
ON SPACES WITH A MULTIPLICATION

I. M. JAMES

Introduction. This paper is divided into three parts, together with
an appendix.

In the first part we discuss the homotopy theory of mappings into
a space with a multiplication, such as a topological group. These spaces
are more general than the group-like spaces considered by G. W. White-
head in [6], and our treatment, as far as it goes, is quite different from
his. In the second and third parts we apply the theory to the reduced
product spaces of [2] and the loop-spaces of [4]. We arrive at useful
new definitions of the Hopf construction and the Whitehead product,
such that the relations between them are plainly exhibited. In many
respects this completes the theory of the suspension triad as developed
in [3].

PART I

HOMOTOPY THEORY OF A SPACE WITH A MULTIPLICATION

1* Preliminary notions- Let Sr denote a topological r-sphere, with
basepoint1 e, where r l > l . Let Z be a space with a basepoint, and let
k: SpxSq->Z be a map, where p, #I>1. By the sections of h we
means the maps / : SP->Z, g: Sq~^Z which are defined by

f(x)=h(x, e) , g(y)=h(e, y) x e S» , yeS* .

If h': Sp x Sq ~> Z is another map with the same sections as h, then the
two maps agree on the set of axes

Σ=Spxe\JexSq ,

and since the complement of Σ in SpxSq is an open (p-f-g)-cell the
separation element d(h, hf)e πp+q(Z) is defined, as in §10 below. Of
course

(1.1) d{h, h)=0 .

In particular, let Z be a space with a multiplication that is to say,
there is a continuous product x yeZ, where x,yeZ, such that x z°=x
and z° y=y, where z° is the basepoint in Z. Let h be as before, and

Received May, 22, 1956.
1 When we consider a map, or homotopy, of one space into another it is always as-

sumed that the image of the basepoint in the one is the basepoint in the other.
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let hi be defined by

h'(χ, y)=f{χ

where / , g are the sections of h. Then h' has the same sections as h,
and we define

(1.2) δ(h)=d(h',h)eπp+q(Z) .

Notice that if k: SpxSq-+Z is another map with the same sections
then k'=h' and so

(1.3) δ(k) = δ(h) + d(h, k) ,

by the addition formula for separation elements ((10.4) below).
Let w: Z~>Z; be a map, where Zr is a space with a multiplication.

We say that w is multiplicative if

w(x*y)=w(x) w(y) x,yeZ.

In that case we have (cf. (10.8))

(1.4) δ(wh)=wj(h) ,

where w^ : πp+q(Z) -+ πp+q(Z') denotes the homomorphism which is induced

by w.

2. The pairing of πp(Z) with πq(Z) to πp+q(Z). Let Z be a space with
a multiplication, and let p, <7^>1. With each pair of elements <xβπp(Z),
βeπq(Z) we associate an element (a, βyeπp+q(Z), as follows. Let
f:Sp->Z, g: Sq -> Z be maps which represent α, /9, respectively. Let h,
k: SpxSq-+Z be the maps which are defined by

h{χ, y)=f(χ)'g(y), k(x, y)=g(y)-f(χ),

where xeSp, yeSq. Then h and & have the same sections, and we
write

(2.1) <μ, β>=d(h, k) .

We have at once (cf. (10.8))

THEOREM (2.2). Let aeπp(Z), βeπq(Z). Let w: Z->Z' be a multi-
plicative map. Then

where w* : πr(Z) —• πr{Zf) denotes the homomorphism induced by w.
The type of a map h: SpxSq->Z is the pair of elements {a, β),

where aeπp(Z), βeπq(Z) are the homotopy classes of the sections of
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h. We prove

THEOREM (2.3). Let Z be a space with a multiplication, and let

h k

be a pair of maps such that h(x, y)=k{y, x), where xeSp, yeSq. Let
(a, β) be the type of h, where aeπp(Z), βeπq(Z). Then

Proof. Let / : SP-*Z, g: Sq-+Z be the sections of h, and let

h' kf

SpxSq~+Z<-SqxSp

be the maps which are defined by

h'(x, y)=f(x)-g(y), k'{y, χ)=g{y

where xeSp, yeSq. Then

)=d(hf, h) , δ(k)=d(k', k) ,

by definition. Let v: SpxSq ~> SQxSp be the map which interchanges
the factors. Then d{k'v, kv)=( — l)vqd(kf, h), by (10.9), since v has degree
(-1)M. Therefore

U)-#'t>, kv)=d(h\ krv) ,

by the addition formula for separation elements, since h=kv. However

k'v(x, y)=k'(y, χ)=g(y)-f(x) ,

if xe Sp and yeSq. Hence d(h', k'v)=ζμ, /S>, by (2.1), since α, β are the
homotopy classes of /, g, respectively. Therefore

which proves (2.3).

If we interchange h and k in (2.3), we obtain that

since k is of type (β, a). Hence, and since there exist maps of any
given type, we obtain

COROLLARY (2.4). Let aeπp(Z), βeπq(Z). Then
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In the next section we shall prove that (a, βy determines a bilinear
pairing of πp(Z) with πq(Z) to πp+q(Z).

3. Products of maps* The proof of the following proposition is
omitted, since it is the same as in the case of topological groups (see
(16.9) of [5]).

THEOREM (3.1). A space with a multiplication has a commutative
fundamental group.

Let Y be a space and let Z be a space with a multiplication. The
product of two maps u,v: Y~>Z is the map u v: Y->Z which is
defined by

(u v)(y)=u(y) - v(y) yeY .

In view of (3.1), we write πr(Z) additively even when r=l. The proof
of the following proposition also is the same as in the case of topological
groups (see (16.7) of [5]).

THEOREM (3.2). Let v, u: Sr -> Z be maps, where r l > l and Z is a
space with a multiplication. Then the homotopy class of u v is equal to
the sum, in πr{Z), of the homotopy classes of u and v.

The following lemma is an immediate consequence of (3.2) and the
definition of separation elements.

LEMMA (3.3). Let h, k, hr, kr be four maps of S!)xSq into Z such
that h and k have the same sections, and hr and k' have the same sections.
Then h-h and k-kf have the same sections, and their separation element
is given by

d(h hf, k-kr)=d(h, k)-hd(h\ kf) .

We use (3.3) to prove

THEOREM (3.4). Let Z be a space with a multiplication. Let h, hr

be maps of SμxSq into Z of type (cc, β), (a;, β'), respectively, where
a, a' e πp(Z) and β, βf e πq(Z). Then

The relation we have to prove is invariant under homotopies of h
and h'. Hence there is no real loss of generality if we assume that h
and hi are such as to satisfy the following condition. Let (/, g), (/', gf)
be the sections of h, h', respectively, so that / and / ' are maps of Sι\
and g and g' are maps of Sq. We assume that / is constant over one
hemisphere of Sp and that / ' is constant over the other similarly that
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g is constant over one hemisphere of Sq and that g' is constant over
the other. Then, if x e Sp and y e Sq, the expressions

f(χ)-f'(Φg(v)-g'(v), f(χ) g(v)-f'(χ) 9'(v)

do not depend on the order in which the products are taken it is as
though the multiplication on Z were associative. This is expressed more
concisely as follows. Let

u v
S*<-~SpxSq->Sq

denote the canonical projections, and define four maps F, F', G, Gr of
Sp x Sq into Z by

F=fu, Ff=ffu; G=gv , G'=g'v.

Then the product maps F-F'-G-G' and F-G-F'-G' are well-defined.
After these preliminaries, we proceed to prove (3.4). Let k=F-G,

so that d(h)=d(k, h), and let k'=F'-G', so that d(h')=d(k', h'). Then

(3.5) d(k-k\ h-h')=δ(h) + δ(h') ,

by (3.3). Let H=>(F-FΉG-Gf). Then d(h-h')=d(H, h-h'), by definition,
and hence

d(h h')=d(H, k.kf) + d{k-kf, h hf) ,

by the addition formula for separation elements. Hence

(3.6) d(h-h') = d(h) + δ(hf) + d(H, k-kr) ,

by (3.5). However,

<μ'f β>=d(Ff G, G Ff), by definition,

=d(F, F) + d(F' G, G.Ff)±d{Gf, Gr), by (1.1) ,

'-G, F-G-Ff)-hd(G\ GO, by (3.3) ,
;.G-G', F G F'-G'), by (3.3) ,

=d(H, k-k') ,

by definition. Hence it follows from (3.6) that

which proves (3.4).
As an application of (3.4) we prove2.

THEOREM (3.7). Let Z be a space with a multiplication, and let
p> tfiς l. Then the transformation (a, β)-+(a, βy determines a bilinear

2 This can also be proved directly.
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pairing of πp(Z) with πq(Z) to πp+q(Z).

We first show that

(3.8) <ct + a', β>=<a, #> + <*', β> ,

where a, a' e πp(Z), βeπq(Z). For l e t / , / ' : SP->Z be maps which re-
present a, <xf, respectively, such that / is constant over one hemi-sphere
of Sp and / ' is constant over the other. Let g: Sq~^Z represent β,
and let h, hr be the maps of Sp x Sq into Z which are defined by

(χ), h'{x3 y)=f'(χ),

where xeSp, yeSQ. Then

(h h')(χ, y)=(g(y) f(χ))-f'(χ)=g(vW(χ)-f'(χ)),

and so d{h h')=(j, βy, by (2.1), where γ denotes the homotopy class
of /•/'. But τ-=α + α', by (3.2), and so

, by (3.4),

since d{hf)=d{h', λ')=0, by (1.1). This proves (3.8). Linearity on the
right follows from (3.8) and (2.4). Hence the proof of (3.7) is complete.

PART II

APPLICATION TO REDUCED PRODUCT COMPLEXES

4 The reduced product complex. Throughout this part of the
paper, A will denote a countable CTF-complex with precisely one 0-cell,
say α°. Let A^ denote the reduced product complex of A, as defined
in [2]. We recall that A^ is a countable CTF-complex which contains
4 as a subcomplex, and that 4M carries an associative multiplication

with α° as unit element. Let / denote the interval 0<L£<il. Let A
denote the suspension of A, that is the space which is obtained from
the topological product A x I by identifying AxI\J a°xl to a point. The
points of A are represented by pairs (a, t), where ae A and t e/, with
the identification being tacitly understood. We also identify each point
aeA with (α, J)e A, so that A is embedded in A. The suspension triad
of A is the triad

(A; C+, CL),

in which C_, C+ are the half-cones where t<Li, ί ^ ί , respectively, so
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that

The relation between the reduced product complex and the suspension
triad is expressed in the following commutative diagram, where φ denotes
the canonical isomorphism which is defined in § 10 of [3].

j k ,/
> πr(A) -> πXAJ) -> πr(A^ A) -> πr^

(4.1) φj φj φj φ

• πr(A) -» ττ r + 1(i) ->τr r + 1 (i C+, CJ) -> πr^
E i Δ

The top line of the diagram is part of the homotopy sequence of
the pair (A*,, A), so that j, k are injections, and ,/ is the boundary
operator. The bottom line is part of the suspension sequence of A, as
defined in [3], so that E is the suspension operator, % is the injection,
and Δ is the repeated boundary operator. We recall from [3] that φ
maps πr(A) identically, so that the commutativity of (4.1) is expressed
by the following relations (cf. (10.2) of [3]).

(4.2)

Let B a countable CTF-complex with precisely one 0-cell, say 6°,
and let / : A~>B be a map such that f(a°)=b°. Then the induced
mapping / „ : A^-^B^, as defined in § 1 of [2], is multiplicative in the

sense of § 1. Let f:A~+B denote the suspension of / , which is de-
fined by

f(*f «)=(/(«), <) aeA, t e l .

Then / maps the suspension triad of A into the suspension triad of 5,
and hence induces a homomorphism of the suspension sequence of A
into the suspension sequence of B. We denote this homomorphism by
/*, and we also denote by /* the homomorphism of the homotopy
sequence of (ATC, A) into the homotopy sequence of {B^ B) which is
induced by /«,. By (10.5) of [3] these homomorphisms are related by

(4.3) Φ/*=/*Φ .

5. The Hopf construction. Let A mean the same as in § 4, and
let p, q^>l. A pairing of πp(A) with πq(A) to zrp+^A*,, A) is defined as
follows. Let γ denote the positive generator of the infinite cyclic group

(a)
(b) <

(c)

' ΦJ=E,
iφ=φk
Jφ=<S.
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πp+q(SpxSq, Σ), where Σ=Spxe\J exSq and the orientations are the same
as in [3]. Let /, g be maps of Sp, SQ into A which represent <xeπp(A),
βeπq(A), respectively. Let h: (Spx Sq, Σ)-^(AΰQt A) denote the map
which is defined by

, y)=f(χ)'9(y) χeSp, yeSq .

Then we define axβ=h*(r), where

λ* : πp+a(S* x Sq, Σ) -> πp+q(A», A)

denotes the homomorphism induced by h. We write

(5.1) {a, β}=φ(axβ)eπp+q+1(A; C+, CL) ,

and we refer to {a, β) as the triad Whitehead product of a and β, in
accordance with (7.1) of [3].

Let us apply the theory of Part I to the space with multiplication
A*. By taking representatives we obtain from (2.1) that

KJ(a),j(βy>=ctxβ-(-l)**βxa ,

and hence, by (4.2b) and (5.1), we have

(5.2) iφ<j{μ\ 3(β)>= {a, β} -(~iyq{β, «) .

Now suppose that there exists a map h: SpxSa -+A of type (a, β). Let
h' denote the inclusion of h into A^. By taking representatives we
obtain at once that kδ(h')=ocxβ, and so we conclude from (4.2b) and
(5.1) that

(5.3) i

Recall that the Hopf construction, as defined in [3], assigns an

element c(h) e πp+q+1(A) to each map h: SpxSq~+A, and is characterized
uniquely by the following three properties. First, let h have type (a, β),
where a e πp(A), β e πq(A). Then

(5.4) ic{h)={a,β) .

Secondly, let B mean the same as in § 4, and let / : A -> B be a map
such that f(a°)=b°. Then

(5.5)

Thirdly, let A=SpxSq, and let h be either of the projections

(x, y) -> (x, e) , (x, y) -> (β, y) ,

where xeSp,ye Sq. Then
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(5.6) c(h)=0 .

The uniqueness of this characterization follows from (8.2), (8.3) and (8.4)
of [3]. We use it to prove

THEOREM (5.7). Let h: SpxSq->A be a map, and let hf denote its

inclusion into A^. Let c(h) denote the element of πp+q+1(A) which is
obtained from h by the Hopf construction, and let d(h') denote the element
of πp+^AJ) which is obtained from h' as in § 1. Then c(h)=φd(h').

Let r(h)=φd(h'). We check that γ{h) satisfies (5.4), (5.5) and (5.6)
as well as c{h). For (5.4) follows from (5.3), in the case of γ(h), and
(5.6) follows from (1.1). Consider (5.5), where we have a map / : A->B.
Let /oo: A^^Bn denote the multiplicative map which / determines.
Then fji' is equal to the inclusion of fh into B^, and so

r(fh)=φδ(fJι')=ΦfJW), by (1.4) ,

=Λφί(A'), by (4.3) ,

=f*r(h), by definition .

Therefore γ{h) satisfies all three conditions, whence γ(h)=c(h). This
proves (5.7).

6, The Whitehead product. Let X be a space with a basepoint,
and let p, (?I>1. The Whitehead product of a pair of elements (?, rj),
where ξ e πp+1(X), ηeπq+1(X), is an element of πp+q+1(X), and is denoted
by [?, v)\. In § 9 we shall prove a general theorem about this product
which implies the following in case X is the suspension of A, where A
is a conplex as in § 4.

THEOREM (6.1). Let λeπ^A^), μeπ^A^). Then

Since φj=E, by (4.2a), we have the following three corollaries in
case λ = j(a) or μ=j(β), where aeπp(A), βeπq(A).

COROLLARY (6.2). Let λeπp(AJ), βeπq(A). Then

COROLLARY (6.3). Let aeπp(A), μeπ^A^). Then

φζj(a)f μ>=(-lΠE(a), φ(μ)] .

COROLLARY (6.4). Let aeπp(A), βeπq(A). Then
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Hence and from (5.2) we obtain the first commutation law for triad
Whitehead products (cf. (2.4) of [3]):

COROLLARY (6.5). Let aeπp(A), βeπq(A). Then

{a, β}-(-i)n{β, a}=(-l)H[E(a), E(β)] .

As defined in [2], A^ is filtered by a sequence of subcomplexes
Ao C Aι C C Am C , where AQ=a° and Aλ=A. The reduced product

filtration of πr+1(A) is defined as follows (cf. § 13 of [3]). We say that
an element γ e π^AJ) has filtration m (ml>l) if γ can be represented by
a map of Sr whose image is contained in Am but not by one whose
image is contained in Am_lt We also say that the zero element has
filtration zero. The reduced product filtration of πr+1(A) is obtained from
this by applying the canonical isomorphism φ. We supplement the re-
sults of [3] by

COROLLARY (6.6). Let ξeπp+1(A), rjeπq+ι{A) be elements with filtra-
tions m, n, respectively. Then the filtration of the Whitehead product

A

[ξ, τj\ € πp+q+1(A) does not exceed m + n.

This follows from (6.1). For let α e j r p ( l ) , βeπa(AJ) be elements
such that ψ(a) = ξ, ψ(β) = rj. By hypothesis, there exist maps / : Sp-^Aooy

Sq~>Aoof representing a, β, respectively, such that fSpCZAm, gSqdAn.
Now Am An=AnΆm=Am+n, by the definition of Ax. Hence h(SpxSq)CZ
Am+n, where h denotes either of the maps

f(χ) g(y) +- (x, v) -+ g(v) f(χ) χeSp, yeSq.

Therefore <α, βy can be represented by a map of Sp+q into Am+n, so
that the filtration of ζa, βy, and hence of φζpc, βy, does not exceed

Hence, by (6.1), the filtration of [φ(ac), Φ(β)] does not exceed
, which proves (6.6).

PART III

APPLICATION TO LOOP-SPACES

7 The loop*space (in the sense of Moore). Let X be a space with
basepoint x0. By a loop in X we mean a pair (/, s), where s^>0 and
/ is a map of the interval 0<Lt<Ls into X such that f(0)=f(s)=x0.
The composition of (/, s) with another loop (/', s') is the loop (/",
where
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Let A denote the set of loops with the topology defined in § 2 of [4]
we call A the loop-space of X The ordinary space of loops, £?, consists
of those loops (/, s) such that s = l . Let a? denote the loop (/, 0), where
f(0)=x0. The product in A which is defined by composition of loops is
associative, and admits x° as a unit element. In § 2 of [4] Moore asserts
the following propositions. We omit the proofs, which are straight-
forward but tedious.

THEOREM (7.1). (a) The product in A is continuous; and (b) Ω is a
deformation retract of A.

Let us represent Sr+1 as the suspension of S r, as in § 1 of [3], so that
(x, t)eSr+1 if xeSr and tel. Let h: Sr-» A be a map, and let h{x) =
(/, s), say, where sί>0 and / maps the interval 0<Lt<Ls into X. Then
a map h': Sr+ι-+X is defined by h'(x, t)=f(st), where 0<Lt<^l. The
transformation h-*h' is invariant under homotopy, and therefore it de-
fines a function φ: πr(A)-+πr+1(X). We prove

THEOREM (7.2). The function ψ is an isomorphism (onto).
For let i* denote the injection of πr(Ω) into πr(A), which is an

isomorphism by (7.1b). By taking representatives we find that ψi* = θ,
the Hurewicz isomorphism of πr(Ω) onto πr+1(X). Hence ψ is an isomor-
phism, which proves (7.2). Notice also that ψ is natural. To be precise,
let X' be a space with a basepoint and let h: X~>Xf be a map. If
(/, s) is a loop in X, where s i> 0 and / maps the interval 0 <11 <I s into

X, then (/&/, s) is a loop in X'. Let h: A-+A' denote the multiplicative

map which is defined by h(f, s)-=(hf, s), where A' is the loop-space of
X'. Then by taking representatives it follows at once that

(7.3) Φ'K-KΦ ,

where ψ' means the same for X' as ψ does for X, and where k*, h*

are the homomorphisms induced by h, h, as shown in the following
diagram:

h*
πr(A)—>πr(Λ')

φ\ \ψf

K

8 The canonical isomorphism. Let A be a space, with basepoint
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α°, on which a real-valued continuous function d is defined which is

positive except that cϋ(α°)=O. Let A denote the suspension of A, and

let A denote the loop-space of A. Let x° e A denote the trivial loop at
the suspension of α°. Then a map u: A->A is defined as follows. Let
aeA and let a=d(a). We define u(a°)=x°. Let aφa\ Then <*>0
and we define u(a)=(f, a), where / is the map of the interval 0 < t<La

into A which is defined by f(t)=(a, i/a). Of course u depends on d,
but since the set of functions d is convex it follows that any two maps
u are homotopic. The topology of A is such that u is a homeomorphism
into A, so that we regard A as a subspace of A.

We now define a homomorphism, ψ, of the homotopy sequence of
the pair (A, A) into the suspension sequence of A, as shown in the
following diagram.

j k *f
• πr(A) -* πr{A) ~> πr(A, A) -> πr

• πr(A) -> πr+ι(A) -> πr+1(A C + , C-) -> TΓ

We define ^ as follows. Let3 Vr denote the convex hull of Sr~\
so that points of Vr are represented by pairs (s, x), where x e Sr~ι and
0<^s<il, such that (0, x)=e, (1, α?)=a?. Let F r + 1 denote the suspension
of Vr, so that points of Vr+1 are represented by pairs (y, i), where
yeVr and O ^ ί ^ l . Let A: 7 r - > J be a map, and let h(y)=(f, s),

say, where s!>0 and / maps the interval 0<Lt<Ls into A. Let h':

Vr+1 ->A be the map defined by A'(y, t)=f(st). Since h'Sr=a° if hSr-1=
x°, we define ^ on ττr(J) to be the homomorphism induced by the trans-
formation h-+h'. It is easy to check that ψ means the same here as
in (7.2). If hSr'1ClA then h' maps one hemisphere of Sr into C+ and
the other into C_, so that the transformation h->hf also induces a

homomorphism of πr(A, A) into πr+1(A; C+, C_). Thus we define ψ on
πr(Λ, A), and the definition is completed by setting ψ to be the identity
on πr{A). It is easily verified that these definitions make (8.1) commuta-
tive, that is, that

(8.2)

Since ψ maps πr(A) identically, by definition, and maps πr(A) isomor-
phically, by (7.2), we obtain by an application of the five lemma :

3 See § 1 of [3] for details of these representations.
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THEOREM (8.3). As shown in (8.1), ψ is an isomorphism of the
homotopy sequence of pair (A, A) onto the suspension sequence of A.

Now let A be a complex as in § 4, and consider the reduced product
complex A*,. We extend the inclusion map u: A->A to a multiplicative
map w: A^-^A, as follows. Let a^eA^, so that a^=a^a2 an9

say, where au a.2f , an e A. Then we define

w{a^u{a^u{a.^ u(an) .

Notice that w is nonsingular, although y-L is not mapped homeomorphically
unless A=a°. Let w* denote the homomorphism of the homotopy se-
quence of {A^ A) into the homotopy sequence of (Λ, A) which is induced
by w, and let φ denote the canonical isomorphism of the homotopy
sequence of (A^, A) onto the suspension sequence of A, as in (4.1). It
follows from the definition of φ in § 10 of [3] that

(8.4) Φ=φw* .

Hence and from (8.3) we obtain

THEOREM (8.5). The homomorphism w* maps the homotopy sequence
of the pair (A^, A) isomorphically onto the homotopy sequence of the pair
(A A).

Thus w is an algebraic homotopy equivalence of the pair, in the
sense of [2]. Let us also denote by w* the homomorphism in singular
homology which w induces. Then from (8.5) of [2] we obtain

COROLLARY (8.6). The homomorphism w* maps the singular homology
sequence of the pair (A^, A) isomorphically onto the singular homology
sequence of the pair (A, A).

The next section is devoted to proving:

THEOREM (8.7). Let A denote the loop-space of a space X, and let
ξeπp(A), ηeπ^A), where p, q^>l. Then

We conclude the present section by showing how (6.1) is deduced

from (8.7). Let A be a complex as in § 6, and let X=A in (8.7). Then

if λeπpiAo), μeπ^AJ) are the elements given in (6.1) we have that

by (2.2), since w is multiplicative. Moreover,

Ψ<W*(λ), W*(μ)> = (-lΠψw*(λ), φw*

by (8.7). Hence and from (8.4) we conclude that
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Thus (6.1) follows from (8.7), and it only remains for us to prove (8.7).

9. Proof of (8.7). Let A be a countable CW-complex with only

one 0-cell, and let u: A ~> A be the inclusion map, where A denotes the

loop-space of A. We prove first of all

THEOREM (9.1). Let h: SpxSq~>A be a map, where p, q^>l, and

let c(h) denote the element of πp+q+1(A) which is obtained from h by the

Hopf construction. Let d(uh) denote the element of πp+q(A) which is ob-

tained from the inclusion of h into A as in § 1. Then c(h)=ψδ(uh).

Proof. We have uh=whr, by the definition of w, where h' denotes
the inclusion of h into A^. Hence

by (1.4), since w is multiplicative. Hence

φd(uh)=φw*δ(h')=φd{h'), by (8.4) ,

=c(h), by (5.7) .

This proves (9.1). We deduce

COROLLARY (9.2). Let hu h2: SpxSq-^A be maps which have the
same sections, and let d(hu hz) denote their separation element in πp+q(A).
Then

c{fi2)=c(h1)-hEd(hl9 hz) .

Proof. We have

δ(uht)-δ{uhι)=d{uhl9 uh2), by (1.3) ,

=jd(hl9 hi) .

by the naturality of the separation element. Therefore

hly hz) ,

by (8.2a). Hence (9.2) follows from (9.1).
Now take A=SpxSa and let aeπp(A), βeπq(A) be the homotopy

classes of the maps of Sp, Sq into A which are given by

x-+(x,e), (xeS»); y-+(e,y), (yeSq);
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respectively. We prove that

(9.3) φ<J(a), j(β)y=(-lΠE(a), E(β)] .

For let h: SpxSq->A denote the identity map, and let v: SqxSp~+A
denote the map which interchanges the factors. Since uk has type
(j(<x), j(β)), it follows from (2.3) that

OX"),j(β)>=δ(uh)-(--l)'«δ(uv) .

Therefore

- ( - l)»φδ(uv)

- l ) M φ ) , by (9.1),

a), E(β)] ,

by (2.19) of [3]. This proves (9.3).

We continue to consider A=SpxSq, and we denote the set of axes

Spxe\J exSq by A'. Then A contains A', which we identify with

Sp+ιxe\JexSq+1. Let Af denote the loop-space of A!', regarded as a
subspace of A, and let j\ Er and ψ' mean the same in the case of Af

as do j, E and ψ in the case of A. Thus, if k* denotes any of the
homomorphisms induced by the inclusion map k: Ar -> A we have the
relations

(9.4)

Let a' € πp(A'), β' e πq(Af) denote the homotopy classes of the maps
of Sp, Sq into A' which are defined by

a?->(α?, β), (xeS*); y-+(e,y)t (yeSq);

respectively. Since a=k^(ar) and β=k*(β') it follows that

'{*'), KW)>, by (2.2) ,

=Φ<j(")f j(β)>, by (9.4a ),

=(-l)ΊE(a), E(βy], by (9.3),

^ ( - l ) ^ ^ ( α θ , KE'(β')l by (9.4b) ,

by the naturality of the Whitehead product. Hence

'(*f), E'{βr)\,
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by (9.4c). But since A! is a retract of A, the injection

k*' πp+q+ι\A ) —> πp+q+1(A)

is an isomorphism into. Therefore we conclude that

(9.5) Φ'<j'{a'), J'(β')>=(-mE'((*'), E'{β')\ .

Continue with the same meaning for A\ Λr etc., but now let A
mean the loop-space of X, as in (8.7). Let ξeπp(A), ηeπq(Λ) be the
elements given in (8.7). Let /, g be maps of Sp+1, Sq+1 into X which

represent ψ{ξ)y Ψiη), respectively, and let h: A—>X denote the map
which is defined by

h(x, e)=f(x) , (x e S*+ι) h(e, y)=g(y) , (y e S«+1) .

Let h: Λf -^ A denote the map defined by composing loops with h, as in
§ 7. Consider the induced homomorphisms

Λ

h*: πr(Λ') -> πr(Δ) , h%: πr+1(A')-^πr+ι

which are related by (7.3). We have

(9.6) φ(ξ)=KE'{a') , ψ{η)=KE'(β') ,

by the definition of h. By (8.2a) and (7.3), however

and so it follows from (7.2) and (9.6) that

Therefore

by (2.2), since h is multiplicative. Since ψh^=h*ψ', by (7.3), it follows
that

=(-l)>hJLE'(a'), E'(β')l by (9.5) ,

=(-l)o[/^£"(α')> KE'(β')~\, by naturality ,

by (9.6).

This proves (8.7), and completes the proof of the various other theorems
which we have deduced from it.
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A P P E N D I X

10* Separation elements* The notion of a separation element is
not exactly a special case of t h e notion of a separation cochain (see [1]).
Hence we provide a brief account in this Appendix.

Let Sr ( r l > l ) denote t h e uni t sphere in euclidean (r-ί-l)-space, and
let S7""1 denote its equator. Let Vr denote the convex hull of t h e
equator, and let E+, E- denote the two hemispheres into which Sr~1

divides Sr. Let p, q: Vr -> Sr denote the orthogonal projections of Vr

onto E+, E-, respectively, (orthogonal to t h e plane of Vr).
Let K be a CTF-complex with a subcomplex L such t h a t K—L=er,

an open r-cell. That is to say, er is t h e topological image of the interior
of Vr under a map / : Vr~>K such t h a t fSr-ιCZL. Let u,v: K->X
be maps which agree on L, where X is a space. Then we define a map
g: Sr->X by

(10.1) gp=uf, gq=vf.

We define d(u, v), the separation element of u and v, to be the homotopy
class of g in πr(X). The following relations are easily verified.

THEOREM (10.2). Let u, v: K-+X be maps which agree on L. Then
u~v, relative to L, if, and only if, d(u, v)=0.

COROLLARY (10.3). If u: K-+X is a map then d(u, u)=0.

THEOREM (10.4). Let u, v, w: K-^Xbe maps which agree on L. Then
d(u, w)=d(u, v)-\-d{v, w).

COROLLARY (10.5). Let u,v: K~>X be maps which agree on L.
Then d(u, v) + d(v, u)=0.

THEOREM (10.6). Let an element dβπr(X) and a map u: K-+X be
given. Then there exists a map v: K->X which agrees with u on L
such that d(u, v) = δ.

THEOREM (10.7). Let ut, vt: K~>X be homotopies which agree on L,
where 0 < l £ < : i . Then d(uQ, vo)=d(uu vj.

THEOREM (10.8). Let u, v: K~> X be maps which agree on L. Let
h: X~>Y be a map, where Y is a space. Then d(hu, hv) is equal to the
image of d(u, v) under the homomorphism induced by h.
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THEOREM (10.9). Let k: (K, L) ->(K', L') be a map of degree p,
where K and Kr are CW-complexes with subcomplexes L and U, respec-
tively, whiόh are complements of r-cells in their respective complexes. Let
u, v: K' -+X be maps which agree on L\ Then d(uk9 vk)=pd(u, v).
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