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1. The continued fraction

( 1 ) 1 +

where the an are positive integers and the dnφ§ for all n^tl, are
sometimes called C-f ractions. They were first studied by Leighton and
Scott [2]. It is well known (see [1]) that if

(2) lim I dn \ιjan=l and liman=cn ,

the continued fraction (1) converges to a function which is meromorphic
for all \z\ < 1 . The first results concerning the location of singular
points of functions of this type were obtained by Scott and Wall [4].
Considerably better results were recently obtained by one of the present
authors [5, 6]. In all of these results the continued fractions are as-
sumed to satisfy the conditions (2) or even more restrictive ones. In
this paper we are able to weaken condition (2) and replace it by

( a ) U m ( 4 | d n | ) 1 / - i . = l ,

( 2 ) '
( b ) there exists a sequence {an } such that

lim an = CXD and lim nhjk <C 2 .

While all but one of the previous results gave sufficient conditions for
the function represented by (1) to have the circle \z\ = 1 as a natural
boundary, we give here criteria which are sufficient in order that the
function has at least p singular points on the circle.

Let An{z)jBn{z) be the nth approximant of (1) and let σn and τn be
the degrees of the polynomials An(z) and Bn(z), respectively. Also, let
pn be the maximum of the degrees of A*(z) and B%(z) where A£(z)IB%(z) is
the wth approximant of (1) when the dn are replaced by their moduli.
Then
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Our theorem can now be stated as follows :

THEOREM. For the continued fraction (1) let pn be defined as above.
Further let

&=liminf—£*— ,

K

COS /"" =

ifH2<k<l,

Here [x] denotes the largest integer not exceeding x.
If the continued fraction satisfies conditions (2)' and if in addition

& < 1 , then the function to which (1) converges for \z\<^l cannot be
meromorphic on any arc of the unit circle of angular measurement great-
er than 2Γ. Thus the function has at least p singular points, which are
not poles, on the unit circle. If Jc=O the function has the unit circle as
a natural boundary.

2. To establish the theorem we first note that the condition (2)' (a)
is sufficient to insure the convergence of (1) in the wider sense, and
hence to a meromorphic function, for all \z | <^1.

The condition (2)' (b) is sufficient to insure that

( 5 ) Aft

This is seen as follows. One shows by induction that pn is the sum of
not more than (n-hl)/2 different ay, v=l, •••, n. Hence hn—pn is the
sum of at least (%4-l)/2 different av, y = l , •••, nΛ-1. Let {anjc} be the
sequence which is assumed to satisfy lim anjc==^. Now denote by k(n)

the number of elements of this subsequence which have a subscript less
than or equal to n. Then nk(n:> + iy>n. Also in view of the second
condition in (2)' (b) ^ U ) + 1 <(2-ε)(&(^)- f 1), for n sufficiently large.
Combining these two inequalities we obtain

k(n) > n(ll2 -f 7), for n > nQ.
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It follows that hn—pn contains at least ψi different anic, for all n^>n0.
Now, if M is a positive number, there exists an integer k0 such
that I anΊc I > M for k> kQ. Then for all n > max (n0, 2^/7), (hn-pn)l(n4-1)
]> ηnM\2(n -f 1) and equation (5) is established.

Consider now the continued fraction

(6) i +

and denote by /^w), f4w) and kCm:> the quantities in (6) corresponding to
hn, pn and k in (1). It is then clear that the function fm(z) to which
(6) converges and the function f(z) to which (1) converges have, except
for poles, the same singular points.

LEMMA 1. &Cm)=lim inf p — -

is independent of m.

Proof. We observe that ([3], p. 15)

L h
rt"n — 'bm

and

The lemma then follows if for a fixed m we allow n to tend to

It may also be noted that l im-^ ^ — =oo, if (5) holds.
n +1

Let 7 be an arbitrary positive quantity. There will then exist an
m such that

(7) | d j > _ L ( l - 7 ) * » for n>m.
4

The following lemma will be useful.

LEMMA 2. If f(z)=^avz
v has a circle of convergence of radius great-

v=o
oo oo

er than p and if h(z)=Yibvz
v is such that h^(p)=^Yi\bv\ p

v exists and if
V=0 V=0

f(z)h(z)=Σcnz
n and Λf=max | f(z) | , then

n = 0 \z\=p

(8) \cJ<

Proof. To prove the lemma we note that by Cauchy's inequality
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n

Now cn = Σ αΆ-v hence,
o

v=o

This completes the proof of the lemma.

3* Now a meromorphic function /(#) with /(0) = l can be written

as

where p(O)=q(O) = l and p(z) and q(z) are holomorphic wherever f(z) is
meromorphic. It is known (see [7]) that

( 9 ) p(z)Bn(z)^q(z)An(z)=(^innί dk)zhn+ . . . .

The omitted terms are of degree higher than hn in z. If we set

n+i

n

and introduce An=^An\πn, Br

n=^Bn\πn , we have

V ^
— 2-4 ar

0

It is easily seen (see [4]) that

We now introduce the transformation

1 — βw
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and note that φ is holomorphic for | w | < Ijβ and that it reduces to the
identity transformation as a->β. Replacing z by φ(w) in f(z) we ob-
tain

)) = ̂ \ ,
Q(w)

where P(w) and Q(w) may be so chosen that P(0)=Q(0)=l and that P
and Q are holomorphic wherever F(w) is meromorphic. Relation (9) now
becomes

(11)

Let us set

=14- gxw 4- q2w
z Λ ,

and assume that both these series have a radius of convergence p^> 1 + ε.
It is then easy to see that all ceofficients in the expansion, in powers

of (1 + e), of

V 1 - m + ε

where r is a positive integer, are positive. Hence if ε is chosen so small
that l + ε<l//9, the lemma applied to the product

— pw

yields

\ 1< Mί B"((l 4-+

Here B'ή is the polynomial obtained from Bn when each coefficient δ£w)

is replaced by \b^\. M1 is the maximum of \P(w)\ for | w | = l + e.
Similarly, for

V-βw
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Now set

Δ_

With the help of (10) we obtain

Thus if M—max(Mlt Λf2) and uhn is the coefficient of whn in the expan-
sion of the left-hand side of (11), then

If wJS) is the coefficient of wh^° in the expansion of the left-hand
n

side of (11) for the continued fraction (6) we have, in complete analogy
to (14),

(14)'

On the other hand, for m large enough, one can write

n+i

n dk

Thus,

(1-3?) » <;8 w ~ m + 2

Taking the (h™ — p™) root on both sides and letting n tend to infinity
we obtain

v " = 1 + e

Here &Cm) is independent of m. The same applies to e since it depends
on those singularities of fm(z) which are not poles and these, as we
pointed out earlier, are the same as those of f(z). Thus we can omit
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the m and can let η tend to zero, since it can be arbitrarily small, and
obtain

l + e

This can be rewritten as

Now making use of the fact that 1 -f εjk <I (1 +• e)ιlk for &<?1 we can

write

Here we set sl>l/(l-/3(l-hε)) and solve for e. Since s > l / ( l — β) this
leads to

(15) £ " k

= (1-/3) l-ks(β-a)

Thus by imposing on e the condition

.<•=!.-1.-1, s>i,

which insures a fortiori that 1 -f ε < 1/β, we have obtained in (15) a fur-
ther condition which ε must satisfy. It is clear that for a sufficiently
close to β this second condition becomes much stronger than the one
arbitrarily imposed on ε. This allows us to conclude that in a circle of
radius 1 + ε', where ε' fails to satisfy (15), at least one of the two func-
tions P or Q must have a singular point and hence F{w) must have a
singular point not a pole somewhere in \w\<^l-\-εf. Since φ(w) has
no singular points in \w\<Ll + ε'<^llβ, the singular points of F{w) in
this region are caused by singular points of f(z) in the image of this
region under the mapping z=φ(w). Since f(z) is known not to have
any singular points in |s|<Cl we can further narrow down the location
of the singular points to that part of the image of \w\<Ll + εf which
is outside the unit circle in the z-plane. This is a sickle-shaped region
which as a->β contracts to an arc of the unit circle symmetric about
2=1. Our aim now is to choose β (k of course is fixed) such that this
arc becomes as small as possible.

Unless e<C(β--cc)(l + ε)l(l + β(l + ε)), the arc discussed above will be
all of the unit circle. This suggests that β should be so chosen that
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Since we are interested only in the case where β — a is very small, we
take

(16) fe=A|

that is

Clearly this can lead to a β > 0 only if & < 0 < 1 . Substituting (16) in
(15) we obtain

(18) e=ψ^

Let r be the angle at which the circle | z | = l is cut by the image of
the circle | w | = l + e under the transformation φ. If w0 is such that
\φ(wQ)\=l then τ-==arg^0-{-O(^ —α) and, hence,

From (18) follows

and hence

Noting that as a-^βt θr~+θ we can write

Thus if we denote by r* the limiting value of γ as a-+β and replace
β by its value in terms of k we have

The minimum value of /•*, say Λ is attained for 0 < & < l / 2 for
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For ft=l/2, we have #=1/2 and for &>l/2, since 0 is restricted to the
range & < 0 < 1 , we find that r* is minimized for 0=fc. The resulting
values are

\^l^{VMΪ+Zk)), if
COS /* = + ΔK

-k , if l / 2 < f c < l ,

To complete the proof of the theorem it now suffices to observe that
the conditions imposed on f(z) hold equally well when z is replaced by
zeiψ for arbitrary ψ. It follows that there is no arc of angular measure-
ment larger than 2Γ on the circle | z | = l which is free from singular
points. From this follows immediately that the minimum number of
singular points of the function is lπ/ΓJ + 1.

We conclude by observing that if there exists a subsequence {<xnm}
such that

(19) ?

then lim ^ r i ^ l im
K

It follows that &<;i/A<l and we can state the following corollary to
our main theorem.

COROLLARY. // the continued fraction (1) satisfies conditions (2)' and
(19) then the conclusions of the theorem are valid with k<LljA.

REFERENCES

1. W. Leighton, A test ratio for continued fractions, Bull. Amer. Math. Soc, 4 5 (1939)
97-100.
2. W. Leighton and W. T. Scott, A general continued fraction expansion, Bull. Amer.
Math. Soc, 4 5 (1939), 596-605.
3. O. Perron, Die Lehre von den Kettenbruchen, Leipzig, 1929.
4. W. T. Scott and H. S. Wall, Continued fraction expansions for arbitrary power
series, Ann. of Math., (2), 4 1 (1940), 328-349.
5. W. J. Thron, Singular points of functions defined by C-fractions, Proc. Nat. Acad
Sci. U.S.A., 36 (1950), 51-54.
6. , A class of meromorphic functions having the unit circle as a natural bound-
ary, Duke Math. J., 2 0 (1953), 195-198.
7. H. S. Wall, Analytic theory of continued fractions. New York, 1948.

STANFORD UNIVERSITY AND

UNIVERSITY OF COLORADO






