THE PROBLEM OF CONTINUOUS PROGRAMS

HowARD OSBORN

1. Introduction. In a discrete programming problem one selects a
policy at specified times which governs the behavior of some process
during the succeeding time intervals; the problem is to find that pro-
gram, that is, sequence of choices of policy, which maximizes the value
of some pre-assigned functional associated with the process. It is of
interest to learn how the values of the functional behave when policy-
making decisions are required more and more frequently.

As an example of a discrete programming problem, suppose an
investor re-distributes a fixed capital investment among N related busi-
nesses once a week. The income rate QF of the kth business during
the ¢th week [¢, ¢;.,) depends on the income ¢;=(q}, -+, q’) up to the
beginning of the week, where ¢ is the income of the kth business, on
the policy, that is, distribution of capital for the week, and on the
time ¢,. Suppose further that the businesses are risky in that if one
fails all fail, and that the probability P,(¢;.,—t;), of failure during a
given week, assuming the businesses exist at the beginning of the
week, depends on the policy for the week and the time of year. Setting
Q;=(Q;i, -++, Q) and letting p, represent the probability of survival up

to time ¢;, it is clear that ¢, and p, satisfy difference equations, stated
more explicitly in § 2,

(1.1) i1~ G=Q(t; ., — ;)
(1.2) Disi—Pi=—D0 Pt — 1) ,

in which the right-hand sides at times ¢, depend on ¢;, p, and a policy,
which we represent as a point of the set X of all possible distributions
of capital. The investor’s programming problem is to select a policy

for every week of the year which will maximize the expected total
income

(1.3) F=S plQUIE 1)

of all the businesses, where

(1-4) Q=319 .

It is assumed that he does not care what happens after the year is
over.
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A similar example, the “gold-mining problem” is discussed in [1-4,
7, 8]. More realistic examples can easily be constructed in which p is
interpreted as the efficiency of the process rather than the survival
probability.

The question of interest in the present paper is that of the behavior
of the l.u.b. of the investor’s expected total income as he shifts his
capital around more and more frequently rather than just once a week,
assuming that @ and P are defined for all ¢.

The method of investigation is to introduce continuous programs,
in which the policy-maker is permitted to change his policy at any time
he chooses. In this case ¢ and p are computed by differential equations
corresponding to (1.1) and (1.2) where @ and P depend in any interval
between policy changes on the policy chosen for that interval.

The principal result, given in §7, is that for functions @ and P
satisfying hypotheses given in §8 the sequence of lu.b.’s for the
approximating discrete programming problems converges, and that the
limit is the l.u.b. of the corresponding functional in the continuous case.

2. Definitions. We shall state the programming problem more ex-
plicitly, starting with the continuous case. A policy-maker divides the
closed-open unit interval I=[0, 1) into a finite number of closed-open
sub-intervals [0, ¢,), [¢, t,), - -+ and associates with each sub-interval a
policy from an arbitrary set X. Thus a program on I is a step-function
7 on I with values in X. Suppose a real-valued function P on X and I
is given such that if the policy-maker has survived during [0, £) the
probability that he will not survive [¢, t+ 4) is P(x, t)4+0(4), where «
is the policy associated with the sub-interval of I containing ¢. Let B
be a given Banach space, whose points will be called incomes. Suppose
that a B-valued function @ on B, X, and [ is given such that Q(b, =,
t)4+o(d) is the income earned during [¢, ¢+ 4), where b will be an
income earned during [0, ) and « is given as before. Let p(z, t) re-
present the probability of survival and ¢(z, t) the income earned during
[0, £) for the program =. Then these functions satisfy the equations

2.1) o, H)—1— S:P(n(s), s)p(z, )ds

(2.2) e, H)=a(0)+ | QUatr, 5), 7(9), 5)ds .

The continuous programming problem is to determine a program on [
which makes the expected total income

2.3) g(n)=S;p(7r, 9)llda(r, s)||=§;Hp(ﬂ, 9Qe(=, 8), =(s), 8)Ilds
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as large as possible. We set

2.4) G=s101£ 9(m) .

Let E; represent a finite subset of I with points ¢,=0, ¢, ---,¢,,
(t,<t,..<<1). A program on E, is a function on E, with values in X
which is constant in the closed-open sub-intervals of I with initial points
on E,. If the policy-maker has survived during [0, ¢;) the probability
that he will not survive the interval [¢,, ¢;,,) is taken as P(x, ¢;)(t;1—t;)
in the discrete case, where z is the policy associated with the sub-interval.
Let Q(b, x, ¢,)(t,.,—t;) be the income earned during the same period,
where b will be an income earned during [0, ¢,), with « as before. Let
py(m, t) represent the probability of survival and g (=, t) the income
earned during [0, ¢) for the program =z on E,. Then these functions
satisfy the equation

pj(”y t)=1— ilp(”(th)y tn)pj(”, t)(Ene—1s)
(2.5) =0

~1={"P(x(6), 9w (., s)m)

(Ij(n-v tt)ZQ(O)+§ Q(QJ(”’ th)f ﬂ(th)r tlb)(th'l‘l—fh)
(2.6)

b
~a(0)+| Qe (x, 9), =(6), (o)
where the meaning of the discrete measure my(s) is clear. The discrete

programming problem associated with £, is to determine a program on
E; which makes the expected total income

@7 £10=[ I, )00z, ), 76), 9ldm (s
as large as possible. We set

(2.8) Fj=ﬂs;}g f,(n) .

Consider a sequence {E,} of sets E, such that E,,, D E; and OlEj=E*,
i

where E, is everywhere dense in I. We shall show in §6 and §7
respectively that the sequence of discrete programming problems asso-
ciated with {E,} approximates the continuous programming problem for
any P and @ satisfying the conditions of §8 in the sense that the
sequences {f,(7)} and {F,} converge and that

(2.9) lim £ (=) = ()
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and
(2.10) lim F,—G .

Jooo

3. Assumptions. Several restrictions on P and @ are necessary in
order to guarantee the existence of appropriate families of solutions to
(2.1), (2.2), (2.5) and (2.6). We assume

(i) P is a positive uniformly continuous function on I, the
3.1) modulus of continuity being uniform in X.

(ii) P is bounded by a constant P independent of X.
and
(i) @ is a uniformly continuous function on I, the modulus
of continuity being uniform in X.
(ii) @ satisfies the Lipschitz condition ||Q(, z, t)—Q®, x, t)]|
<Q|b—"b'|| where @ is a constant.

(3.2)

The Picard theorem and the condition of uniform continuity on @
imply that for any program = mapping [ into a fixed element X* of X
there exists unique function ¢*(¢)=q(=, t) of I which satisfies (2.2) every-
where in I. We add the restriction

(3.2) (ili) There exists an X*e X and a constant C such that
lR(¢*(®), =, t)—Q(a* (), %, | <C

uniformly for ze X and tel.

4, VUniform boundedness. We shall need some kind of uniform
bound on @ in 8§ 5 and 6. One cannot merely assume that a bound exists
for all b, 2, and ¢ since @ only satisfies a Lipschitz condition in b, and
might be linear, for example. One might assume a uniform bound only
for those values of b which can possibly arise in I for any admissible
program. This assumption could easily be verified in special cases; the
best way of introducing it in general is by imposing the restriction (3.2)
(iii). We shall show that this restriction indeed gives the required
uniform bound.

First we state a familiar lemma which will be used several times.
For a proof see [5].

LEmMMA 1. If u(t) =0 and v(t)=0 and A is a positive constant such
that

(4.1) wt)< A+ S:u(s)v(s)ds
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then
(4.2) u(t) < A exp S:v(s)ds .

It should be noted that there is no trouble in verifying the existence
of solutions of (2.1). For in between the steps of = the usual existence
theorem applies. At the beginning of each new step one merely uses
the initial values obtained at the end of the preceding step, which does
not affect the convergence. A similar comment holds for (2.2).

LEMMA 2. If 7 18 any program on I, then there exists a constant
M such that

(4.3) IQ(a(=, &), =(t), HI=M

uniformly in = and €.

Proof. Let z* be the point of X used in (3.2) (iii). Then for any
7 on [

laGe, =a* @1 = 10, 9), =), 9-Qa*(), 2", s
@4 =0+ 1R 9. 7(5), )~ ), =), ids

<0+Q | lats, 9-¢*®)lids
hence
(4.5) lla(m, t)—g* ()| < Ce?
by Lemma 1. Thus
IR(a(x, 1), =(t), £)—Qg*(¢), «*, 1)
(4.6) <IIQ(q(, #), =(t), t)—Q(g* (), =(t), t)l|

+1Q(* (), (t), £)—Qa*(?), =*, Bl
< C(Qe”+1) .
Since Q(q(t), @, t) is clearly bounded in I the lemma follows by the tri-
angle inequality.
5. Programs on E,. We consider continuous programs in which

the policy changes are permitted to occur only on points of E, and set

(5.1) G,.=sup g(n) .

7 on Hy

LEmMmA 3, G, =G,
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Proof. Trivially G,<G since E, is a subset of I. To show the
opposite inequality suppose that = and =’ are any two programs on I.
For convenience we let ¢, p and ¢’, »* be the functions on I determined
by 7 and =’ respectively and omit the dependence on ¢ under integral
signs whenever no confusion can arise. Writing ¢ for the value ¢(¢) of
the function ¢ at ¢, etc., suppose that = and =’ differ only on a small
portion of I. We shall first obtain an estimate of g(z)—g(n’) in terms
of the measure of this portion of I, then use this estimate to complete
the proof. Let

5=S:I1Q(q, 7)—Q(q, =)\t
(5.2)

7= @, m—a, )la .
By (3.2) (ii)

la)—q@lI< [ 16, D —ata’, =)lds

(5.3) <{let, n-aw@ »lds+ I, =)-aw, =)lds
<0+Q | lla—q'ids

hence

(5.4) la®)—q' 0| <o <o,

by Lemma 1. Similarly

(5.5) Ip(t)—p' () < 7e”
where

(5.6) 7 =P | p(x)—p(x)idt
Now

9(m =91 < | 1IpQla, m—p'Qe’, =)t
< (v, » v, D+ | o0, »-pa(, =)t
(5.7) +[ I, »)—-pa, »lat
< 00| Iplat +  Inl1@’, m—Q(@', =it

+267 | 10, #)ldt .
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Since ||Q||<<M and |p|<{1 we may write
(5.8) l9(7) — g(z')] << 0Qe®+ &' +7e" M .

Clearly the boundedness of ||Q|| and |p| implies that each of ¢, ¢, and
7 can be made arbitrarily small simply by choosing the set on which =
and 7’ differ to have sufficiently small measure; this choice permits us
to make |g(7)—g(7')| as small as desired.

By definition of G, for any ¢ >0 there is a program = such that
g(m)>G—¢/2 . But since E, is dense in I we may choose a program 7’
on E which differs from = on such a small subset of I that g(z')>g(x)
—¢/2. By definition G,>g(7’); hence the combined inequalities give
G, >G—e for any ¢>0; that is, G,>G. This completes the proof.

6. Convergence for fixed programs. Now suppose that = is a fixed
program on E; and consider the functionals f.(w) for k>j. We shall
show that the sequence {f.(w)} converges to ¢g(z). Furthermore, we
shall show that there is a modulus of convergence which depends only
on k& and not on j or =.

First we need to know something about the convergence of p.(w, t)
and Q(q.(m, ), =(t), t) to p(r, t) and Q(q(x, t), =(t), t) respectively on por-
tions of I for which the program = on E; is a constant. Let &, ---, %,
represent the points of E,. Since the program = remains fixed in the
following discussion we write q(f), ¢.(t), p(t), p.(t) for ¢(m, t), quln, t),
(7, t), pi(zm, t) respectively. Let q(¢; 4, k) represent the value at ¢ of
the solution ¢(, k) of

(6.1) at: 3, D=at)+ | Qats: 4, 1), @, 9)ds

where the initial value q.(¢,) is just what one obtains by using the
difference equation on E, up to the point ¢;. We note that the Cauchy-
Lipschitz existence theorem' furnishes a bound on the norm of the
difference between q(¢; ¢, k) and ¢.(¢) in the interval [¢, ¢;.,) and fur-
thermore, that this bound has the form

(6.2) llg(t; 2, k)—a Ol <ot —1,)

for t,<t<t,,;, and some 6 independent of ¢. Since the continuity and
Lipschitz conditions are independent of X it is clear that ¢ is likewise
independent of X. A similar inequaliy holds for p, and we may assume

1 The author was unable to locate in the literature a proof of the extension of the
Cauchy-Lipschitz theorem to differential equations over Banach spaces, even finite-dimen-
sional ones, although it clearly can be obtained with no more difficulty than the extension
of the Picard theorem. Such an extension probably does not exist (except for finite-dimen-
sional spaces) for the Cauchy-Peano theorem, since the appropriate analogue of Ascoli’s
theorem is false; the finite-dimensional case is given in [6].
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that the same ¢ appears in both results.

Now we proceed to prove convergence for fixed programs. The
preceding comments indicate that no trouble occurs between points of
E,, so that convergence for any given fixed program is to be expected.
The chief problem is to show that there is a modulus of convergence
which is independent of the number or location of the steps of the
program .

LEMMA 4. Given any ¢ >0 there ewists a positive number h such
that \fu(n)—g(z)|<e for any kZ=h, uniformly for all programs = on E,.

Proof. Consider any fixed point ¢* in the closure of I and let
t,=0, t,, +--, t,;, be the points in the intersection of [0, ¢*) and E;; for
convenience we write t*=t,. For any %.>>j we note that the functions
q and ¢(¢#—1, k) are both solutions of the same differential equation,
but with different initial values at the point ¢=t¢,_,. Hence,

(6.3) qt)—q(t; i—1, k)=q(t,-)) —q.(t:-)

+S: [Q(q(s), n(s), s)—Q(q(s; i —1, k), n(s), s)]ds .

Taking norms and applying the Lipschitz condition on @, we have
HNo(t)—q(t; i—1, k)|
<latt-)=ate-dll+ | @llats)—asi i1, Wlds -

13
tio1

(6.4)

Now apply Lemma 1 and set ¢=t; to find

(6.5) llg(t) —aq(t:; i—1, R)I<lgu(ti-1) —q(t,-)II(E, 5—1)

where we write (¢, i—1) for ¢%%~%-0. For convenience set
Ai=lla(t)—q(ti; i—1, k)|

(6.6) B=llg(t:; i—1, k)= q.(@)l|
Ci=llaE) = (&)l -

Then (6.5) is written

(6.7) A, <C(3, 1-1)

and (6.2) implies

(6.8) B, <ot —t;,-,)

where ¢ depends only on k. Finally the triangle inequality implies
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(6.9) C,<<A,+B,.

Now we apply (6.7), (6.8), (6.9) repeatedly to obtain a bound on C,. In
the following calculation we also use the obvious results (n, m)(m, [)

=(n, 1) and (m, 1) <e® for 1<I<m<n.
C,<A,+B,
écn—l(ny n_1)+6(tn—tn—1)
<[Ap-r+B,_J(n, n—1)+6(t,—t,_)e?
(6.10) <[Cpos(n—1, n=2)+ 8(t -1 —t,-)](n, n—1)+8(t,~t,-1)e®

<Cpy(m, n—=2)+ 0(t, —t,_,)e
< oy, =)+ Oty — )R

< Ci(n, 1)+ 0(t, —t.)e® .

Finally q(¢; 0, k)=q(t) since ¢(¢; 0, k) is defined by the same differential
equation and the same initial values as ¢(¢); hence A4,=0 so that as a
special case of (6.9) we have C,<d(t,—¢t,)=0t,. Thus

(6.11) C, < 0t,f< de? ,
that is
(6.12) llg(t*) — qu(t*)I| < 6e®

uniformly for all ¢* € I where 6 depends only on k. Furthermore, this
inequality is uniform in the programs = on K, since the right-hand side
of (6.12) is independent of the distribution or number of points ¢, «--, t,.
In a similar fashion we have

(6.13) (") = pult*)| < 8™

uniformly for ¢t* el and the programs on E,.
Suppressing the dependence on ¢ we have

19! 1) — 2] llQ(qk)Hl

gll@(q)u| ol =1l | + 4] | Q@)1= 1@z

< Mlp—p,| +11Q(q)—Qau)l|
< &(Me” +Qc?),

6(.14)

hence, writing Q(q) for Q(q(z, t), n(t), t), we have
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Futm) =)l =|| 121 Q@ Nt = 1p. 1R, (1)
©15) <[ Inl Il ldt—dm ]+ |1nl 1@ Ini] Q]

dmy (t)
gMS:Idt—dm,c(t)l +3(Me” + Q) .

None of the terms in the last line of (6.15) depends on the program,
and clearly each of them can be made arbitrarily small by choosing %
large enough. This completes the proof.

7. The convergence theorem.

THEOREM. lim F,=G.

Joo

Proof. Given an ¢>0 there exists a program =, on £, such that
9(my) >G,—¢e/]2=G—¢/2. But since =, is a step function of E, into X,
the points ¢ at which steps actually occur must lie in some E; for j
sufficiently large, by definition of E,; hence =, is a program on E; for

some j. For sufficiently large ¥ Lemma 4 guarantees that f,(7.) > g(7,)
—¢/2. Hence since

= sup fi(m) = sup film) = fiulmy)

ﬂODEk T
we have
(7.1) F.>G—¢.

On the other hand, Lemma 4 also asserts that for % sufficiently large
9(7) > fi(m)—e/2, independently of =, assuming, of course, that = is on
E.. Let = be a program on E, such that fi.(z)>>F,—¢/2. Then

(7.2) G=G*gg(n)>fk(n>——;—>ﬁ’k—e

for k sufficiently large. Combining (7.1) and (7.2) completes the proof.
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