
PERTURBATION OF DIFFERENTIAL OPERATORS

HENRY P. KRAMER

Introduction, N. Dunford, in a series of papers [3, 4, 5], has
initiated the study of operators on Banach spaces that allow a represen-
tation analogous to the Jordan canonical form for operators on a finite
dimensional vector space. Such operators he has called spectral opera-
tors. They include, of course, self-ad joint operators which have found
such wide application to problems of analysis. J. Schwartz [9] has ex-
hibited an interesting class of spectral operators which contains many
classical ordinary differential operators. His chief tool was a pertur-
bation theorem that guarantees that if T is a regular spectral operator
with a discrete spectrum that converges to infinity sufficiently rapidly
and B is a bounded operator, then TΛ-B is again a regular spectral
operator. This result provides a tool for showing that second order dif-
ferential operators with suitable boundary conditions are regular spectral
but does not suffice for proving this property for differential operators
of higher order. This paper refines the method of J. Schwartz to allow
application also to differential operators of higher order by showing
that under certain conditions a regular spectral operator T may be per-
turbed by an unbounded operator S with the result that T-\~S is still
regular spectral.

The paper is divided into three parts. The first part presents
preliminary notions and lemmas to be used in part II where the princi-
pal theoretical tool is fashioned in Theorem 1. Its object is to set
forth conditions under which an operators is spectral (see Definition 1).
This problem is attacked in the following form. Suppose that T is known
to be a spectral operator. Under what hypotheses on T and a per-
turbing operator $ may it be said that the operator TΛ-S is spectral?
An answer to this question is given in Theorem 1. This theorem is
then applied in the third part to differential operators of even order
with " separated '' boundary conditions on a finite interval. First, the
simple operator defined by means of the formal differential operator

and " separated '' boundary conditions is shown to be spectral.
dxίlL

Then, with the aid of Theorem 1, the perturbed operator

d2fL Ά Q dzμ-1

Received August 21, 1956. This paper constitutes part of the author's doctoral dis-
sertation submitted to the University of California, Berkeley, 1954, prepared under the
guidance of Professor Frantisek Wolf

140Γ)



1406 HENRY P. KRAMER

where Qt may be any bounded operator on ..5^(0, 1) is seen to be
spectral as well.

1. Preliminaries. N. Dunford [3, p. 560] has laid down the
following.

DEFINITION 1. Let X be Banach space and T a transformation on
X to X. If E(e) is an operator valued function of Borel sets in the
complex plane and

(a) E(e)E(g)=E(ef\g), E(e')=I-E(e), TE(e)=E(e)T,
(b) E{e)x is completely additive in e for each xe X,
(c) the spectrum of T, with domain and range restricted to E(e)X,

is contained in the closure of e, and
(d) there exists a constant M such that for every Borel set e \\E(e)\\

<^ M, then E(e) is called a resolution of the identity for T and T is
called a spectral operator.

The preceding definition covers a wide class of operators. In what
is to follow, attention is focussed on a very restricted subset consisting
of the regular spectral operators. The meaning of the adjective regular
is clarified as follows.

DEFINITION 2. An operator T is regular if the resolvent set f>(T)
•φφ and if for some λep(T), (T — λ)~ι is completely continuous. (To be
abbreviated c.c.)

Note that the spectrum of the c.c. operator Rλ(T)=(T — λ)~ι consists
of a sequence of isolated points converging to 0.

It follows by the spectral mapping theorem [12, p. 324 et seq.]
that the spectrum of T consists of a sequence of points λn converging
t O CXD.

In the sequel, the condition

shall sometimes be made in regard to the spectral measure of a regular
spectral operator T. The above condition asserts that the spectral
measure corresponding to the point at infinity is the null operator or
μ = 0 is not an eigenvalue of T"1. The existence of T~ι as a c.c. opera-
tor may be assumed without loss of generality in view of the following.

LEMMA 1. / / λ{)e (>{T) and RKf)(T) is c .c , then Rλ(T) is c.c. for all

λ 6 p(T).

Proof. The first resolvent identity [6, p, 99] states that for λ{) e p(T)
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and λep(T)

The product of a bounded operator and a c.c. operator is c.c. and
the sum of two c.c. operators is again c.c. Thus it is apparent from
(1) that Rk(T) is c.c. for all λ e p{T).

LEMMA 2\ If S is a closed operator and B is a bounded operator
and .&r(S)Z3 &(B), then SB is bounded.

Proof. SB is closed. For suppose that xn -> x and SBxn ->y. Since
B is continuous, Bxn -> Bx. But since S is closed S(Bxn)-+ S(Bx)=(SB)x
=y. Thus SB is a closed operator defined on all of X and therefore
by virtue of the closed graph theorem [1, p. 41] it is bounded.

LEMMA 3. Let J be a finite set of integers and suppose that Bn is
a set of bounded operators and En a set of mutually orthogonal projec-
tions1, both sets being indexed by J. Then

Proof. L e t / e if and | | / | | = 1. It is an easy consequence of the
Hermitian nature of En and Schwarz' Lemma that

II ΣEnBnf\\z- Σ Σ (#»*»/, EkBkf)
ne.r ne.r h ej

<,Σ\(Bnf, EnBnf)\<Σ\\Bnf\\ \\EnBnf\\
nej nej

nβJ

In the sequel, reference shall be made several times to the following.

CONDITION A. All but a finite number of the idempotents2 E(λh)
associated with the points of the spectrum of T project onto a one-
dimensional range and

For a regular spectral operator, the last statement is equivalent to the
assertion that the range of

1 If T is an operator then J&(T) denotes its domain and &(T) its range.
2 Λn idewφotent is an operator E such that E=E2. Idempotents Eλ and E2 will be

called orthogonal if E-ιE >—-0. If E~E*, then E is a projection.
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consists only of the null vector.

CONDITION B. Let dk denote the distance between λk and the rest
of the spectrum of T. Then there exists a number τ^> 0 such that

Σ d Γ < > .

For use in the theorem to follow, it is necessary to define explicit-
ly the concept of a fractional power for the special class of operators
with which the theorem is concerned.

In this definition an application shall be made of a theorem of
Lorch [8] and Mackey which asserts that if E(e) is a uniformly bound-
ed spectral measure, then there exists a nonsingular transformation of
Hubert space into itself such that WE(e)W~1 is a Hermitian spectral
measure.

Let T be a regular spectral operator on Hubert space H which
satisfies Condition A. Let & be the finite set of characteristic values
λ for which the idempotents E(λ) project onto ranges of multiple dimen-
sion. Let W be the automorphism of H into itself which carries the
spectral measure E(e) of T into the Hermitian spectral measure E'(e)
= WE(e)W~1 of T'=WTW-\

Since E\&)\_ I—E'{,^), the two projections effect a unique decom-
position of H into a direct sum

where

and

Now

where

and



PERTURBATION OF DIFFERENTIAL OPERATORS 1409

Upon restricting the domain of T[ to Ht and that of Tr

λ to H.z one is

confronted by a finite dimensional operator T[ and a normal operator

If — 1 < > < 1 , the function /(/() = Γ of the complex variable λ is

regular on the spectrum of T[ provided 0 0 σ(T) (which is no essential

limitation of generality) and f(λ) is restricted to its principal value.
Then, following Dunford [4], one defines

= Σ Σ
i ml

{Tι ~ ^ {»(»-1) {y-m + l)XΓm&(λt)
ml

where μi is the order of the pole λi or the resolvent and E'{λi) is the
restriction of /£"( 4̂) to E\^)H. Since T'<A is normal one has the spec-
tral decomposition

and by the operational calculus for normal operators (cf. [10, pp. 48-
51] for example)

Now define (T[)y and (T$)v by the rules

% , ϊ ( Γ ί ) v Λ = 0

Then

(r) v

and finally,

The proof of the perturbation theorem below strongly depends on
the operational calculus for spectral operators developed by N. Dunford
and explicitly adapted to the case at hand by J. Schwartz [9]. For
the sake of ready reference the pertinent results are presented here.

If T is a regular operator with a finite set of characteristic
numbers

which are multiple poles of the resolvent and
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and f(λ) is a complex-valued function which is uniformly bounded on
the spectrum of T and possesses the required derivatives, then

f(T) ̂  Σ Σ J4 - (T- WEVi) + Σ

For such an f(T) Dunford [5] has shown that the series defining it
converges in the strong operator topology and that there exists a con-
stant K(T) such that

On the basis of this result J. Schwartz [9] enunciates the
following.

LEMMA. If S is a regular spectral operator all but a finite set of
Ίvhose eigenvalues λn are siwφle poles of the resolvent, and if S also
satisfies

then there exists an absolute constant K such that

for all λ not within a fixed radius ε of any multiple pole of the resolvent.
In the theorem below let it be understood that

2. The perturbation theorem. The principal result of the present
paper is the following.

THEOREM 1. Let T be a regular spectral operator on Hilbert space
H and suppose that it satisfi.es conditions A and B. Let S be such a,
closed operator that for som,e v, 0 < ^ < ^ l , £&{S)Zϊ &{Tv) and 1^(5*) ID
^ ( Γ * v ) . Moreover, suppose that for all but a finite set P of positive

integers, for all

l-tn\= λ d,,\ =φ max ^ < M ,

Under the above hypotheses, T + S is again a regular spectral operator*
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Proof. Since, for λ e p{T)y

&(Rλ{T))= &(T) C ^ ( Γ v ) g &(S),

SRλ(T) is well defined and is, in fact, by Lemma 2, a bounded operator.
By the same token ST~* is bounded. In order to show that T-+-S is
regular, it need merely be ascertained that Rλ(T + S) is c.c. at one point
λ e fj(T) and for this purpose we examine the formula

(1) Rk(T+S)=Rλ(T){I-SRλ(T)}~1

which is valid for λep{T) provided only that {l~SRk{T)}-1 exists. If,
{/—SRλ(T)) ~1 not only exists but is also bounded, then RK(T + S) as the
product of a c.c. and a bounded operator is itself c.c.

But the hypotheses of the theorem allow one to state that
{l-SRλ(T)}-L<2 for λeCn and all n sufficiently large. This is proved
as follows

By Dunford's operational calculus and the hypotheses of the theorem it
is true that

\\W-T)T-*}-'\\<^M* max j ^ 1 <M l

μeσc/'.)|Λ — μ\ <ΓΊΓ

Let \\ST-T\\~M,. Then

(2) llS^(2ΊII-^7^ = j ^

and since in view of Condition B, Iim(i~τ/2—0, one has for all n suf-
ficiently large \\SRK(T)\\ < 1/2 while λeCn. From this estimate follows
the possibility of expanding

in an absolutely convergent series so that

||< 1 / 2 .

It is immediate from the above that if λ lies outside the assemblage
of circles Ck, then for each μk e o(T) we have

where / is the intersection of the line connecting λ with μk and the
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circle Ck. From this, the above estimates follow a fortiori. Consequent-
ly, except for a finite set, all points of σ(T+S) lie inside the circles Ck.

In order to show that the spectral measure {E'(λ[)} of T+S is
uniformly bounded it is convenient to assume that the spectral measure
{E(λk)} of T consists of Hermitian idempotents, that is, that E(λk) = E{λk)*.
That this assumption may be made without sacrificing generality is due
to the theorem of Lorch-Mackey. It must be verified that if T and S
satisfy the conditions of the theorem so do T'=WTW"λ and S'=WSW-1.

(a) σ(T') = σ(T). For suppose λβp(T). Then RK(T) is a bounded
operator. But

is also bounded. Hence p(T)=p(T') and the result follows on taking
complements with respect to the extended complex plane.

(b) dim WE(λk)W-1 = dim WE(λk)<* dim E(λk).

However, since W is continuous, with a continuous inverse, it maps no
nonzero vector into zero and thus, since dim E(λk) = l for almost all k,
the same is true with regard to WEiλ^W"1. Also

0=w(l-

(c) fe ^(WT'W-1) => W-ιfe ^{T^z^W-'fe &(S)=$fe Ω)(β)

and similarly for the adjoints.
In the remainder of the proof it shall, therefore, be supposed that

the spectral family E{λk) consists of Hermitian idempotents. For con-
venience, the primes introduced above shall be suppressed.

The proof of uniform boundedness rests on the formula

(4) Rλ(T+S)-Rλ(T)

λ(T)SRλ(T)SRλ(T){I-SRλ(T)}~1

which is easily obtained from (1) and the operator analogue of 1/(1 —
l — x), and on the basic relation

(5) # ( 4 ) = A ; ( f Rλ(T)dλ.
2 J ccn

Let J be a finite set of positive integers all of which are sufficient-
ly large that is, NeJ=}N>N,. The nature of N0(T, S) will be
specified somewhat more precisely in the sequel. Then, on integrating
both members of (4) one finds that
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( 6 ) || Σ En-E{λn)\\ <| | Σ -K ί R£Γ)SRκ(T)dλ

\nej2πι J σ
-f i

where £^ represents the spectral measure corresponding to that portion
of the spectrum of T-hS which lies inside the circle Cn. In order to
place bounds on the right member of (6) one employs a well established
inequality for operator valued functions A(λ) analytic on a contour C
of length L [12, p. 324].

A(λ)dλl<Lma,x\\A(λ)\\.L.
7 II λ e c

Applying this result to the second term of the right member of (6) one
finds

\\nej2πi J cn

^ Σ , , 1 \\R,(T)\\
nej2π ό

Now using inequalities (2) and (3) to estimate ||{/— SRλ(T)}~ι\\ and
HSi^ϊ7)!! and Lemma 3 of J. Schwartz reproduced above, one obtains
for this term the bound

1 y M* ̂ M* V A<OO

The term

requires closer investigation. By employing the representation

A A n

where An{λ — λn) is a power series in λ — λn without constant term and,
applying the residue theorem, one finds that

^ . 1
Zπi J cn

It remains to find bounds for
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and

On observing that

and identifying SRΰ(λn) is one case and S*β°*(Λw) in the other with i?w

of Lemma 3, one sees that the terms in question are bounded by

It is not difficult to estimate ||Si2°(Λw)||. Again turning to the
device

and noting that

one has

/α4H Σ

(In this formula, in order to avoid notational complications, the effect
of the finite set of multiple poles of the resolvent has been neglected.)
One sees that R%λn) = F(T), where F{λ) is defined in the neighborhoods
of the spectral points λk as follows:

x near 4 k φn

0 λ near λn .

Consequently, fΓP%ln)^G(T) with

— λ near λk kφ n

0 λ near λn

Now applying the bound arising from the operational calculus one
obtains
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Let μeCn.

'\i-μ\ *'

Un—μ\ 1

\λ-μ\

- 1

3 \r\
2 \λ-μ\

Using the hypothesis made with regard to this function one finally has

||SflU,)||<* I MM J -M'J- .
6 Un iln

Now one is prepared to state that

ΣA
nejZm

Rλ(T)SRλ(T)dλ < 2M-
»=i dτ

n

Thus

If it were known that En is the spectral measure corresponding to one
point of the spectrum of T + S, the proof of uniform boundedness would
be complete. The next few lines shall be devoted to showing that,
indeed, except for a finite number of indices, in every circle of radius
Idn about λneo(T) there lies exactly one point λ'neo(T-\-S) and the
spectral measure E\λ'n) corresponding to this point has a one dimensional
range.

In (6) let the index set J have n for its only member. Then one
sees on examining the estimates of the bound of the right member of
(6),

( 7 ) V'n-E(λu)\\ <- K'

For n sufficiently large

K >
1
2

which by Lemma 4 of [9] (also cf. [10, p. 320]) implies that E'n and
E(λn) have the same, dimension, which by hypothesis is 1. Therefore,
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(T+S)E'n considered as an operator on the range of En is a scalar λ'n and
precisely one point λ'neσ(T+S) lies in the circle Cn.

Thus T+S is a regular operator with uniformly bounded spectral
measure and is therefore a spectral operator, (cf. [9, Lemma 2].

From the foregoing proof flow two consequences deserving of ex-
plicit mention.

COROLLARY 1. The operator T-t-S satisfies Condition B and for all
n sufficiently large \λ'n — λn\<^\dn .

Proof. In virtue of the remark following inequality (3) of the
proof, all but a finite number of the points of σ(T+S) lie inside the
circles Cn with center at lneσ(T) and radius ldn. Moreover, the dis-
cussion following (3) shows that except for a finite number of indices
exactly one point λ'n of o(T+S) lies in the circle Cn about λn. Now
suppose λr

kea{TΛ-S) and its nearest neighbor is 4-i£ σ(T + S). Then

<; 1/3 dk + dk +1/3 dk-x <; 5/3

and

It is of importance to know whether the perturbed operator T±S
still enjoys the " completeness " property

with which the unperturbed operator T is endowed by hypothesis.
The answer is given in the following.

THEOREM 2. If T and S satisfy the conditions of Theorem 1, then

Proof. The proof rests on Lemma 16 of [9] which states:
The space S^iT)— {f\ for each positive integer k, E(λk)f=0} is the

set of all fe H for which f(λ)=JRλ(T)f is an entire function of λ.
Suppose C is a contour in the complex plane whose minimum dis-

tance from the spectrum σ(T) is d(C). Consider the function
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λ-μ

for λ e C and μ e σ(T). Now let λ' e C be such that dist (λ'9 σ(T))=d(C).
and let μn be the point in σ(T) such that dist(Λ', μn) = d{C). Then

By choosing C properly one can achieve that ||&ffλ(jΓ)|| < 1/2 for λ e Cn

and, therefore, a fortiori, for λ e C. Hence, by (3) \\{I-SRλ(T)}-1\\<C2
and by the above cited lemma, for feS^T), one then has for λeC

<——11/11.= d(C)

Now, given ε > 0, choose C in such a way that kfjd{C)<Ce . Then

The arbitrary nature of ε, the fact that f(λ)=Rλ(T-\-S)f is an entire
function of λ, and the permissible application of the maximum modulus
principle allow one to assert that for all λ in the interior of C,

Rλ(T+S)f=0.

In particular at points λep(T), Rλ(T + S) has an inverse. There are such
points in the interior of C. Thus / = 0 and the theorem is proved.

3. Application to differential operators of even order. N=2μ.
In appliying Theorems 1 and 2 to differential operators, the unperturbed
operator T is identified with the operator r = dNjdxN with domain
restricted by the two considerations:

(a) fe &(T) only if / e C ^ O , 1) and ^ - ^ is absolutely continu-
dx*'1

ous, and
(b) fe&(T) only if / satisfies N==2μ linearly independent boundary

conditions of which μ bear on the point x=0 and μ on the point x=l.
These boundary conditions can always, by linear combinations, be brought
to the form

i = l, 2, . . . , μ

h > fe > > /bμ
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( 8 ) Bt{f)=fi'i>(l)+ Σ βijβ'Kl) ΐ = l, 2, . . - , ^
3 = 0

k > k > * * * > h

To show that T is a regular operator it is most convenient to refer
to Lemma 10 of [9, p. 434] which states:

Let T be a differential operator and suppose that for some complex

λ both T—λ and T* — λ have an inverse. Then T and T* are regular

operators, T and T* have spectra related by σ(T)=σ(T*), and determine

spectral measures Ex and E2 related by Eι{λ) = Et{λ) .
Consider the differential equation (τ — λ)f=O. By manipulating a

tentative power series solution it can be shown in an elementary fashion
that there exists a set of linearly independent solutions which are entire
in the parameter λ. Let this set be {uL, %a> •••, uN}. The general solu-
tion of the above equation can then be expressed in the form:

On imposing the N linearly independent boundary conditions, one obtains
a system of N homogeneous equations in the N unknowns Cέ. This
system has a nonvanishing solution vector if and only if the determinant
of the matrix of the coefficients vanishes. This determinant, however,
being a linear combination of entire functions in λ is itself entire.
Hence its zeroes are isolated. Thus, for all but a countable set of
points λk, one finds that f(x) = 0, and thus (T— λ)~ι exists. But, since
the adjoint operator also has exactly N linearly independent boundary
conditions associated with it, it follows by the same argument that there
exists only a countable number of points μ}, where (T*~-μn)~ι fails to
exist. Consequently, one can find a point λ such that both (T—λ)~v

and (T* — I )" 1 exist and, therefore, by the cited lemma, T is regular.
It shall now be verified that T satisfies the spectral Condition B.

This will be accomplished by showing that the above boundary conditions
are what Birkhoff [2] has called regular. To clarify the meaning of
this term the technique for obtaining an asymptotic development for
the characteristic numbers and functions established in the general case
by G. D. Birkhoff [2] and amplified and developed rigorously by J. Ta-
rnarkin shall here be briefly recapitulated.

Since there are N linearly independent solutions of the equation

dNf , ,
dx^A

a solution of the boundary value problem must have the form
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The requirement that Ai(f)=Bι{f) = 0 leads to a set of N linear equa-
tions in N unknowns {C?}. A necessary and sufficient condition that
a nontrivial solution {CΊ} of this system exist is the vanishing of the
determinant of the coefficients:

Aλ(uN)

l(uλ) ... Bμ(uN)

It should be noted that the solution is unique provided not all of
the first minors of Δ(λ) vanish, that is, in this case, the characteristic
value is simple.

A fundamental set of solutions of the differential equation

consists of

where

Λ
dor

uh{x; λ)= p/

,ί(l/Λr)argλ

and ωfo are the AT" distinct Afth roots of unity. The transformation
(>N = λ transports the entire Λ-plane into a sector of angular width 27r/JV
of the jθ-plane. There is, then, a biunique correspondence between the
zeroes of Δ(λ) in the Λ-plane and the zeroes of d(p) = Δ(pN) in a sector
of angular width 2πjN in the ^-plane.

The elements of the determinant d(p) can, by (8) be written as
follows:

A,(uί)=P'i\aήt+ Σ

^ ^ ^ Bί7}

where lim Λ π = lim B.u = 0. After removing the factors pkι, pι\ from
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the rows with index i and i-vμ one has

n\kΛ A- A s.λkΛ _1_ Λ

•
ω^ + A^

The sector S shall now be chosen in a convenient fashion. To this
end, it is proper to distinguish between two cases:

(!) μ is even

2μ

π
—

2μ

(2) μ is odd

Let c/j=^/μ. Then in the first case, for arg/)=0

In the second case

for arg p=πj2μ. Suppose the indexing is arranged so that in the first
case

and in the second,

Upon bringing e/ω^ out of the determinant wherever dl(pω,)y> 0, one
has

where δ'(p) has the appearance
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ω\ι
. Λ n

ϊ* + Aμl

CO μ+l

lwII

Vμ+i

Here, 2ΪΓ and S37/ are matrices consisting of μ — 1 columns and // rows
all of whose terms have for a factor an exponential term with negative
real part. Asymptotically, these matrices are therefore negligible.

Thus

0(1/?)

Only the case in which μ is even shall be considered explicitly since
the treatment for μ odd is completely analagous. First note that

and

1 V ί

Thus ω1=— ωμ+1. Now let ^Ξ=(ϋfci and yi==ωιim The conditions that
&i > 2̂ > * > μ̂ a n d Zi > ^ > Zμ and the fact that ω=e ί7Γ/μ is a
primitive root of unity imply that xt Φ xlf yt φ y} for iφj. Recall that
by the arrangement of the indices, ω s=ω (^"μ / 2 ) + s"1=α>~μ /W"1. Therefore,

and

Using now the explicit representation of %TI and W given previously,

but taking only zero order terms into account, one has
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t * - 1

μ+l /v,-μ/2/ϊ»2μ-l
2 ) ) «*y2 **/2

2 7 .

y ? 7 ?

/μ > ί/μ f/μ> > ί/μ

4- < r p ω ]

/2 / y,-μ/2 / y,μ + l # , β -μ/2 '2μ-1
» " y μ «'μ ? j **-'μ "-'/t/.

? ί/2

By bringing common factors outside the determinant, one can simplify
the expression for <>'({>).

1 T

l y* yt-'

i Vμ. - vi~Λ

y'c\ y

The first determinantal factor of the second term above can be treated
by noting that l=xf- and switching columns μ — 1 times and then bring-
ing the factor α# outside. These manipulations yield

n'U>)=er< Π χ^hy

- β - p < ° i

1 /y . . . -r'χ-Ί

1 Λ< /v.μ -1

I rp . . . /y.μ-1
•*• «^μ ^ y μ

1 or ί̂ ^"1

i m

1 ί/a

1 Vμ

a;;
,μ-T

1 2/1

+ 0(1//))

Now note that the determinants involved in the above expression are
Vandermonde determinants. But such determinants do not vanish
provided only the entries (xL, x,, •••, xμ) or (ylf y,, •••, ?/μ) are distinct.
That this is the case was demonstrated above. Therefore, the given
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boundary conditions are regular in the sense of Birkhoff since in the
equation

not both θλ and θ2 vanish. Tamarkin [11] who examined " separated "
boundary conditions failed to reach tbis general conclusion. By includ-
ing common factors in the term 0(1/p), the equation df(p) = O can now
be written in the form

But

Hence, on multiplying by e~pωi, one obtains

or

On taking square roots of both members, one finds that

epί=±i(

or

Taking logarithms of both members and noting that

lo

results in the expressions

( 9 )
ρJIk = πl2 4- 2πk + 0(1/p)

or

(10)

By neglecting the terms of order lip first estimates may be obtained
which may then be inserted in (9) or (10) with the following results:
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(ii)

or

(12)

where the £?7(/fc) and En(k) represent bounded functions of k.
It should be noted that (11) and (12) are valid not only in the

case in which μ is even, but also when μ is odd.
Reverting to the Λ-plane one finds that

(13)

or

(14)

Since the zeroes of Δ(λ) furnish the poles of the Green's function,
one sees that all except a finite set of characteristic values of T are
simple poles of the resolvent. This does not, however, assert anything
about the number of linearly independent characteristic functions as-
sociated with each characteristic value. This matter will be dealt with
below.

From (13) and (14) one obtains expressions for the distance separating
the points of the spectrum σ(T),
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k

k i

so that in any case, for r > \\2μ —

Γ <

This verifies that Condition B is satisfied.
In view of a prior remark it is merely necessary to exhibit a non-

vanishing first minor of Δ(λ) in order to permit the conclusion that all
but a finite number of characteristic values are simple. Moreover, since
A(λ)=F(p)df(p) where F(p)φO it is sufficient to find a nonvanishing
first minor of δ'(p).

Reverting to the expression for δ'(p) and singling out the minor of
the element in the first column and 2μth row results in the exhibit:

jg/

Here 35/jΓ and 33'/z are obtained from 33' and 35r/ by deleting the last
row in each of these matrices. On expanding M2μ,tl in terms of the
μxμ minors occupying the first μ rows and their complements and not-
ing that all the terms of 2F and 33//J are negligible in view of the fact
that each has an exponential factor with negative real part, one has

+ 0(11 p).

In the previously employed notation, xί=ωkίf yί==ωιiJ one can write Λf2fAi 2

in the form:

μ

Π ™μ/2
Xl

ΐ = l
ff2

1 2/i

1 2/2

1 2/μ-l
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Again, the Vandermonde determinants appearing above do not vanish

because the xt and the yι are distinct. Upon using the previously deriv-

ed expressions for pky one sees that |ep*ωμ+i|->l. Hence, it follows that

M.lμΛ φ 0 except, possibly, for a finite number of indices fc, and thus

all except possibly a finite number of characteristic values are simple.
In order to show that T is spectral, it is necessary at this point

merely to establish a uniform bound on the spectral resolution E(e) of
T. But because T is regular this is tantamount to giving a uniform
bound for sums

whenever J is a finite set of indices. In establishing such a bound,
the finite set of {λk} which are multiple poles of the resolvent or multi-
ple characteristic values cause no difficulty. Therefore, it shall be sup-
posed that E(λk) projects onto a one-dimensional range. One can
construct E(λ^) explicitly by drawing on Lemma 12 of J. Schwartz which
states:

" Let E be a projection of 5-space Xonto a finite dimensional range,
and let E*: X* —> X* be its adjoint. Then if <plt •••, φn is a basis of
EX, we can find a unique basis of ψ?," ,ψ% of E*X* such that
ψ*(φj)=διj, and then

for any / e l .
Now let ψm(x) be the mth characteristic function of T, and ψm(x) the

corresponding mth characteristic function of T*. Then

ri

}j = 111:3

Jo

Now suppose that

(15) ψjx) = θm{x) + l Kλ{m, x)
m

m

where Kλ{m, x) and Kλ{m, x) are uniformly bounded in m. Then

^ ^
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and

\φΛχ)ΨJχ)dχ={φυ,, ίUHIflJI3 + --(K, KJ + ±(K1, θm) +1,(K1, κt).

Jo m m m'

Upon insert ing these expansions in t h e expression for E(λ,,,)f above, we
get

\θ,,{x)~θjy)f{y)dy r
E{λm)f= -•>? +M

PJI3
+

PJI 3 m \\θm\\>

ί l j l

Kλ(m, x)θm(y)f(y)dy c^m^KL(m, x)K2{m, y)f(y)dy

mm

where E.m is a Hermitian projection since its norm is unity and it is an
integral operator with symmetric kernel and AVl, Bm, Km are multipli-
cation operators that are uniformly bounded in m.

Now if J is a finite set of integers,

J I | Σ
βJ I neJ

V> 1 D

nej n

The first term is bounded by 1 because of the Hermitian character of
the idempotents. Applying Lemma 3 to the second and third terms
yields the bounds

and

For the fourth term one has the bound

sup \\Kn\\ Σ h .
n n = i U"

So that, granting the above representation for the characteristic func-
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tions of the operator T and the adjoint Γ*, one may draw the conclusion
that T is spectral.

In order to exhibit φjx) and ψ.m(x) in the forms (15) and (16) it is
necessary once more to resort to an asymptotic development, (cf. p. )

•1

(17)

2μ

3=1,2, >.,μ

From the compatibility of equations (17) it follows that C% is proportional
to the minor MIM+ι>ί of the element in the μΛ-1 st column and the ΐth
row of the matrix. This gives then the representation

μl

Here and in similar expressions to follow, proportionality factors are
freely discarded. Since the above determinant closely resembles d'(p),
essentially the same techniques that were successful before shall be
applied again. For k=2, 3, •••,/* we have ϊR(pm

ω*)>0. Bring β p Λ
outside the determinant.

Si1

1 Λ
μ + 1 » - " l . μ + 1

The entries of the matrices 21f and W1 are all negligible for large jfc.
Expanding the above expression one obtains
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ω>
ω\μ

epmωιx

ePιmωιω\μ

OJXIP).

Recall that the two determinants involving W1 are proportional to lowest
order in lip and that the factor of proportionality is ± 1 . Hence, on
incorporating this factor in 0(1/^; x) and bringing βpΛ+i and epmωi out-
side the determinants one has:

φm(x)

epm^x 1 }

ωι

22
•
•

. . eW C a r ~ υ

• ^ »

ω\μ

epmωμ-

ω2

It should be noted that except at x=l, the terms 6p^ωA c " 1 ) r , k Φ 1 are
negligible asymptotically since 3ΐ(pM(ωfc(a?—1))< 0. Now using the pre-
viously obtained asymptotic expressions for pm, one finds that for x Φ 1

cυ2

2

2

ω\μ

CL>2 2 * * *

ω\μ

<^μ>
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φmi{%)

4-

<PmIl{x)'

4- ι; x) .

On incorporating common factors that are uniformly bounded with
respect to m into the terms O(l/m; x) one has

m

(18)

or

) = sin 2πmx 4- ^S
ΎΠ

(19)

m

Thus the characteristic functions of T have been brought into the
desired form. Note, however, that since τ=dN!dxN is formally self-
adjoint, T and ϊ7* differ only in the boundary conditions. But it is a
simple matter to see that the boundary conditions of ϊ7* will again be
of the " separated " type (cf. [7, p. 186]) and that therefore all the
developments leading to an asymptotic expression for ψmI and ψmII will
be the same as those that served to find (18) and (19). Now note that
the first terms in (18) and (19) in no way reflect the quantities occur-
ring in the boundary conditions. Therefore it may be concluded that
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mI(x) = Bin 2π(m + A
\ 44 / m

(20)

Λnu(aO=sin 2π(m— —
4/ m

or

m
(21)

V 2 / m

By what has preceded, then, it may be concluded that T is spectral.
To complete the verification of Condition A for T is still necessary

to show that

* = 0

To this end note that

lim

so that in virtue of the fact that Ek is Hermitian and the above cited
lemma of J. Schwartz and F. Wolf, the range of

for sufficiently large m is finite dimensional. But in his Lemma 15
J. Schwartz asserts that

is either infinite dimensional or else the null space. But since

SL ϋi range (i— X, EQk)j ,

the above implies that SL is finite dimensional and hence consists of
the null vector alone.

It remains to verify the special hypothesis placed on the spectrum
of T in Theorem 1 and embodied in the requirement that for all suf-
ficiently large N, for all
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λ e c '

max
zkeσiT ) \λ-

where

^ = d i s t [ ^

First observe that if N=k,

ιi-
and if N Φ k

U Iv ]_

I; _ ^ 1 I n ιi-v
lΛiV ^k\ \ LJfNk\

DNlc

<? 1 / 7 τ / 2

^ o(i ) ~ {ANH .

iv 1 ; Jv

Zfcl ^

c
< l p*^ + i

1 4-1 <-

In any case, therefore, there exists a C such that

max - M L < C-'^ .

Now recall that according to the previously obtained asymptotic formulas,
λN ~ N2μ and dN ~ N2μ~\ Hence

Convergence of

Σ -—

is assured for r > 1/2// —1. It is thus required that 2//(v —1)4-1 < —1/2.
This requirement is satisfied by taking v <(// — 3/4)/// and, a fortiori, by
the choice v=(2// — 2)j2μ.

Finally, it is necessary to determine the class of operators £ for
which 3ί iβ)"Z> &{Ty). To this end it shall be shown first that if
f(x)e & (Γv), then f(x) is v=2//-2 times differentiable. Suppose

. Then
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If this series is differentiated termwise 2μ — 1 times one has formally,

ί ('sin 2π(k± l/4)# sin 2π(k± H±)yf(y)dy
IJo

4-
k

But this expansion converges for fe &(TV) almost everywhere to
/o-~2)(a;). Now let S be any closed operator whose domain consists of
2μ —2 times differentiate functions on the closed interval (0, 1) such
that the (2μ-2)nd, derivative is square-integrable. Theorem 1 applies.

Thus in conclusion one has the following.

THEOREM 3. Let T be the operator d2μΊdx2μt with boundary conditions

Ai(f)=f^i\0) + Σ «u/α )(0) <=l, 2, , μ

h > K > > K

then, if S is any closed operator whose domain consists of 2/>< —2 times
differentiate functions f with /(2μ~2)(#) e J9?(0, 1), T + S is a spectral
operator and, if E{λk) is its spectral measure, then

In particular, one may make the following choice for S:

where the coefficients qt(x) e »Sf(0, I)2. More generally, S may be chosen
in the form:

2 Note that the theorem actually holds for the wider class of boundary value problems

in which the 2μ - l t h derivative can be eliminated by a standard change of dependent

variable [7, p. 72],
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where Qt is any bounded operator in ~S£X0, 1).
Application of Theorem 2 shows that if fe J2£(0, 1) and E(λk) are

the idempotents corresponding to T+S, then the series expansion

converges in -S (̂0, 1) norm.
An additional consequence of Theorem 3 and Corollary 2 of [9, p

448] is the following.

COROLLARY 1. Iffe C2μ-\ f^~ι\x) is absolutely continuous, f^~ι\x)
e J2f (0, 1), and f(x) satisfies the boundary conditions above, then f can

be expanded in the series

where convergence is in the sense that, letting

we have

+ max max.
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