-7+6x+16y	p - 7 - 2x - 8a - 16y
64(0,3)	p - 7 + 2x + 4a - 16y + 16b	p-7+2x+4a
64(0,4)	p-7-2x+8a	p - 7 - 10x
64(0,5)	p - 7 + 2x + 4a + 16y - 16b	p-7+2x+4a
64(0,6)	p-7+6x-16y	p - 7 - 2x - 8a + 16y
64(0,7)	p - 7 + 2x + 4a - 16y - 16b	p-7+2x+4a
64(1,2)	p+1+2x-4a	p+1-6x+4a
64(1,3)	p+1-6x+4a	p + 1 + 2x - 4a - 16b
64(1,4)	p+1+2x-4a	p+1+2x-4a+16y
64(1,5)	p+1+2x-4a	p + 1 + 2x - 4a - 16y
64(1,6)	p+1-6x+4a	p + 1 + 2x - 4a + 16b
64(2,4)	p+1-2x	p+1+6x+8a
64(2,5)	p+1+2x-4a	p+1-6x+4a

Case II. p = 16n + 9.

Table of $(i, j)_8$

j^{i}	0	1	2	3	4	5	6	7
0 ,	(0,0) (1,0) (2,0)	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
1	(1,0)	(1,1)	(1, 2)	(1, 3)	(0,5)	(1, 3)	(0,3)	(1,7)
2	(2,0)	(2,1)	(2,0)	(1, 7)	(0,6)	(1,3)	(0, 2)	(1, 2)
3	(1,1)	(2, 1)	(2,1)	(1,0)	(0,7)	(1,7)	(1, 2)	(0, 1)
4	(0,0)	(1,0)	(2,0)	(1,1)	(0,0)	(1,0)	(2,0)	(1,1)
5	(1,0)	(0,7)	(1,7)	(1, 2)	(0,1)	(1,1)	(2,1)	(2,1)
6	(2,0)	(1,7)	(0,6)	(1,3)	(0,2)	(1,2)	(2,0)	(2,1)
7	(2,0) (1,1)	(1,2)	(1,3)	(0,5)	(0,3)	(1,6)	(1,3)	(1,0)

where

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64(0,0)	1 15	15 10 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64(0,0)	p-15-2x	p - 15 - 10x - 8a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64(0,1)	p+1+2x-4a+16y	p + 1 + 2x - 4a - 16b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64(0,2)	p + 1 + 6x + 8a - 16y	p+1-2x+16y
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64(0,3)	p + 1 + 2x - 4a - 16y	p + 1 + 2x - 4a - 16b
$\begin{array}{llllllllllllllllllllllllllllllllllll$	64(0,4)	p + 1 - 18x	p+1+6x+24a
$\begin{array}{llllllllllllllllllllllllllllllllllll$	64(0,5)	p + 1 + 2x - 4a + 16y	p + 1 + 2x - 4a + 16b
$\begin{array}{llllllllllllllllllllllllllllllllllll$	64(0,6)	p + 1 + 6x + 8a + 16y	p+1-2x-16y
$\begin{array}{llllllllllllllllllllllllllllllllllll$	64(0,7)	p + 1 + 2x - 4a - 16y	p + 1 + 2x - 4a + 16b
$64(1,2) \qquad p+1-6x+4a+16b \qquad p+1+2x-4a \\ 64(1,3) \qquad p+1+2x-4a \qquad p+1-6x+4a \\ 64(1,7) \qquad p+1-6x+4a-16b \qquad p+1+2x-4a \\ 64(2,0) \qquad p-7-2x-8a \qquad p-7+6x$	64(1,0)	p-7+2x+4a	p - 7 + 2x + 4a + 16y
$64(1,3) \qquad p+1+2x-4a \qquad p+1-6x+4a 64(1,7) \qquad p+1-6x+4a-16b \qquad p+1+2x-4a 64(2,0) \qquad p-7-2x-8a \qquad p-7+6x$	64(1,1)	p-7+2x+4a	p - 7 + 2x + 4a - 16y
64(1,7) $p+1-6x+4a-16b$ $p+1+2x-4a$ 64(2,0) $p-7-2x-8a$ $p-7+6x$	64(1,2)	p + 1 - 6x + 4a + 16b	p+1+2x-4a
64(2,0) $p-7-2x-8a$ $p-7+6x$	64(1,3)	p+1+2x-4a	p+1-6x+4a
	64(1,7)	p + 1 - 6x + 4a - 16b	p+1+2x-4a
	64(2,0)	p-7-2x-8a	p-7+6x
64(2,1) p+1+2x-4a p+1-6x+4a	64(2,1)	p+1+2x-4a	p+1-6x+4a

REFERENCES

- 1. S. Chowla, The last entry in Gauss' diary, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 244-246.
- 2. L. E. Dickson, Cyclotomy, higher congruences and Waring's problem, Amer. J. Math. 57 (1935), 391-424.
 - 3. C. F. Gauss, Theoria residuorum biquadraticorum, Werke, 2, 90.
- 4. E. Jacobsthal, Anwendungen einer Formel aus der Theorie der quadratischen Reste, Dissertation (Berlin 1906).
 - 5. Emma Lehmer, On residue difference sets, Canadian J. Math. 5 (1953), 425-432.
- 6. L. von Schrutka, Eine Beweis für die Zerlegbarkeit der Primzahlen von der Form 6n + 1 in ein einfaches und ein dreifaches Quadrat, Jn. für die reine und angew. Math. 140 (1911), 252-265.
- 7. H.S. Vandiver, On the number of solutions of some general types of equations in a finite field, Proc. Nat. Acad. Sci. U.S.A. 32 (1946), 47-52.
- 7a. _____, On the number of solutions of certain nonhomogeneous trinomial equations in a finite field, Proc. Nat. Acad. Sci. U.S.A. 31 (1945), 170-175.
- 8. A.L. Whiteman, Cyclotomy and Jacobsthal's sums, Amer. J. Math., 64 (1952), 89-99, and Theorems analogous to Jacobsthal's theorem, Duke Math. J. 16 (1949), 619-626.

BERKELEY, CALIFORNIA