UNIQUENESS THEORY FOR ASYMPTOTIC EXPANSIONS
IN GENERAL REGIONS

PHILIP DAVIS

1. Introduction. Let D be a simply connected region with an
analytic boundary C. Assume that z=0 is an interior point while z=1
lies on the boundary. We assume further that the tangent to C at
2=1 is not parallel to the real axis. In this case, we shall be able to
fit into D small angles I placed symmetrically about the real axis and
with vertex at z=1. These angles will be of the form —6 <606 or
r—0<0<n+0, 6>0, depending upon the location of z=1. For a given
f(2) regular in D, we consider the following limits defined recursively

a,= lim f(z)
(1) o= lim (z—1)7[f (2)— a]

o= lim (e—1)7[f (&) —a—a(e—1)]

If each limit in (1) exists and is independent of the manner in which
2z~ 1 through values in some angle I, then f(z) is said to possess an
asymptotic expansion at z=1 in the sense of Poincaré, and this is in-
dicated by writing

(2) F@)~ S a-1r.

We shall designate by A(=A(D)) the linear class of functions which are
regular in D and which possess asymptotic expansions at z=1 in the
sense of Poincaré. The angle I in which (1) is valid may depend upon
the particular f e A selected.

Uniqueness theory is concerned with distinguishing nontrivial sub-

classes of A within which the expansion ian(z-—l)" determines the
n=0

corresponding function uniquely. Write for the remainder
(3) R,(2)=f(R)—ay—a(z—1)— - —a,,(z—1)**,

and consider the ratios
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(4) Fu(2)=@—1)"R,(2) (n=1, 2, --+), fi=1.

For feA, the functions f,(2) are regular in D and are bounded as
z—1in I'. For a given sequence of positive quantities {m,}, we con-
sider the subset 4(m,) of A consisting of those functions which satisfy
in addition

(5) "fn“z<Mk"mi (%=0, 1’ 2,"')

for some M >0, £>0. Here | | designates some conveniently chosen
norm. The constants M and k& may vary from function to function
within the class. With the selection

(6) | fl= max I f@)1,

it has been shown by Watson [1] and F. Nevanlinna [5] that when D
is a sector, we may produce uniqueness classes by restricting the growth
of the sequence {m,} sufficiently. When D is the unit circle, T.
Carleman [2] has given necessary and sufficient conditions on {m,} in
order that the resulting subclass A(m,) be a uniqueness class. At the
same time Carleman raises the problem of giving necessary and suffici-
ent conditions in the case of a more general region D. This problem
(with the norm (6)) has been known in the literature at the generalized
problem of Watson. It has been treated by Mandelbrojt and MacLane
[3] using the theory of distortion in conformal mapping. See also Meili
[4]. In the present paper, we adopt the norm

(1) I7p={ 1r@ras,

and show how it is possible to combine Carleman’s idea of introducing
an appropriate minimum problem with the techniques afforded by the
theory of conformal kernel functions to arrive at a solution to this
general problem. The class A(m,) will henceforth refer to the norm
(7). Thus the question which we are treating may be worded as fol-
lows: What are necessary and sufficient conditions on the sequence of
constants {m,} in order that

(8) Ink={ lr@rds

=SO

determine f(2) uniquely from the asymptotic coefficients a, .

fR=@—a@=1) = =0 ,@=1"F g0~ ppnye
z—1)" "

2. Preliminary observations. We must first explain the sense in
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which we shall understand the expression

[ lr@ras

when f(z) is regular in D but not necessarily in its closure. Let w
=m(z) map D conformally onto the unit circle with m(0)=0 and m(1)
=1. The images of |w|=7 will be designated by C,, 0 <r<{1. It is
well known that the set of functions

(9) )= L] @1 (=0, 1,2, -+-)

,’.n+l/z

is complete and orthonormal over each C,, 0< r<(1, relative to the
inner product

(7 0)={, rads.

Suppose then that we are given a function f(2) which is regular in D,
Then for any fixed 0<»<(1, f(2) is continuous on C,. Hence we can
write

(10) F@=3 a:,)

holding uniformly and absolutely in the interior of C,. The coefficients
a, are given by

an a=|, F@%.ds (1=0,1, ).

Hence, for »* < », we have from (9) and (10),

Iz,r*m+1

o+l *

(12) S If @ ds= X |a,
This equation tells us that
[, 1F@ras

is an increasing function of +* and hence

lim So. |f @) ds

Rl

exists (or equals + o). For f(z) regular in D we shall therefore agree
that
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j If@P ds= hmg LF2)ds .

r>1- r

LEMMA. Given an arbitrary sequence of positive constants {m,}; the
class A(m,) is not a uniqueness class for asymptotic expansions ot z=1 if
and only if there exists an fs=0 regular in D and constants M >0,
k>0, for which

f(2)

(13) L

<Mk" m;, (rn=0,1,2, ---).

Proof. If A(m,) is not a uniqueness class, there will exist two fune-
tions ¢(z), y(z) e A(m,), 9==h, possessing the same asymptotic expansion,

say ian(z—l)", and satisfying
n=0

" 9(z) — Z ay(2— 1)’“ ds < M o1
(14) so' '*"*“(*z“ *1*); | ds m;, (n=0,1, --+)
h(z) a,c(z— 1)’c .
SC 7(z ﬁl);‘ — ds < M,kzm,

with %k, <k, Therefore, by Minkowski’s inequality,

9()—h(2) [

(15) S (z—1)

ds < (Ml/an/Z Ml/zkn/Z)Z

= (M (o[l + MY Ry,
< (MY + MR

so that g—#% does not vanish identically and satisfies (13) with M=(M3"*
+M3y*? and k=k,.
Conversely, let f=£0 satisfy (13). We shall show that (13) implies

L fR) —
(16) lim Zz—l)"—o (n=0,1, 2, ---)

as z— 1 through values in some angle I". Assuming, for the moment,
that this is so, (16) and (1) imply that
anmn f(R)~0+0-z—=1)+0-(z—1)’+---

That is, f(z) possesses an identically zero asymptotic expansion at z=1.
Furthermore f,= f(2)(z—1)-", so that (18) implies that f e A(m,). Thus,
A(m,) is not a uniqueness class for asymptotic expansions at z=1,
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We show now that (13) implies (16). Given any g(z) regular in D.
Select any 0 < r<1. We have from (9), (10), (11), and the Schwarz
inequality

as) 0 <Ko, (5 B) | o)l s

for all z interior to C,. K,,r is the so-called Szegd kernel funection for
C, whose explicit expression is (Szego [6], Bergman [1])

(19) Ko, @ D=5, 0.60.0= rim @)

— m(2)*

Writing f(2)/(z—1)" in place of g(2) in (18), and using (13) and the
monotonicity with » of

[, roras,
we find for j << and z interior to C,,

f(2) |
(z—1)

< =1y "Prim' @) pren e (n=0,1, 2, ---).

@) (r* — |m(2)|")

For each z in D we select an r=r(z)=|m(z)| +¢(z) <1 where () is de-
fined by

(20)

1) e(z)=—;—(1— Im(2)]) .
Thus,
(22) lim &(z)=0.

21

Here, z— 1 through values in D. From (20), (21), and » <1,

3) F@ P =10~ | @) Mk,
G-/ 2 2lm@lde) + <)

< M= 1P~ @) M,
4n|m(z)|e(2)

We are now ready to consider the limit of (23) as z— 1. First consider

o(z) _1—|m(z)|_ (1 —=|m(2)l")
(24) PR TR (1+lm(z)l) TR

Since m(z) is by assumption analytic at z=1, we have in a neighbor-
hood of z=1,
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(25) m(z)=1+(z—1)R(z),

where R(z) is analytic there. Note that R(1)=m’(1)5%40, and write
R(z)=0(2)e"™®, o(z)>0. We have o(1)#0 and «(1)~=/2, 3z/2, inas-
much as the tangent to C at z=1 is assumed not parallel to the real
axis. Furthermore, write z=1+pe®. Then, from (25),

@ =M@ -2 {-DRE)} _—1FRE!
lz—1| lz—1] [z—1|

= —2.57 {6(2)*® } ~ e~ 1||R()I

= —20(z) cos (0 +a(z))— |z—1||R(2)]* .
If z—1 through some angle I": —6<{0<6 or 7—0 <0 <7+, then,
since a(l)£=/2, 3x/2, it follows from the above that for ¢ sufficiently

small, the expression (26) will be bounded away from 0. In view of
(24) we will have

(27) @) > 50, pm1
[z—1]

for z in some I". From (23), we have,

(28) l.j(?),

(z ¢ l)j 2 < |z—1|27L—zj—1],mr(z)ijknwﬁZ iln‘llngzzl_g(g) .

lz—1]

Thus, for 2n—2j—1>1 it is now clear from (28) and (27) that
lim S __g

=1 (z—1)

For each j considered we need only use an = >j+1. This completes
the proof of the lemma.

3. The uniqueness theorem.

THEOREM. Given an arbitrary sequence of positive constants m,.
The class A(m,) is a uniqueness class for asymptotic expansions at z=1
if and only if for all t >0,
] S tk n—k|2 6

(20) lim sup | log { >} . [(z—1)""*} " log|m(2)|ds= oo .
n-veo 0 =0 M, on

Here 0/0n designates normal differentiation in the positive sense.

The above statement is equivalent to saying that A(m,) is not a
uniqueness class if and only if there exists a ¢ >0 and a K >0 such
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that

(30) S 1og{ﬁ —tk—I(z—l)""‘"}ilog m(2)ds <K, n—0,1,2, -
4 o my on

k=

K may depend upon ¢, but is independent of n.

In view of the lemma of the preceding section, we shall prove that
(30) is a necessary and sufficient condition for the existence of an f(2)
%0, and M, and a k which satisfy (13).

Consider the following sequence of integrals

(31) nn-5 £, L0 as;

=k Zi I n=0,1,---,
where we have written
(32) =] | L 0,1, - .
We can also write (31) in the form
(33) L=| AL

where p,(2) is an analytic function which is regular in D, continuous on
C and is such that

k

(39 p@={ 3 L ey}, for z on C.

R
my,
We shall show below how a p,(z) may be constructed which has these
properties and has, in addition, the property that

(35) pa(2)5%0 for z in D.

Let n be fixed, and consider the following minimum problem P,. De-
termine that function f(2) regular in D with f(0)=1 and such that

(36) L(f)=minimum .

This problem can be solved by passing to a related problem P,’. De-
termine that function g(z) regular in D with ¢(0)=1 and such that

(37) || 9 F=minimum

The solution of the problem P, is given by the function (see, for ex-
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ample Szegé [6], Bergman [1])
(38) 7*()=K(z, 0)/K»(0, 0)

where K (z, w) is the Szego kernel function of the region D. The mini-
mum value of the integral (37) is 1/K,(0, 0). If we write

PR f (@)
P(0)(1 —2)"

we see, in view of (85) that the function p,(2)f(2)/e.(0)(1—2)" can play
the role of g(z) in the problem P,. The minimizing function f; of the
problem P, is therefore

2

(39) L(f)=le.(O)F

Ky(z, 0)(1—2)"p,(0)

(10 F@= K, 0)

’

and the minimum value of the integral is

sy 1P (O)F
(41) L(f)= K,(0,0) °

We now assert: a necessary and sufficient condition in order that
there exist an f(2)s=0 and constants M > 0, k>0 such that

(42) 1= L[ < e (n=0,1,-)
is that there exists a ¢t >0 and a K >0 such that
(43) In(f:)éK 7’&=0, ly 2) e

Referring to (41), this is equivalent to asserting that there exist a
t >0 and a K’ such that

(44) lp(0)| = K’ n=0,1,2, ---

We can prove this as follows. Suppose first that ¢(z) is such that
(42) holds for it. This function ¢(z) may have a zero of the pth order
at z=0. The function f(z)=q(z)/z* is then regular in D and is such
that f(0)7%=0. Now,

2

(45) L(f (@) f(0)= 2 f,i S o f(())zq”((zz): 1y o

s 11
P - M-k
j=o m? [AO) a ’

S o Z ] ]_ M
d““lf OE= @\ fO)(L—tk)

[

1!/\
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provided we select 0 < ¢t < 1/k. Here d designates the minimum distance
from z=0 to C. Now since

M

46 L(rH<I, (1)) F— S —0,1,---
(46) () LR S( ))’“dzf'[f(O)lz(l—tk) (n=0,1, ---)

then (43) is satisfied with K equal to the right hand constant in (46).
Conversely, suppose that there exists a ¢ >0 and K >0 such that
(43) holds. Then from (31),

@7 S L k<K (1=0,1,2, ).

2
k

In particular, taking the first term of (47) we obtain
(48) Lrrp<k n=0,1,2, - .
myg

Hence we have
(49) If# 1l << const. (n=0,1,2,---).

The inequalities (49) imply that the sequence of minimizing functions
{f¥} form a normal family and therefore there exist indices #, %, ---
such that f% — F(z) uniformly in any closed region interior to D.
Again, using (47) we have, for fixed 7 and for all n>j

(50) Lrrpsk.
J

Now for any 0<p< 1, we have

(51) THE éi_(—zl)—)jzdsggo éf—(i-))—]zds,
so that from (50) and (51),

fa(2) [ 24— -
(52) S% -1y ds < Kmit~’ (k=0,1,2,---).

Let n take on the values =n, in (52) and let j be fixed. Then since
f¥(#)— F(z) uniformly in and on C,,

2

@) Fas < Km .

(z—1)

(53) §

This result is independent of p and hence we may allow p—1. Thus,
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(54) L ' ds < Kmit-? (G=0,1,2, ---) .

(z -1y

Since obviously F(0)=1, we have exhibited in F(2) a function regular
in D, which does not vanish identically, a constant M(=K) and a con-
stant k(=t-?) for which (42) holds.

It remains to construct p,(z), to show that it does not vanish, and
to compute p,(0). Designate by ¢,(z) the positive function

(55) ta(2)= { kzno ém’: l(e— l)n_ki_,}llz

defined on C. Now logi,(z) is continuous on C and hence

(56) un(z)aﬂo log £,(0) Qa(g,;;@ s

where g(z, w) is the Green’s function for D, is harmonic in D and as-
sumes on C the boundary values log ¢,(z). Designate by v, the harmonic
conjugate of wu,. Then u,(z)+w,(z) is regular and single valued in D,
as is

(57) Pa(2)=exD [Un(2) +104(2)] .

Now, |pa(2)l=e*“», so that on C, |p,(2)|=¢%,(2). Furthermore p,(z)#0, as
is clear from (57). Thus we may use p,(2)=p,(z). The condition (44)
then becomes: there exists a ¢ >0 and a K’ >0 such that

(58) u (0) < K’ (n— o).
Finally, using the representation

() —m(w)

(59) 9(z, w)=log 1— m(eym(w)

with z=0 in (56), we obtain the stated condition (29).

4. Concluding remarks. Norms other than (6) might be contem-
plated. In particular, we might have used

(60) IrE=|{, lreraa.

However (60) has the disadvantage that the solution of the correspond-
ing minimum problem P, can not be so elegantly expressed in terms of
an analytic function p,(z) and so the role of the sequence {m,} is not
immediately evident as with (29).
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