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1. Introduction. In 1935 Morrey showed that a non-degenerate
surface of finite Lebesgue area has a quasi-conformal representation on
the unit circle. He made use of Schwarz' result for polyhedral surfaces
and was able to use a limiting process after he had shown that the
representations of the surfaces involved were sufficiently well behaved
for the area to be given by the usual integral. The limiting process
depended upon Tonelli's result concerning the lower semi-continuity of
the Dirichlet integral.

Several years later Cesari reduced the dependence upon complex
variable theory by the use of a variational technique to obtain a slightly
weaker version of Schwarz' result, but he showed that for the remainder
of Morrey's argument his form was adequate.

The purpose of this paper is to remove the restriction that the
surfaces be in Euclidean space; the method is that of Cesari.

Morrey's theorem has proved useful in the study of certain two-
dimensional problems in the calculus of variations. It is hoped that the
extension of his theorem will permit corresponding extensions of that
theory [3, 6, 12].

A desirable feature of quasi-conformal mappings is that the area of
the surface is given by one half the Dirichlet integral. To retain this pro-
perty for surfaces which are not in Euclidean space requires the definition
of an appropriate integral to complement the definition of area. The de-
finition of (Lebesgue) area used in this paper is that given in [13] which
agrees with the usual definition in case the surface is in Euclidean space.

We shall make use of the ideas of [13] in two other respects. First,
we need only solve our problem for surfaces in m, the space of bounded
sequences [1], since the definitions are chosen so as to be invariant
under an isometry and we can map other surfaces isometrically into m.
Second, we shall make use of the fact that the area of a function in m
depends only upon its distinct components. The last remark results
from the definition of the area of a triangle. Let r={rί}, s={s1}, and
t={t1} be three points in m. Then the area of the triangle with these
points as vertices is, by definition,
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2* A closure theorem for A.C.T. functions* Certain definitions ap-
plying to real-valued functions must be modified to apply to functions
which range in a metric space.

DEFINITION 1. Let ψ be defined on the interval [α, b] with range
in a metric space D. Let Φ be the interval function defined by

φ([c, d]) = δ(<p(c), ψ{d))

where δ(r, s) is the distance between r and s in D. Then ψ is B.V. or
A.C. according as Φ is B.V. or A.C. Define Όψ — ΌΦ wherever the right
hand side exists.

With this definition of bounded variation and absolute continuity of
a function of one real variable in a metric space Z), we extend verbatim
the definitions of bounded variation and absolute continuity in the sense
of Tonelli, B.V.T. and A.C.T., to apply to functions of two variables
with range in D [10].

If x is continuous on an open set G contained in E.λ into D, define,
where the right hand sides exist,

Dux(u, v)=D<p(u) where ψ(t)—x{t, v) ,

Dυx(u, v) = Dψ(v) where ψ(t) = x(u, t)

If x is B.V.T. then Dux and Dυx exist a.e. [8].
If ψ is defined on [α, 6] into m and is A.C. it is still possible that

l i m ΨWD.—r\_2 m a y n o t exist anywhere [5]. Hence we define a component-
w-+t W — t

wise derivative ψr by φr—{ψv}» Since φ is A.C. it follows that all of
the φ* are also and that ψif and Dφ exist almost everywhere. That
Dψ^\φίf\ for each i is evident, hence φ' is defined, and in m, almost
everywhere in [α, 6].

THEOREM 1. If φ is A.C. then Dφ exists and is equal to \φf\ wher-
ever φ' exists.

Proof. Suppose that the theorem is true whenever φ has only a
finite number of non-zero components. Let φn be that function whose
only non-zero components are the first n, and these are the first n com-
ponents of φ. Then (see the proof of Theorem 10) length ^=lim length

φn. Hence

lDφ=length y = lim length <pn=\im \D^ n = lim \ \\<p'n\\= \ \\φ'l -

Thus we may as well suppose ψ has only a finite number of non-zero
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components. Let έ be a point where φ' is defined. It suffices to show
that

\w—1\

For some i there exists a sequence of numbers wn-*t such that

\wn-t\

and

\φ\wn)-φ\t)\ = \\φ{wn)

The existence of this sequence implies that

DEFINITION 2. If x is continuous on an open set G into m, define,
where the right hand sides exist,

%u(u, v) = φ\u) where <p(t) = x(t, v) ,

xυ(u, v) — φ\v) where ψ(t)=x(u, t) .

THEOREM 2. // x is A.C.T. on G into m then

\\xu\\=Dux and \\xυ\\—Dvx

wherever the left hand sides exϋst.

DEFINITION 3. If x is A.C.T. on G into D and if Dux and Dυx are
in L2, then x is a D-mappίng [4]. Let

It was shown in [13] that if x is a Z)-mapping on a Jordan region
into a metric space, then the Lebesgue area of x, L(x), is given by
what corresponds to the usual integral (see § 6).

Let ΠN be the projection of m defined by

THEOREM 3. If xm is a sequence of A.C.T. functions on a bounded
open set G into m, if xm-+x uniformly in each closed set H contained
in G, if the norms of the partial (component-wise) derivatives pm = ||#TOJ|,
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<7m=|#mJ we in La, α > l , and \ \[p£+Q%\ <M for all m, then x is A.C.T.
G

in G, the norms of its partials p=\\χu\\ and q=\\xυ\\ are in L a and

f Γ ΓΓ f Γ Γ f
\ \ ϊ f = lim inf \\pt , \W* = l im inf l l g * .
G G G G

Proof. Let us first suppose that xm=-Nxm for each m and fixed N.
The hypothesis, together with the closure theorem for A.C.T. real-valued
functions, assures us that xι is A.C.T. for each i. Hence Nx is A.C.T.

The remainder of the proof, in case xm = Nxmf deviates slightly from
that given in [4] for real-valued functions.

Let if be a closed set contained in G whose distance from the
boundary of G is 2p >0. Let Kp be the closed set of all points whose
distance from K does not exceed p. Let n>2\p. Define (n; x) by

(n; x)= {(n; x, i)} and

(n; x, ϊ){u, v) — nΛ \ xl(r, s) dr ds for {u, v) e K .

Then (n; x) has continuous first partial derivatives, (n; x)u = (n; xu),
(n; χ)υ = (n; xυ), and (n; xm)u-+(n; x)UJ (n; xm)υ-+(n; x)υ. Furthermore, if \\y\\
is in LΛ, where y— {y1} is defined on G into m, each yι being measurable,
then

Thus

\\\\(n; aj).r=Um ί(\\(n; xm)Jt^\im inf (f
j J m->oo J J m-»oo J J

Since x is A.C.T. and xι

u is integrable for each i, (n; xh)-+xi

u a.e. in K

and fl(τι α J I H ^ t J a e ίn -^ Thus ||a?β|| is in La and

inf f(|(w; ^)| |^lim inf
K

Finally, p*=z\imlNxul*
N

(fpα=lim ((lU^l^lim lim inf (f | |(^m)J^lim inf ff |(ίcm)J^Λf
K K G G

Similarly

j j * = lim jnf
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3 Equicontinuity theorems* The theorems listed in this section
are taken from [4], except that now the surfaces need not be in Eucli-
dean space. The proofs carry over almost without change.

Let Q be the square [ 0 ^ , v^ΐ], let Q* be its boundary, and x be
defined on Q into a metric space D.

THEOREM 4. [L. C. Young]. Given two positive numbers N and ε
there exists a positive number rj depending only upon N and ε such that
for any D-mapping x with D(x)<N there exists a <5, η<δ<ε, and a
finite subdivision of Q into rectangles whose side-lengths lie between δ
and 2δ and such that image of each side of such rectangles not on Q* is
a rectifiable curve whose length is less than e. A subdivision may be ob-
tained by means of straight lines parallel to the sides of Q.

THEOREM 5. Let S be a base (or open non-degenerate) surface, let
Sn, w = l , 2, •••, be a sequence of surfaces such that ||SW, S\ ~-> 0, each Sn

having a D-representation xn on Q with D(xn)<M (\\Sn, S\\ is the Frechet
distance between the surfaces Sn and S). Then the mappings xn are
equicontinuous in each closed set KcQ° (the interior of Q).

THEOREM 6. Let S be an open non-degenerate surface and Sn be
a sequence of surfaces with \\Sn, S\\ -* 0 such that each Sn has a D-rep-
resentation xn on Q with D(xn)<M and such that there exist points
Wim^Q*, i = l , 2, 3, and a positive number m with \\win—wJn\\>m,
(xn(win), xn(wjn))>m for iφj. Then the mappings are equicontinuous in
an open set containing Q*. That is, for each ε>0 there is a <5>0 such
that if'w, w'eQ, \\w-w'\\<δ, dist(w, Q*)<d, and άist(w', Q*)<<5, then
δ(xn(w), xn(wf))<ε.

4 Lower semi-continuity theorems. The results in this section
follow from [10].

If y is a D-mapping on G into m, let

En(y)=\\ sup {i, k, y}
G

E(y)=\\ sup {i, fc, y)

where

{i, k, y] = {i, y) + {k, y}

and
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Let

[i,y]

THEOREM 7. // xk and x are continuous on G (the closure of G)
into m and are D-mappings on G with xk-+x uniformly on G, G being
of finite measure, then

inf D(xk) , E(x)^\im inf E(xh) ,

F(x)^\im inf F(xk) .

Proof. We shall prove that E is lower semi-continuous. The other
two parts are proved in a similar manner.

The hypothesis and Theorem 2.1 [10, p. 26] show that En is lower
semi-continuous. The theorem follows since En<,En+1 and E—\\mEn.

W-»oo

5. Quasi'Conformal representations for surfaces in m. Much of
this section is lifted bodily from [2]. The principal problem is to obtain
a desirable representation for certain polyhedra. After this representa-
tion has been obtained, Morrey's technique yields a similar representa-
tion for other surfaces in m.

L E M M A 1. Let α w ^ 0 , bn, and cn be constants, n = l, 2, •••, N. If

= m3Lx[ant
2+bnt + cn] then for some m, / + ( 0 ) = / ; ( 0 ) where / + ( 0 ) =

n

and fm(t)=amt*+bmt+cm.

Proof. That /+(0) exists is a result of the convexity of /. Now
let wk>0, wk-+0. Then for some m we have f{wk)—fm{wk) for an in-
finite set of k's, and in addition, f(O)=fm(O). Therefore

/ ( ) ()
*— wk *— wk

LEMMA 2. Let an, bn, and cn be measurable functions on a bounded
measurable set E with an(x)^0, n—\, 2, •••, N. Let α, 6, and c be sum-
mable functions on E such that an(x)<^a(x), |δn(a?)|<*δ(α?), and \cn(x)\^c(x).
In addition let M be a positive constant and A and B be measurable
functions on E such that \A(x)\<2M and \B(x)\<2M* on E. Let

fix, t) = maxfn(x, t)
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and

φ(t)=\ f(x,t)dx.
JE

Then, for each x, there is an r=n(x) such that

?+(0)=f frt(x,0)dx.
J

Proof. If we examine the proof of the theorem permitting differ-
entiation under the integral sign [7] we see that it is sufficient to show
the existence of a summable function g such that, for some ??>0,

f(x, t)-f(xf 0)

If we take ^<(5ikf)~1 we may take g(x) = 2[τja(x)+b(x)].
If y is a Z>mapping into m, let

[i9

Then

= j] sup[i, k, y] .

THEOREM 8. An open non-degenerate polyhedron & contained in
range ΠN for some N has a representation x* on the unit circle ^ such
that x* is a D-mapping and

max {i, x*} =max [i, k, a?*] a.e. in ^

Proof. Let X be a representation of ^ on Q and let C—range
X|Q*. Consider the class K of all representations x of & which are
.D-mappings on ^ Since & is a polyhedron, if is not empty. Let
7=inf E(x) for all xeK. We shall see that the infimum is attained for
x—w*.

Let xn be a minimizing sequence with E(xn)<.I+lln. Fix three

distinct points Pt on Q* with Q4 = X(^) also distinct. For each ft,
choose Pin on ^ * so that άn(P4n) = Qi. Let P4* be three distinct points
of ^ * . By means of a conformal transformation taking c^ into itself
and Pin into Pf, the functions xn are transformed into xn where xn(Pf)
= Qi. It is easy to verify that E(xn)=E(xn).

Theorems 5 and 6 assure us that the sequence {xn} is equicontinu-
ous and hence a subsequence of the xn converges uniformly to a?*. The
closure theorem for D-mappings enables us to conclude that x% e K. By
Theorem 7, E{x*)=I.
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Now let φ and ψ be Lipschitzian with constant M in ^ and vanish
on ^ * . Then [2] the transformations T and T~\

T: a—u+εφ(uf v) , β=v+εψ(u, v) ,

are both Lipschitzian if |ε|<l/(3Λf). Put

α*[%(α, /?, ε), v(α, /3, e)]=a?(α, β, e) ,

Then αeϋΓ [10].
Now put

e/(e)=#(aθ = f f max {i, A, a?}(α, β)dadβ .

A straightforward computation shows that

J(ε) = [ ID-1

J J

where

max

D_d(a, β)

We apply Lemma 2 to compute

J J [(£7* -G*ta.-2F*pJ dte dv^

.^^^ du dv ,

where r and s depend upon (u, v). That e7
+(0)^0 is evident since J

assumes its minimum at ε==0.
From the arbitrariness and independence of φ and ψ we obtain,

first of all, that

and

Next we see that if we replace ^ by — ψ and ^ by — ψ then the
equality must hold in each case.

The remainder of Cesari's proof now goes through without change,
and we conclude that E* = G*S, F%=0 almost everywhere. It is clear
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that

for all i, k. Also, where the equalities above hold, if we order r and
s properly we see that

α?;r=«?S a?Γ=-»ί , [r, s, x*] = t{r, s, x*}^{r, x*} = {s, x*} .

Also, from the maximizing property

max {i, fe, #*} = {r, s, #*} = {r, #*} + {s, a?*} =2{r, a;*}
iφk

= 2{s, x*} =2[r, β, a?*] = 2 max [i, fc, a?*] .
ί,k

Finally {r, #*} =max {i, #*} for otherwise {i, s, ^} >{r, s, a?*}.

LEMMA 3. Lβί ^ be a non-degenerate polyhedron in m. Then for
some N, the projected polyhedron Πn3? is non-degenerate for all n>N.

Proof The hypothesis implies that the vertices of each triangle of
& are distinct and not on a line. It is clear that N may be taken
large enough for Πn^ to have this property for all n>N.

LEMMA 4. // & is a non-degenerate polyhedron with representation
x, and if in the countable set of functions x\ there are only a finite
number of distinct functions, then & has a representation x* on the
unit circle & such that

max {i, x*} =max [ί, kf x*] a.e. in ^
i i,k

DEFINITION 4. A D-mapping x is quasί-conformal in a Jordan region
R if

4^-4<] a.e. in R .p
ίj k

THEOREM 9. If xn and x are quasi-conformal mappings on R with
xn converging uniformly to x and L(xn)->L(x), then x is quasi-conformal.

Proof. From \yuf+\yvf^2sψ {i, y] it follows that D(xn)^2L(xn)

and hence that D(xn)<M for some M. The closure theorem for A.C.T.
functions assures us that x is a D-mapping and D(χ)<LM. More exactly,
we have

L(x) ^ \ I sup {i, x} ^lim inf \ \ sup {i, xn] =lim inf L(xn)=L(x) .
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Hence sup [i, k, #] = sup {i, x] a.e.

THEOREM 10. An open non-degenerate surface 6^ of finite Lebesgue
area has a quasi-conformal representation on ^

Proof. There exists a sequence of polyhedral surfaces &P* ap-
proaching ^ w i t h L ( ^ * ) - > L ( ^ ) , and we may suppose that each ^ * is
open non-degenerate.

Using the idea of [13, § 8] we can, for each n, determine a poly-
hedron ^yi with the properties

(a) The Frechet distance between ά?n and ^ * is less than \\n.
(b) L ( ^ * ) ^ L ( ^ ) > L ( ^ ί ) - l / 7 z .
(c) If xn is a representation of &n then there are only a finite

number of distinct functions in the collection xι

n,
(d) The &n are open non-degenerate.
Hence the sequence &n approaches Sf and L ( ^ ) = Km (*$/£).

The remainder of the proof is the same as that for a surface in
Euclidean space [4].

The idea referred to is the following. If y is a representation of
a polyhedron & then the sequence yι is uniformly bounded and equi-
continuous, thus totally bounded. Hence for each ε>0 there exists a
finite subset y*j of the yi with the property that sup \y* —ylj\<e for each
i and some iJt If & is open non-degenerate and Πn^ is also, then
adjoin yk, k — lf 2, •••, n to the yιj. Now replace those components of
y which are not in the subset by one which is and is within ε of it.
The resulting function represents an open non-degenerate polyhedron
whose Frechet distance from & does not exceed e and whose area does
not exceed that of ^?

6 Isometric surfaces in m For later applications it is convenient
to know that if x is quasi-conformal and y is isometric with x, then y
is also quasi-conformal.

Let α, 6, A and B be points of m.

LEMMA 5. // ||αcos#+&sin#||=||Acos#+Z?sin 0|| for all θ then sup

Proof. Suppose that for some p we have (ApY+(BΪJ)2>0. Then
there exist real numbers Λ>0 and θ such that Av = λcosθ and BΏ — λsin/?.
Thus
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γ^λ-* sup

= sup [A1 cos Θ+B* sin Θ]2=\\A cos Θ+B sin #||2H|α cos θ+b sin

|« cos θ + bL sin

Similarly

sup [(α<)a+(6 l)Γl^ sup

COROLLARY 1. // {θj;j=l, 2, •••} is dewse m [0, 2τr] omcZ i / Jαcos

J + &sin0J=||Acos0j+5sin0 iJ for all j , then sup[(α*)a+(6*)a]=sup[(A i)3+

Fix 0 and let u—r cos 0 —s sin 0, v = r sin 0+scos ί. Suppose that a;
is A.C.T. on G into m and define j/ by y(rf s)—x{uf v). Since α?* is
A.C.T. for each i, so is y\ Furthermore, except for a set Z of measure
0, 2/*=a?«cos0+#ί sin0 for all i. Thus for sQ$Z we have

length ?/(r, so)=lim length Π"y(r, βo)= lim (Dr(/7*2/)

= lim \ sup l^cos θ+xι

v sin θ\<. \lxucosθ+xυBinθ\\^\ \\%u\\ + \ \\xυ\\
N-*oo J i%N J J J

where the first integral is taken over the intersection of dom y with
the line s=s0 and the other integrals are taken over the intersection of
G with the line [—u sin #+vcos 0]=so. Thus

length i/(r, s0) ^ j j lk»l+ J] 11̂

and since r and s may be interchanged in this argument, we see that
y is A.C.T.

The partials of y are, of course, directional derivatives of x. We
can now apply Theorem 1 to obtain, almost everywhere in G,

#β= {< cos Θ+Xv sin 0} and Z>βa?=|a?tt cos θ+xυ sin 0||

where, if φ(s)—x(u+s cos θf v+s sin #), then a?β = ̂ '(0) and Dθx—Dφ{$)
(see Definition 1).

Now let 0j, j—ly 2, •••, be dense in [0, 2π\. Let W be that set of
measure 0 in the complement of which xθ = {xi cos θ3+xι

υ sin θ3] and
Z)βja?=||a?tt cos ^J + ^Ϊ, sin Θ3\.

Observe that if x and 2/ are isometric (άomx—άomy and ||a?(p) —
α?(g)|=I y(p)~ y{q)\ for all p, qedomx) then Dθx=Dθy wherever either
side exists.

THEOREM 11. If x is quasί-conformal and y is isometric with x,
then y is quasi-con formal.
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Proof. That y is a Z)-mapping follows directly from the definitions.
By the preceding remarks and Corollary 1 we have sup{i, x] = sup{i, y}
almost everywhere. In [13] it was shown that L(x)=L(y). Hence

ί, ft, y]^ i, 2/} = M sup{ΐ, α}=jjsup[i, ft, x]=

from which we can conclude that sup [i, ft, 2/] = sup {i, 2/} almost every-
where.

7. Almost confortnal representations for surfaces in a metric space.
If a surface is in a metric space, then there exists an isometric surface
in m. The definition of ' almost-conf ormal' is phrased so as to be in-
variant under isometries. Hence the result of the last section can be
applied to surfaces in metric spaces.

DEFINITION 5. Let X be continuous on a Jordan region R into a
metric space D. Then X is almost-conformal if there exists a quasi-
conformal map x on R into m which is isometric with X.

We can now repeat some familiar reasoning of [13] to obtain the
following.

THEOREM 12. An open non-degenerate surface in a metric space has
an almost-conformal representation upon the unit circle.

Proof. Let X be a representation on Q of an open non-degenerate
surface ^Γ If pit i = l, 2, •• , is dense in range X then X is isometric
with a?={JP}, where X\q)=:d(pif X{q)) for all qeQ. By Theorem 10
there is a quasi-conformal map y on the unit circle W which is Frechet
equivalent to x. Define Yon ^ into D by Y(s)—X(r) where x(r)—y(s).
If x(r)=y(s) and x(rf)=y(s) then X(r)=X(r'), so Γ is well defined. The
map 7 is a representation of ^ upon & which is isometric to a quasi-
conf ormal map y. Hence Y is almost-conformal.

Let y be a surface in D and suppose Sf has an almost-conformal
representation X on a Jordan region R. Then X is a D-mapping and

)=\ Isupp, ft, X] where X j is defined as in the proof of Theorem 12.

Finally we observe that if X is a Z>mapping then X is almost-
conformal if sup {i9 X}=sup[i, ft, X], and conversely. The direct state-
ment is an immediate consequence of the definition. For the converse
note that if x=^{X1} then x is isometric with X and is quasi-conf ormal.

8, Surfaces in a Banach space* If a D-mapping has range in a
Banach space B then it is possible to give a definition of quasi-con-
formality which is analogous to that for the case B—m. Then we shall
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see that the notions of quasi-conformal and almost-conformal are equi-
valent and, in case B—Eni they are both equivalent to the original
definition of Morrey.

Let X be defined on a Jordan region R into B. There exists a
smallest (separable) subspace B(X)aB which contains range X. A
sequence {fn} of linear functionals of norm one over B is admissible
with respect to X if sup/4(r) = ||r| | for each reB(X). The transforma-
tion T: B(X)->m defined by T(r)={ft(r)} is an isometry. It was shown
in [13] that such an admissible sequence always exists.

Let {fi9 X} = {i, TX) and [/„ fk, X] = [i, k, TX].

DEFINITION 6. In the notation of the preceding paragraphs, X is
quasi-conformal if X is a Z)-mapping and if sup {ft9 X}=sup[/*, fk, X]
almost everywhere in R.

Theorem 11 assures us that this definition is equivalent to that
given earlier for the case B—m.

THEOREM 13. A necessary and sufficient condition that X be quasi-
con formal is that X be almost-conformal.

Proof. The function TX is isometric with X. If X is quasi-con-
formal then

sup K TX} =sup {/4, X} =sup [/4, Λ, X] = sup [i, k, TX] .

Thus TX is quasi-conformal in m and X is almost-conformal. If X is
almost-conformal there exists a quasi-conformal function y which is iso-
metric with X and, therefore, with TX. (The function y has the same
domain as X and has range in m.) Thus TX is also quasi-conformal
and

sup {/4, X} =sup {<, TX} =sup [i, k, TX]=sup [/„ Λ, X] .

Hence X is quasi-conformal.
Now suppose that B is En. If / is a linear functional of norm

one then there exists a point p with ||p|| = l such that f(r)=p r for
each reEn. Since {/J is admissible, sup2vr = ||r||. ^ r a n (^ s a r e

two points in £*,, with ||r||—||s|| and r s = 0, then (r p)3+(s p) 2 ^r r for
any p with | |p| = l.

If X is quasi-conformal in the sense of Morrey (almost-conformal
[4]) then X is a D-mapping and E—Gy F=0 almost everywhere (E—Xu

-Xu, F=Xu-Xυ, G=Xv-Xυ). Where these equations hold, (Xu pY+(XΌ-
pf^E for any p on the unit sphere. Hence sup {fi9 X l ^ S ^ a r e a of
the square determined by Xu and -3Γβ=sup[/<,/*, XJ^sup {fif X}. Thus
X is quasi-conformal in the sense of this paper.
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Now let X be quasi-conformal in the sense of this paper. Since En

has the property that an absolutely continuous function on an interval
into En does have a derivative almost everywhere, we can conclude that
Xu and Xυ exist almost everywhere (not only component-wise derivatives).
If sup {/„ X}=Q, then E=F=G = 0. If Xu and Xυ both exist and sup
{/„ X}>0, it is easy to see that

sup[/4,Λ, Z ] = max ί(a-Xu)(b-Xυ)-(a-Xv)(b.Xu)]

sup {/„ X} = max i(a XJ'+(a X9γ]
|αl=l

clearly these are equal only if E—G, F = 0 . We conclude that the defi-
nitions of almost-conformal and quasi-conformal as given in this paper
are equivalent to the original definition of Morrey.
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