ENTIRE FUNCTIONS

A. C. SCHAEFFER

1. Introduction. The object of this note is to prove several re-
sults, which are related in that each is concerned with entire functions
of exponential type. An entire function f(z) is of exponential type =
if for every e>0 there is a number A=A(¢) such that

(1) | f(R)| < Aelroiel,

The function is of precise type r if (1) does not hold for any e<C0.

The first result is concerned with entire functions which are bound-
ed at a sequence of points. Miss Cartwright’s theorem states that if
f(2) is an entire function of exponential type 7, r<n, and is bounded
by 1 at the integer points,

(2) lf(n)lgl’ n=0y :’:1,:{:2,"‘,

then f(z) is bounded on the entire real axis by a number which depends
only on r,

(3) | f ()| <<M(z) , — oo < <o,

Proofs of this and stronger results have been given by Cartwright,
Pflunger, Macintyre, Boas, Korevaar, Duffin and Schaeffer, Levin,
Ahiezer, Agmon, and others. These results are discussed in [2, Chapter
107 where further references are given.

Let N be a sequence of integers. The first question to be con-
sidered in the present note is: what conditions must N satisfy in order
that for every entire function of exponential type less than = the con-
dition

(4) [f(n)|=1, ne N,

will imply that f(z) is bounded on the real axis? To answer this
question we define a function A(¢) for £>0 by means of the given
sequence N. Let 2(t) be the greatest integer ¢ such that every inter-
val of the real axis of length ¢ has g or more elements of N. For any
positive ¢ there is at least one interval, which may be supposed open,
of length ¢ which contains precisely 1(¢) elements of N, and every
interval of length ¢ whether open or closed contains 2(f) or more ele-
ments of N. The following result is to be proved.
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THEOREM 1. If N is a sequence of integers, the condition

(5) lim A(8) _1

t—>c0 t

is necessary ond sufficient in order that every entite function of ex-
ponential type less than m which is bounded on N be bounded on the real
axis.

Slightly more is true than stated in the theorem, for there is a
uniform bound in the following sense. If (5) is true then any entire
function f(z) of exponential type r, <z, which satisfies (4) must also
satisfy

(6) | fx+iy)|<M(r, N)e "',

Thus the bound for |f(«)| depends only on N and the exponential type
of f. Relation (6) also gives a dominant for f(z) over the entire plane.!
As r approaches = the value of M(r, N) must approach infinity. This-
was shown by Boas and the author, [2] where further references are
given, in case N consists of all the integers, and is a fortior: true for
any sequence of integers.

The remaining topics to be considered in the present work center
around research problem number 4 in the Bulletin of the American
Mathematical Society [3]. This problem, which is due to Boas, reads as
follows.

“Let f(z) be an entire function of exponential type. It is well
known, and easily proved by Phragmen-Lindelof arguments, that if f(x)
48 bounded or approaches o limit as x—co, then f(x+1wy) 18 bounded or
approaches a limit, for each y, as x—co. If |f(x)| approaches a non-
zero limit, does |f(x+1y)| necessarily approackh « limit?’’ To answer
this question an entire function f(z) of exponential type will be defined
such that

(7) lim | (@)
exists and is finite, but
(8) lim | £(@+iy)|

exists only for y=0.

In view of this example it is natural to ask what hypothesis in
addition to (7) will imply that (8) exists for all y. It is to be shown
that if (7) exists both for f and one of its derivatives then (8) exists

1 A similar dominant was obtained by Miss Cartwright which strengthens inequality

3).
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for /° and all its derivatives. More precisely, we have the following
theorem where f®(z) denotes the derivative of [f(z) of order », with

f@)=r""2).

THEOREM 2. If f(2) is an entire function of exponential type such
that for some m, m_>>1, both | f(x)| and |J"(x)| tend to finite limits us
x— oo then

(9) lim | fO(@+y)|

x>0

exists and is finite for all y and for v=0,1, 2, «-.,

2. Proof of Theorem 1. The proof of Theorem 1 will depend in
part on the following result of R. J. Duffin and the author [1], [4], and
[2] where further references are given.

THEOREM 3. Let {1}, n=0, +1, +2, -+, be a sequence such that

Mn_zml;\2—_3>0 y ’n#m,

for some 8, A. If f(2) is an entire function of expomential type t,
r<m, such that
[f(4,)]=1
then
[f(x+iy)|<Re!

where R depends exclusively on =, &8, A.

It is first to be shown that (4), (5) imply the boundedness of f(x)
for any entire function of exponential type less than n. Thus suppose
that N is a sequence of integers for which (5) is true, and consider any
fixed number r in the range 0<r<x. If f(2) is an entire function of
exponential type r which satisfies (4) and

ﬂ-—
a="""7

T+T
then

re=f(12,)

is an entire function of exponential type z’.
. TtT
5 -

Now F(z) is bounded by 1 at a sequence of points {g¢,} defined for
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ne N, where
m=n(l—a), ne N.

Using relation (5) it then follows that if 7' is sufficiently large, each
interval of the real axis of length 7T contains at least T element of
{¢.}. Let T be an integer. In each of the intervals

WVI<aoe<(v+1)T

choose T' elements of {g,} to form a new sequence {2,!. Then {2,} is
defined for m=0, +1, +2, ---, and

Hm_m[<Ty m=0, +0, +2, «--,
llnl—'zn!?ﬁl_(s y m#?’l;.

Since r'< 7, Theorem 3 shows that F'(z) is bounded on the real axis,
and indeed

| Fl(x+y)| <R ev.

This proves that condition (5) is sufficient in Theorem 1, and since the
sequence {1,} depends only on r, N we see that R is a function of
7, N only, which gives inequality (6).

In the proof of the necessity of condition (5) in Theorem 1 the
following lemma will be used.

LEMMA. If % s an integer, h_=>5, and in the closed interval
—hZa<h there is a set N' of integers whose number is p, p=>2, then
there is an entire function F(z) of exponential type p,

P
32h

H=r— ’
whose maximum modulus on the real awxis occurs at some point x, satisfy-
ing |x|<4h+1, and F(x,)=1, but

|F(x)| <2, || >14h—1,
|F(n)| <2, néN'.

Proof. Since the object is to define a function F'(z) which is of
exponential type ¢ and is small on the integer points except at the set
N’ we begin with the function sin 7z, which is of exponential type =
and vanishes at all the integers.

If »n,, n, -+, n, are integers which belong to N’ then the function

10 fie)=—Sn7Z
. 1 11 sin 7E2)
v=1 164
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1s of exponential type

11 f=n— T

(11) ! 16

However, this function satisfies the functional relation fi(z+164)=
+ f1(x) so it attains its maximum modulus over the real axis at points
is each interval of length 16~. If m,, m,, ---, ms are the remaining
integers which belong to N’ then the funetion

@

. wT V
vl=11 (z—m,) l[ sin 16% (z—mn,)

=1

(12) Fi@)= g - sinmz

remains of exponental type g’ where p’ is defined by (11), but it is
small when |x| is large. The function f,(z) vanishes at all integers in
the range |z|<<15kA—1 except those that belong to the set N’. It is
to be shown that if «, 8 are suitably chosen then a suitable constant
times the function f.(z) is the function F'(z) whose existence is asserted
in the lemma.

Let a=p/2 if p is even and a=(p+1)/2 if p is odd; and define

¢1(z)=/1=11 sin 16k (z—mn,)

) =1l (z=m.)

Here m,, n, are together all the integers which belong to N’ so we
have

-1
=p—q > p—4 .
f=p—a= 5
By considering the individual terms of ¢/(x) separately it is clear that

[ (1/2)|<| pu(@) | , 2n4-1<|xw| <14h—1.

The function f;(2) defined by (10) may be written

fi(2)= sin 7z

$1(2)

and it therefore satisfies the inequality
(13) L2 A/2) | > fi(2)], 2h+1<|o| <147 —1.

Since |fi(x)| is periodic with period 16% the maximum modulus of fi(x)
on the real axis is attained at some point x, in the interval |z,|=< 8A.
But then (13) shows that

(14) |2 <20 +1 .
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Also, fi(z) is of exponential type p, and since «_>p/2 we have p/ < s.
The function f.(z) defined by (12) may be written

o @)
RE=" 0

Now f.(2) attains its maximum modulus on the real axis at some point
x, satisfying |a,|<4h+1. For if |x|=>4h+1 then using (14), we have

()| = (3 +1)° > o ()] -

Hence
(1) = Sa(x) <]f1(9‘7)| <| [z, el 4041
|/ ()] e (@) 1] [[2(x)] [w| > 47 +1.
We also have
[p.(x)| =4° (Bh 4 1)° > 4°|¢p, (2] , |z| >14h—1,

where we have used the supposition ~2>>5. Thus for |x|>142—1 we
have

6. (@) “4flpu(@)] 4 T 4
Since #>(p—1)/2 the function

0
F(2)=
= @)

has all the properties stated in the lemma.

We now complete the proof of Theorem 1 by showing that condi-
tion (5) is necessary. It follows from the definition of A(f) that for any
sequence of integers we automatically have

t oo

lim sup th) <1.

Thus suppose N is a sequence of integers such that

(15) lim inf "(tt) —r 1.

It is to be shown under this supposition that there is an entire function
G(z) of exponential type less than = which is bounded on N, but not
on the real axis. For this purpose the first objective is naturally
to find arbitrarily long intervals [a—h, a+A] in which we can use
translations F,(z—a) of the functions defined in the lemma. The
required function G(z) will then be a suitable linear combination ¢, F,
of these functions.
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Let
_1+7

5t 9

If %, is sufficiently large the following statement is true. Given a
positive number 7 and a positive interger A, A>h,, there is a closed
interval I of length 24 lying entirely in |[x|>» and with integer end-
points such that the number of elements of N lying in I is less than

2hy, .

This can be proved by means of (15). The number of integer points
in I which do not belong to N is therefore greater than

(16) 2h+1—2h, .

Let H be an integer such that H>h,, H_-5; and, for later pur-
poses, we also choose H so large that

(17) S h4-rC-T

h=H

For each integer % satisfying %> H there is a closed interval I, of
length 24 with integer end-points and center at x, where

(18) | a1l >, | + 28R +14 h>H,

and the number of integer points in I, which do not belong to N is
0n» Where by (16),

(19) pu2h(1=7)+1 .
Take
(20) |2y| > 28H .

We now use the lemma, where we can clearly translate the inter-
val. The set N’ of the lemma is the set of integers in I, which do not
belong to N. There is an entire function F,(z) of exponential type 2,

w170
16

which satisfies
(21) |B ()| <4 m -0, | —a,| = 14h— 1.
In the last inequality we have made use of (19). Also,

(22) |F, (n)| << 4-nCi-7)) ne N.
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We note also that because of (18) the intervals |x—w,|<4A-—1 arc
disjoint ; hence at each point = of the real axis the inequality

(23) |27, (@) 4"t

is satisfied except possibly for one value of %. Kach function £',(x) has
maximum modulus 1 on the real axis, and this maximum is attained at
some point x;, satisfying |z, —x,|<4h-+1.

How consider the funections

G2 = N hE,(2), m=Il, H+1, -+
=1
If v lies in the range H=<_v<m then by (21),

|G @) v — SR ()] v — XAt
h#y I

sl

so (17) yields

To obtain a dominant for G, (z) on the real axis which is independent
of m we note first that if « lies outside all the intervals |x—w,| <142 —1
then (23) is valid for all A, and

| G ()] <1 .
If, on the other hand, x lies in one of these intervals, say
|e—x,|< 14k —1, then we shall have

Go(@)| <+ N AT g
h=IH

But (18), (20) imply that |x,|>>28% for all %2, so the inequality
| —a,|< 14k —1 shows |x|>14k+1. Thus

25 a1+ 12l
(25) |Gu@) =1+ )

Now G,(2) is an entire function of exponential type 2, so a
dominant which is independent of m can be obtained for G, (z) over the
entire plane by use of (25). One argument makes use of Theorem 3.
The function {G,(2)—G,, (0)}/z is bounded by 3 on the part of the real
axis for which |#>>1, and it is an entire function of exponential type
2, 2<=z. Thus the function is bounded by 3 at a sequence {4,} which
satisfies the conditions of Theorem 3. Hence

|7 (2 +iy)— G, (0)| <R |z|eM "

where R’ is independent of m.
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Since |G,,(0)|<1 the functions G,(z), m=H, H+1, ---, are uni-
formly bounded in each bounded domain, hence for some subsequence
of m tending to infinity the functions G,(z) tend to a limit G().
Moreover

|G +uy)<1+R'|z|e*'?!",

so G(z) is an entire function of exponential type 2, 2< z. Inequalities
(22), (17) show that

IG(n)| <1, ne N,
but inequality (24) shows that

|G ()| =2r—1, v=H, H+1, ---,

and G (z) is not bounded on the real axis.

3. The question of Boas and proof of Theorem 2. An entire
function f(z) of exponential type is to be defined for which

lim | f(z+1y)|

x>0

exists if and only if y=0. This function will be

e s i1 %)

where
, 7 AT
A"=~l/2 exp< 4 0 "> .

Here
0,=41

is to be determined. Pairs of zeros of f(z) are replaced by their con-
jugates on changing the sign of 6,. Thus the modulus of f(x) is in-
dependent of the choice of 4,, but |f(x+4y)| does in general depend
on ¢,.

In case d,=1 for all n let the function be designated fy(z), that is,
define

fo(z)zze'”ﬁ (1_ 2z > _g-me SINT(L=0)2

n* 7(1—1)

Likewise, if 6=—1 for all # call the function f(2),

ey (14 22 _ —mesinm(1H1)2
Si@)=ze ]| <1'—/m2> RN
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Thus we have

7 : N (,’v‘ﬂ
(27) lim |f, (& + 1)l 9% 9
(28) fim | fi (@)=, 1/”2

The 4, are 1o be chosen so that in some neighborhoods f(z) will have
approximalely the same modulus as f,(z), while in other neighborhoods
J(&) will have approximately the same modulus as f(z).

Let N, N, -+« be a sequence of integers such that

Nv‘l_:;>4N; ’
and choose N,==1. Define
an:(_l)y ’ N,§:7’L<:N~,+l-

This completes the definition of the function f(z). I1f » is even then
for z in the ring N:<{|2|=2N; we have

f) — 1— 22 - 1—2*/2;
#1 =< log = ™% 14+ >} llo :
‘ o8 ?) *‘n%'v\, glan"’i/2zZ L & 1—22%/in?
Using the estimates
| log (L—w)|=<[2 /] , ul-< 172,
and SPnr <k, Swa*<2/k we have
‘%3 log £ | 18 N3 = |2 = 2N
fl)(‘) N/
Likewise, if v is odd we have
#log LB | 18 N;=Z|z| 2N,
Ji(z)

These inequalities together with (27), (28) show that

Tyl
lim su riy)l= %
im sup |/(@+ )] on/ 5
and
-nlyl
hm 1nf T+ .
| (& +iy)| = ‘/2

It is also clear that [(2) is an entire function of exponential type.
Indeed,
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etz i (is 2 ) oo
n=1 n

We now turn to proof of Theorem 2. Thus suppose thal f(z)
satisfies the conditions of Theorem 2, so

lf(z) gAeﬂzl

for some A4, ~. Since |f(x)] has a finite limit it follows that the func-
tions f(2)e’* is bounded on the positive halves of the real and
imaginary axes. Then the Phragmén-Lindelof principal shows that since
this function is of order one it is bounded throughout the first quadrant.
Likewise, f(z)e~* is bounded in the fourth quadrant, and we have

(29) | f(@+ay) | <Be'", x> 0.
write

L=lim|f@)|,  L,=lm|fo(@)].

o0

Now let «;, @, a;, --+ be any sequence of real numbers such that
a,—o as n—co. Because of (29) the functions f(z+a,) are uniformly
bounded in each bounded domain for large n. Thus there is a sub-
sequence b, b,, b,, --- of the a, such that the functions f(z+5,) tend
to a limit F(z) as n becomes large,

F(z)=lim f(z+b,) .

Then F'(z) is an entire function of exponential type, indeed it satisfies
|F(x+iy)| << Be™""
for all real 2, y. We also have

FO>(2)=lim f*(z+9,) , v=0,1,2, ---.
The theorem will follow if it is shown that the value of |F™(z)] is
a function of y only and is independent of the particular sequence
Cyy Oy, oo
Now F(z) has the constant modulus L on the real axis. If L=0
then F(z) and all its derivatives vanish identically so (9) is true. Thus
suppose Lz~=0. Then F'(z) can have no zero, for it would then have a
pole at the conjugate point. Thus

(30) F(z)=Leé" ¢t
where 7, « are real numbers. Now

jﬁ(m)(z)zL@iy(,l‘a)m euu ,
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and F“(z) has the constant modulus L, on the real axis. This gives
the relation

(31) Q= 4= (Lm/L)l fm .

If L,,=0 then a=0 for all sequences and (9) is true. Thus sup-
pose L, >0. Now consider the values of |f(z+4)]. If one sequence
oy, @, --+ leads to a function F(z) of the form (30) with «=(L,/L) "™,
and another sequence leads to a function with a=—(L,/L)'™ then

lim sup |f(@+2)|=Le™", liminf |f(x+7)[=Le " .

Now |f(x+14)! varies continuously as « increases, so there will be a
sequence I, @,, +-- with x,—>c as n—>o such that |f(z,+7)|=L. A
subsequence of the functions f(z+x,) will tend to a limit F'(z) satisfy-
ing |F(3)|=L. But F(z) will be of the form (30), so «=0. This
contradicts (31) and proves the theorem.

Indeed, the forgoing argument proves slightly more than the
theorem states. First, under the conditions of Theorem 2 we have

lim |f (@ +iy)| =Lla| e , b=0,1,2, ---,

where L, «a are independent of », y. Secondly, the requirement that
f(z) is an entire function of exponential type can be replaced by the
supposition that f(z) is regular in some half-plane x>¢, where it is of
exponential growth.
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