CERTAIN GENERALIZED HYPERGEOMETRIC IDENTITIES
OF THE ROGERS-RAMANUJAN TYPE

V. N. SINGH

1. Introduction. In a recent paper H. L. Alder [1] has obtained
a generalization of the well-known Rogers-Ramanujan identities. In
this paper I have deduced the above generalizations as simple limiting
cases of a general transformation in the theory of hypergeometric series
given by Sears [5]. This method, besides being much simpler than that
of Alder, also gives a simple form for the polynomials G, .(x) given by
him. In Alder’s proof the polynomials G, .(x) had to be calculated for
every fixed k& with the help of certain difference equations but in the
present case we get directly the general form of these polynomials.

2. Notation. I have used the following notation throughout the
paper. Assuming |z|<1, let
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where [a] denotes the integral part of a.
The numbers s, o, 7,7, -+, t, t, t,, --+ are either zero or positive
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integers. 7, and ¢,, wherever they occur, have been replaced simply by

7 and t respectively. Empty products are to mean unity.

3. Sears [5, §4] has proved the following theorem :
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wrere |kx/aa,| <1, |]< 1 and ¢, is any sequence. The theorem holds

provided only that the series on the left converges.
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On repeated application of (3.4) on the right-hand side of (8.3) it follows
that

{11 (ka)} - }:K( T RO i U SRE AN TR

there being (M —2) terminating series on the right since
1
(3.5) S K, =0
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by Watson’s transformation [(2); § 8.5 (2)] of a terminating e, 1nt0 a
Saalschiitzian ,¢;.
Now it is easily verified that
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can, by suitable rearrangements, be simplified to
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Thus on putting 7 +¢,=t, we finally have
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This is a k-cum-M generalization of the Rogers-Ramanujan identities.
For any assigned values of M and ¢, the repeated terminating series
can, by dividing out by the denominator factors, be evaluated as poly-
nomials in .

Let us now write
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Then, as usual, for k=1 and k=ux respectively, the left-hand side of
(3.6) can be expressed as a product by means of Jacobi’s classical identity
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and we get Alder’s generalization of the first and second Rogers-
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Ramanujan identities in the form
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where Gy (x) is given by (8.7). The polynomials G,.(x) can be seen by
easy verification to be identical with G, .(«) of Alder.

I am grateful to Dr. R. P. Agarwal for suggesting this problem
and for his kind guidance in the preparation of this paper.

Added in Proof. If in (3.2) we take a,=—1/fg, make a, a, ---,
@1 tend to oo, and proceed as in § 3, we get for k=1 and k=xa the
respective identities
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