BOUNDS FOR THE PRINCIPAL FREQUENCY OF THE
NONHOMOGENEOUS MEMBRANE AND FOR THE
GENERALIZED DIRICHLET INTEGRAL

BINYAMIN SCHWARZ

Introduction. In §§ 1 and 2 of this paper we consider an arbitra-
rily shaped membrane of variable density and uniform tension. We
assume that this nonhomogeneous membrane is stretched in a given
frame and obtain bounds for its principal frequency (fundamental tone).
Before describing our results we quote the analogous result for the
nonhomogeneous string proved in a paper by P. R. Beesack and the
author [1, Theorem 2].

Let p(x) be continuous and not identically zero for —x,<x<wx,,
0<wy< o0, and let p*(x) and p~(x) be the rearrangement of p(x) in sym-
metrically increasing respectively decreasing order. Consider the three
differential systems

¥ (%) + Ap(2)y(x) =0, Y(+2)=0;
u' (@) + 2 p* (@)u(x)=0, u(£a)=0;
v (x)+ 2-p~(x)v(x)=0, V(£ 2,)=0:

denote their least positive eigenvalues also by 2, A* and 2~ respectively.
Then 2-<1 even if p(x) changes sign finitely often while A=_A* holds if
(%) =0.

For the nonhomogeneous membrane we consider a domain D bounded
by a Jordan curve C. The differential system (for the original density)
is given by

du(x, y)+ Ap(w, yul, y)=0

for (x, ¥) in D and u(C)=0. We base the existence of the first eigen-
function and its minimum property on the classical treatment of Courant-
Hilbert [3, vol. 2, Chapter VII]. We assume therefore that p(x, y) is
positive and continuous in D and has continuous first derivatives in D.
Together with p(x, y) we consider its rearrangements in symmetrically
increasing respectively decreasing order. The symmetrization is with
respect to a point: p*(x, y)=p*(r) and p-(z, y)=p~(r) are defined in
a closed disk D* of the same area as D. The properties of p(z, y) imply

that p*(x, y) and p~(z, y) are positive and continuous in D*. However,
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their first derivatives may be discontinuous along infinitely many con-
centric circles which accumulate to circles lying in the open disk D*.
A* and A~ can thus not be defined as the classical first eigenvalues of
a circular membrane with the density function p* or p~, but are easily
defined as a generalization of this notion (see formulas (8*) and (87)
below). The actual statement of Theorems 1 and 2 uses only density
functions with continuous first derivatives, so that all eigenvalues are
in the classical sense. Here we summarize these results as follows: In
§1 it is shown that if the original domain D is a disk, then 1<{2*
(Theorem 1). In §2 we prove that for any domain D (bounded by
a Jordan curve) A~ <{A. This Theorem 2 is a generalization of the theorem
of Rayleigh, Faber and Krahn and it implies (essentially) a result of
Szego on the principal frequency of nonhomogeneous membranes [10,
§ V]. In Theorem 2 we formulate these results in complete analogy to
[1, Theorem 2], using generalized first eigenvalues.

Following Szego([10] and [9, Note D]), we consider in § 3 a ring-
shaped domain D and the class of the admissible functions ¢(x,y) in D.
These admissible functions satisfy a smoothness condition, vanish on the
inner boundary of D and are equal to 1 on its outer boundary. »(x, y)

is defined in D and satisfies the same conditions as in §§1 and 2; p*

and p- are now defined in a closed annulus D*. We denote the minimum
of the generalized Dirichlet integral

Sg{lgrad ¢ [+ pg’} do

in the above class by 47y and define y* and 7y~ in a similar way. Theo-
rem 3 states that for any ring-shaped domain D (bounded by two Jordan
curves) - <y. After restating this theorem in terms of Szego’s—slightly
different—definition of the generalized Dirichlet integral, we show that
it implies (essentially) Szego’s result on this integral. Theorem 4 states
that if the original domain is an annulus, then y<{y*. We conclude
with two theorems which are one-dimensional analogues of the results
on the generalized Dirichlet integral.

Throughout this paper, symmetrization which respect to a point is
the main tool. We rely in §2 on Krahn’s paper [7] and in §3 on
Szegto’s paper [10], and we use their results with regard to the behavior
of the (ordinary) Dirichlet integral under this symmetrization (see (117)
and (11*) below). In addition, we use a well known theorem of Hardy,

Littlewood and Pélya on the rearrangements of functions ([5, Theorem
378] and [9, p. 153]).

1. The nonhomogeneous membrane I. We start with the defini-
tion of the symmetrical rearrangements of a function p(x,y) (cf. [5], [6]
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and [9]). Let D be a simply connected bounded domain in the z, y-plane

and let p(x, y) be defined and continuous in the closure D of D and be
positive in D. We denote by D* the open disk with the same area as
D. R is the radius of D* and r=(z*+y*)"* the distance from its center.
(By using x, y-coordinates for the planes containing D and D* we do not
imply that these planes have to coincide). The rearrangements of
p(x, y) in symmetrically increasing and decreasing order will be denoted
by p*(x,y) and p-(z, y) respectively. They are uniquely defined in the

closure D* of D* by the following three requirements: First, both func-
tions have circular symmetry, p*(z, y)=p*(r), = (z, y)=p0"(r), 0<r<R,
and p*(r) is a nondecreasing, p~(r) a nonincreasing function of 7.
Secondly, both functions are equimeasurable to p(x, y) ; that is denoting
by A(z) the area of the open set in D for which p(x, y) >z and similarly
by A*(z) and A-(z) the area of the set in D for which p*(x, ¥) >z and
p~(x, y) >z respectively, then we require that for each z>0 A(z)=A4%*(z)
=A-(z). Finally, at the center r=0 of D* we let p*(p~) be equal to

the minimum (maximum) of p in D and we complete p*(p~) to the
closure D* of D* by assuming that its value on the boundary circle C*
is equal to the maximum (minimum) of p in D.

The two rearrangements are connected by the formula p~(r)=
(R =11, Ogrng. If p is positive in D then, clearly, the same
holds for p* and p~ in D*. Moreover, the continuity of p in D implies
the continuity of its rearrangements in D* (cf. [6, Theorem 5]). Indeed,

the continuity of p(x, ) implies that A(z) is a strictly decreasing function
of z (for the z-interval bounded by the minimum and maximum of p(z, y)

in D). As p*(r) and p~(r) are monotonic functions their only possible
discontinuities would be jumps. Such a jump would imply that A*(z)
or A-(2) had to be constant for the corresponding z-interval. But,
as A*(2)=A(z)=A(z), this possibility is excluded.

Though not necessary for the following proofs, we wish to justify
our above statement concerning the discontinuities of the first deriva-
tives of p*(x,y) and p~(x,y). We assume therefore that p(x, y) has
continuous partial derivatives of first order—or, indeed, of any desired
order—and we consider the surface z=p(x, y) lying above D. Let us
perform the transition from p(z, y) to p~(x, y)=p~(r) in the direction of
decreasing z-values. The absolute maximum of #(x,y) in D becomes
p~(0) and every 2z-value, smaller than this absolute maximum, for
which p(x, y) has a local extremum induces a jump of dp~/dr at the
corresponding value p~(r)=z. Clearly, the values of the local extrema
of p(x,y) may accumulate to one or more values lying in the open

interval bounded by the absolute extrema of p(x,y) in D. This case
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generates the situation mentioned in the introduction with respect to
the discontinuities of the first derivatives of »~(xz, y) and p*(x, ). We
shall return to this question in a special case (for the function u~(z, y)
appearing in the proof of Theorem 2).

We state now the following.

THEOREM 1. Let D be the disk 0 <a*+y*<R?, 0<R< oo, and denote
its boundary by C. Let the function p(x,y) be positive and continuous in

D (=D\J C) and have continuous first derivatives in D. Let p*(x,y)
=p*(r) (r*=x*+1v9, 0<r < R) be the rearrangement of p(x, y) in symmetric-

ally increasing order defined in D (=D%). Further let m(x,y) be
a function which is positive and continuous in D, has continuous first
derivatives in D and satisfies for each (x,y)€ D

(1*) m(x, y) <p*(x, y) .

Consider the differential systems

(2) du(z, y) + p(x, Y)u(x, y)=0 for (x,y)eD, u(C)=0,
and
(3%) Av(z, y) + pm(x, y)(z, y)=0 for (x,y)eD, v(C)=0,

and denote their first eigenvalues by A and p=p(m) respectively. Then
4") A= p(m) .

For the proof we need the properties of the first eigenfunction.
As mentioned, we rely on the last chapter of Courant-Hilbert [3,
Vol. 2, Chapter VII]. In our §8§1 and 2 we deal with the eigenvalue
problem for vanishing boundary values. (See their §3; and put in
their notation p=1, a=b=¢=0, and replace their k—in case of our
system (2)—by p). Throughout this paper we use the result of their
§ 4 ; this implies that if the domain D is bounded by a Jordan curve C,

(o}
then a function belonging to their classes D and F is continuous in the

closure D of D and vanishes on the boundary C. We state now all the
needed properties, e.g. for system (2).

A first eigenfunction u(z,y) of the system (2) is defined as a (non-
trivial) solution of this system corresponding to the first eigenvalue

A2>0). wu(x,y) is continuous in D, vanishes on C, has continuous
derivatives of first and second order in D and the integral

Sglgrad ul*do=“(ui+u§)da

D
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exists. do denotes the area element of D and throughout this paper all
area integrals are improper Riemann integrals [3, Vol. 2, p. 478]. More-
over, u(x, ¥)%=0 in D [3, Vol. 1, Chapter VI, § 6] and the first eigen-
function is therefore essentially unique (i.e. except for a multiplicative
constant). The Rayleigh ratio

“Igrad @ I”da/SSpsﬂ do

D D

attains its minimum 2 in the class of all admissible functions ¢(z, y) for
¢=u. Here a function ¢(x, y) is called admissible in D if it is con-

tinuous in D, vanishes on C, has piecewise continuous' first derivatives
in D and if the integral

Sglgradgal“da

exists.

To prove Theorem 1 assume first that m(z, y) has circular symmetry
in D, m(z, y)=m(r). Let v(x,y) be a fixed first eigenfunction of (3*).
As the first eigenfunction is essentially unique, it follows from the
circular symmetry of m(r) that v(x,y) too has circular symmetry,
v(x, ¥)=v(r). (3*) becomes therefore

1 d

?dr{Ti‘”(r)}“m(’")”(”:o for 0<r<R, v(R)=0.

As v5£0 in D, we may assume that v(r) >0, 0 <r< R, and it follows
that

d

.dr{r,(g;v(w)}<0 for 0<r<lR.

This inequality and

lim{%g,;— v (r)} —0

=0

imply

@ ) <0 for 0<r<R.
dr

1 A function is called piecewise continuous in a domain D if it is continuous there
except for arbitrary discontinuities at isolated points and discontinuities of the first kind
(jumps) along smooth arcs; and it is required that each closed subdomain of D has
a nonempty intersection with only a finite number of these arcs [3, Vol. 2, p. 473].
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v(x, y)=v(r) is therefore symmetrically decreasing in D and, as v_>0,
the same holds for v*. We have now

Sglgradvlzda>“|grad o do

| | PR

SSIgradvl‘da S lgrad ¢ [*do
J. . Zmindd =],

| ng do Sg'pgozda

All the integrals are taken over the disk D. The first inequality sign
follows from (1*). The second inequality sign is justified by the above
mentioned theorem on the rearrangements of functions [9, p. 153]. To
apply this theorem, we note that p and p* are equimeasurable and that
p* and v* are oppositely ordered. The minimum in (5) is taken over the
class of the admissible functions ¢, and v clearly belongs to this class.
We proved thus (4*) under the additional assumption that m(z, y) has
circular symmetry.

We define now

(6%) Ar=g.Lb. p(m) ;

here the g.l.b. is taken over all functions m(x, y) fulfilling the require-
ments stated in the theorem and having, in addition, circular symmetry.
Hence, we have until now established that

() gL

(5) p(m)=

%

A* is connected with the function p* in a more direct way ; that is, we
show that

& gy PP
[ eao

’

where the g.1.b. is taken over all admissible functions ¢(z, y). To prove
(8*) let us denote its right hand side by 1.. (6*) implies that for every
e >0 there exists a circular symmetric function m(x, y)=m(r), fulfilling
all our above requirements, for which g#(m)<ai*+e. Denoting the cor-
responding first eigenfunction by v and using (1*) we obtain

“lgradvlzda>“|grad v|*do

2 +e> p(m)= —= =2y .
“mv*do Sgp“'vzda
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It follows that
(9) 2,

On the other hand, given any ¢, 0< e<1, there exists an admissible
function ¢(x, y) such that

Sglgradgolzdn

e +e>
v
Furthermore, by using the Weierstrass approximation theorem with
respect to p*(r), we can find a function m(x, y)=m(r) which, in addition
to all our former requirements, fulfills also p*(r)(1—¢) <m(r) for 0 <r<R.
Hence,

Sglgradgo[”da Sglgradwlzda
Ao te> —-=(1—¢) : :

SSP+<P2d0 SSmsD"'do

=1 —e)p(m) = (1—e)a .
This implies

(10) 2>

(9) and (10) give (8*).

Let us interpret the g.l.b. p(m) in a less restrictive way than in
(6*) ; that is, we take now this g.l.b. over all functions m(zx, y) fulfilling
the requirements stated in the theorem (and drop the additional require-
ment of circular symmetry). By a proof entirely analogous to the one
given just now, it follows that also this g.l.b. p(m) (for the wider class)
is equal to the right hand side of (8*). This and (8*) imply that 2+,
that is, the g.l.b. #(m) for the restricted class (of circular symmetric
functions), is equal to the g.l.b. px(m) for the wider class of functions
m(x, y) (not necessarily having circular symmetry). (7*) establshes there-
fore (4*) for any function m(z, y) fulfilling the requirements stated in
the theorem. This concludes the proof of Theorem 1.

In the special case of p*(x,y) having continuous first derivatives in
D, i* is the first eigenvalue (in the classical sense) of the differential
system

dv(zx, y)+ 2 p*(x, y) vz, y)=0 for (x,y)eD, v(C)=0.

In any case we shall call 2+ the generalized first eigenvalue of this
system.
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2. The nonhomogeneous membrane II.

THEOREM 2. Let D be a domain in the x, y-plane bounded by a Jordan
curve C. Let the function p(x, y) be positive and continuous in D (=D\J C)
and have continuwous first derivatives in D. Let p~(x, y)=p~(r) (r*=az"+1,
0<r< R) be the rearrangement of p(x,y) in symmetrically decreasing
order defined in the closed disk D* (whose boundary we denote by C*).
Further let k(x, y) be o function which is positive and continuous in D*,
has continuous first derivatives in the open disk D* and satisfies for
each (x,y) e D*

1) k@, y) =p=(2, y) .

Consider the differential systems

(2) dul, y)+ Ap(@,y) w(@w, y)=0 for (x,y)e D, u(C)=0,
and

(37) dw(x, y)+ kk(z, y) wx, y)=0 for (x,y)e D*, w(C*)=0,
and denote their first eigenvalues by A and k=rk(k) respectively. Then
4°) Az=k(k) .
For the proof set
(67) i-=lu.b. s(k),

where the l.u.b. is taken over all functions k(x,y) satisfying the just
stated conditions. The theorem will be proved if we show that

(7°) >0

Similar to (8*), it follows that

Sglgradgol"da
(&) r=glb. 2

here the g.l.b. is taken over all admissible functions ¢(x, y) in D*, We
shall use (8-) for the proof of (7-).

In the proof we make use of the first eigenfunction u(x,y) of (2)
and of its rearrangement in symmetrically decreasing order u=(x, y)=u"(r).
In particular, we have to show that %~ is an admissible function in D*

(see (12) below). - is continuous in D* and vanishes on C*; it is,
however, doubtful whether in the case of a general p(z, ¥), satisfying the
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conditions of the theorem, the first derivatives of u~(w, y) are piecewise
continuous in D*. But this is true, as we shall see presently, in the
case in which the function p(z, y) is analytic.

We therefore prove (7-) first under the assumption that p(x,y) is

positive and continuous in D and analytic in D. The first eigenfunction
u(z,y) of (12) is then also analytic in D [8, p. 162]. We assume u(z, )
fixed so that w(x, y) >0 for (x,y)e D. Following Krahn [7], we consider
the planes z=constant which touch the surface z=u(z, ), (x, y) € D, and
we claim that this (finite or infinite) set of horizontal planes can be
enumerated z=gz,;, i=1,2, ---, in such a way that z, >z,>---,2,>0, and
that (in case of infinitely many such planes) lim z,=0. Indeed, as u(x, )

is continuous in D, positive in D and vanishes on C, if this were not so
then we could find a sequence (x,, ¥,)e D, n=1, 2, ---, with the follow-
ing properties :

(a) lnizri (xn’ yn)=(x07 ?/o) eD;

(b) grad u‘(wm yn)__‘oy n=1,2,---;

() u(w,, yn)Fu(x,,y,) for m=*%4n,m,n=1,2,---. We show now
that the existence of such a sequence (z,,¥,) is impossible. Let us
consider the two sets of points (x,y) in D given by wu,(x, y)=0 and
u,(x, y)=0 respectively. u, and u, are together with w analytic func-
tions in D. As u is a solution of (2) the identically vanishing of u, or
u, is excluded. Hence, both these sets consist of analytic curves (or
arcs) and we consider these curves near (z, y,). Using 4u<0 and, if
necessary, rotating the coordinate system of the plane, we may assume
that both u,,7%40 and %,5%0 at (@, ). The curve u,(z, y)=0 is thus
near (x,, ¥,) represented by a power series of the form x—xy=P,(y—u,).
Similary, w,(x, y)=0 is there represented by y—y,=P,(x—x,). The ex-
pansion for u,(x,y)=0 may be solved by y—wy,=Py((x—x,)"*), where
k>1 is given by the index of the first nonvanishing coefficient of P..
By the above properties (a) and (b) of the sequence (x,, y,) it follows
that Py(x,—2x,)=Ps((®,—x)"*), n=1,2, ---. As infinitely many of these
last equalities hold for a fixed branch of (z—ax,)"*, it follows that
Py(x—x)=Pi(x—x,)"*) and that k=1. wu, and u, vanish along this
analytic curve which contains all the points (x,,v.). This gives the
desired contradiction to property (c) and we have justified the enumera-
tion of the horizontal tangential planes z=z,.

Using 4u < 0—which excludes the existence of minima of u(x, y)—it
follows that there are no closed curves along which grad u=0. Arecs,
ending at the boundary C of D, along which grad u=0 are clearly
excluded. This implies that no sequence (,, ¥,) having the above pro-
perties (a) and (b) exists. Hence, each critical plane z=z2, touches the
surface z=u(z, ¥) only in a finite number of points (and, for +=2,3, ---,
cuts the surface along certain analytic curves).
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For any 2z, 0< z< =z, denote by C(z) the level set u(z, y)=z and let
A(z) be the area of the open set in D for which u(x, y)>z. C(z) con-
sists of the boundary of this open set and contains for z=z, (=2,3, --:)
perhaps an additional finite number of points. For z7%z, C(z) separates
into a finite number of simple closed analytic curves and it follows that
for each 2z, 0<{2<{z,, C(z) is of finite positive length. We consider now
the open intervals z,>2>z,,, (¢=1,2, --.), where in the case of only
a finite number » of critical values 2z, the last interval is z, >z>0.
For each z in one of these open intervals we have ([7, formula (10)] and

[to, §1II])

o
dz A |gradu |
where ds denotes the length element of C(z). Clearly dA/dz< 0 (z542;).

Let %k, denote the number of simple closed analytic curves into
which C(z) separates for z in the open interval (z,.., 2;), 1=1,2, ---. k,
is a function of ¢ only, and it follows from the last formula that dA/dz
is continuous for (z;.,,2;). The same consideration implies the existence
of the one-sided limits of dA/dz as z tends to z,,;,+0 and z,—0. These
limits may conceivably be equal to — =2, but are different from zero.
Indeed, as C(z;,,) is of positive length (¢=1, 2, ---), it follows that for
2—2,.,+0 at least one of the %, families of simple closed curves, into
which the level sets C(z) separate for z in (z,.1, 2;), converges to a part
of positive length of C(z;,,). The same argument holds for z—z,—0
(1=2, 38, ---).

As remarked in §1, A(z) is a strictly decreasing function of z,
0<z<z. In the present case A(z) is also continuous in this interval.
This follows from the fact that wu(x, y) achieves a fixed z-value only for
finitely many curves and (perhaps) points in D and not for a set of
positive area. The definition of u~(x, y)=u"(r) and the continuity of
A(z) imply that A(z)=nr* for u=(r)=2z (0<z<z, 0<r<R). Hence,
u~(r)=A"'(=r?) and u~(r) is not only continuous (see § 1) but also strictly
decreasing. The critical z-values z,%, --- correspond to the critical
r-values 7y, 7, «++ with m=0<r,<r;---,r,< R and (in case of infinitely
many critical values) limr,=R. As

f=o00

dz;;(r)=d‘3(_;(;;'2)2w=2nr / (—d4) ,

2 This, indeed, cannot occur. We do not have to bring the argument which excludes
this case, as we may allow that the one-sided limits of dw~/dr at 7;(1=2,3, ---) are equal
to 0. Similary, it can be shown that dA4/dz tends to a (finite) negative value as z—z;-0 so
that du-/dr—0 as r—0. This again will not be needed as an arbitrary singularity of .-
and uy,~ at (0, 0) does not invalidate their being piecewise continuous in D*. (See below).
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it follows that du~/dr is continuous for each open interval r,<r<#;.,
(¢=1, 2, - --) and that its discontinuities at the values »; (¢=2, 3,---) are of
the first kind (jumps). Every interval 0 <r<p, 0<p <R, contains only
a finite number of critical values r; and every closed subdomain of D*
intersects therefore with only a finite number of critical circles a*+y*=1r3.
The continuity of du~/dr at r=~r, implies the continuity of u; and u; at
all points of D* different from the center and not lying on these critical
circles. At the critical circles a*+y*'=1} (¢=2,3, --+) u; and u; have
(at most) jumps and it follows that these first derivatives of u~(zx, y) are
piecewise continuous in D*. Moreover, as was shown by Faber [4] and
Krahn [7] in their proofs of Rayleigh’s conjecture, the Dirichlet integral

SSI grad (u-) *do

D*

exists and fulfills the inequality.

(11-) “Igrad " |2daggg|grad ) Pds

D¥
which we shall use presently. All this, together with the previously

established continuity of »-(x,y) in D* and its vanishing on C*, prove
finally that the function u~(x, y) is admissible in D*.
We have now

Sglgradulzda SS| grad (u-)Pdo
(12) =" >
Sgpu”do Sgp‘ WY do

[|1eraaepdo
>glb. 7
Hp'soqu

D¥

To justify the first inequality sign in (12) we use (11-) for the nume-
rators and for the denominators we apply again the theorem on the
rearrangements of functions. (As u >0, (u~)* is together with u- sym-
metrically decreasing, and p~ and (u~)* are therefore similarly ordered.)’

3 T he mtegrals in the theorem on the rearrangements of functions [9, p. 153] are taken
over the same bounded region. Our case, integrating once over D and the other time over
D*, can easily be rgduced to that case of the same region of integration. We embed D
and D* into the same plane and take all integrals over a bounded region G containing both
D and D*, after having completed p, p~, % and »~ into G by steting p=u=0 in G-D and

p-=u-=0 in G-D*,
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The g.l.b. appearing in (12) is taken over all admissible functions ¢ in
D* and is thus by (87) equal to 2. We proved (7-), and hence the
theorem, under the additional assumption of p(x, y) being analytic in D.

This special case implies now (7-) for any function p(w, y) satisfying
the conditions stated in the theorem. Indeed, as p(zx, y) is positive and

continuous in ), the Weierstrass approximation theorem assures that
for every >0 there exists a polynomial ps(x, y)=ps, so that

(13) 0<p(x, y) <ps(x, y) < (@, y)(1+0)

holds for all points (x,y) of D. Denoting by A(6) the (classical) first
eigenvalue of the differential system with the density function p;, the
minimum property of the first eigenvalue implies

(14) A(0)Z2Z4(0)A+0) .

Let ps(x, y)=p5(r) be the rearrangement of p; in symmetrically decreas-
ing order defined in D*. (13) gives

(137) 0p™(r)=ps(r)<p~(r)(1+9)

for 0<r<R. For the corresponding generalized first eigenvalues it
follows by (8~) and the analogous definition of 17(d) that

(14-) (0 <A <A (O)(1+9) .
For each polynomial ps(x, y) we proved
A(8)=27(9) .
As 0 tends to 0, we obtain from (14), (14-) and the last inequality
(7) =2

Theorem 2 is therefore established.

Inequality (11-), i.e. the fact that the Dirichlet integral of the
first eigenfunction decreases under symmetrization, was an essential
step in our proof. On the other hand, this inequality constitutes Faber’s
and Krahn’s proof of Rayleigh’s conjecture. It is thus by no means
surprising that Theorem 2 includes the theorem of Rayleigh, Faber and
Krahn as the special case p(x,y)=1. However, Theorem 2 implies only
a weakened from of their theorem, since with regard to inequality (11-)
Faber and Krahn proved more than we used. They showed that equality
in (11-) can oceur only if D is a circle. Their theorem thus states that
Sor all homogeneous membranes with constant area the minimum of the
principal frequency s achieved for the disk and only for the disk. As
for any homogeneous membrane 1*=2-, it follows that if p=1 and D
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is not a disk then 1>2*. Hence, Theorem 1 con not be extended to any
noncircular domain. For any such domain there exist functions p(z, y),
for example, all the positive constants, so that A>>41*, and at least for
nearly circular domains there exist functions so that 1< A*. This last
fact follows from the continuity of the first eigenvalue as a function
of the domain [3, Vol. 1, Chapter VI, Theorem 11] (and we assume that
for some functions p(x,y) in the disk the proper inequality sign holds
in (7%)).

A lower bound for the principal frequency of nonhomogeneous mem-
branes was obtained by Szeg6 in his paper on the generalized Dirichlet
integral [10]. In this case the density function p(zx, y) is given in the
whole 2, y-plane (except at the origin) and satisfies there the following
conditions :

(@) p(x,y) is positive in the whole z, y-plane (with the exception of
the origin) ;

(b) p(zx,y) has circular symmetry, p(z, y)=p(r), and p(r) is a non-
increasing function of 7,7 >0;

(¢) rp(r) is integrable in a neighborhood of r=0. Considering
membranes lying in this plane, Szegtd’s result is that for all membranes
with given area the minimum of the principal frequency is achieved for
the disk whose center coincides with the origin of the plane. [10, § V].
While keeping Szegt’s condition (b), we replace his conditions (a) and
(¢) by the following more restrictive assumptions : (a') p(zx, y) is positive
and continuous in the whole x, y-plane ; (¢) p(x, y) has continuous first
derivatives in the whole «, y-plane. Under these more restrictive condi-
tions (a’), (b) and (c’), Szegv’s result follows from Theorem 2. Indeed,
let D be a domain in the z, y-plane with the given density function
plz, y). Let D* and p~(z, y) be defined as in Theorem 2, but put the
center of D* into the origin of the given z, y-plane. As p(r) is a non-
increasing function of », »>0, it follows that for each (x, y) e D*

(15) (@, y) =0 (z, ¥) .

(a), (¢’) and (15) imply that p(x,y) in D* satisfies all the conditions
which were in Theorem 2 required of k(x,y). (4-) is thus the desired
conclusion. (For a one-dimensional analogue of Szegd’s theorem see [1,
Lemma 3].)

We state now our results on the nonhomogeneous membrane in
a form involving only generalized first eigenvalues. We drop therefore
the requirement that the original density funection p(x, y) has continuous
first derivatives.

THEOREM 2'. Let D be a domain wn the x,y-plane bounded by
a Jordan curve C and let p(x,y) be positive and continuous in D, Let
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p*(x, y)=p*(r) and p~(x, y)=p~(r) be the rearrangements of p(x,y) in
symmetrically increasing respectively decreasing order defined in the
closed disk D*. Consider the three differential systems

du(z, y)+ ip(x, y) u(x, y)=0 Sfor (x,y)eD, u(C)=0;
Av(xf y)+ /i+p+((l/‘, y) v(x, y)=0 Jor (.’E, y) € D*v 'U(C*)—_—O H
dw(z, y)+ 2" p (x, y) w(z, y)=0 for (x,y)eD*, w(C*)=0;

and denote their generalized first eigenvalves by 2, 1* and A~ respectively.
2 is defined by

Sg|grad ¢ ’do
(8) l=g.lb.?—

((peas

D

where the g.l.b. is taken over all admissible functions ¢(x,y) in D, and
2t and A~ are analogously defined by (8*) and (87). Then 2~ <2. In the
special case of D being a disk (D=D*) we have in addition 1=_2*.

To prove this let us again approximate p(x, y) by polynomials py(x, ¥)
satisfying (13). This implies (14), with 2 now being defined by (8) ; (14)
and (14-) give as before (7-), that is, A~ <{A. The additional result for
the disk follows, by the same approximation, from Theorem 1.

We conclude the treatment of the nonhomogeneous membrane with
the following remarks. It is known that the second proper frequency
of a homogeneous membrane of given area does not attain its minimum
for the disk [9, p. 168]. This implies that Theorem 2 cannot be extended
to the second proper frequency ; i.e. under its assumptions the relation
2; < 2, cannot be proved. Even for the circular nonhomogeneous mem-
brane we are not able to establish any inequality—or equality—between
A, A7 and A;. It is thus of some interest to note that for the one-
dimensional case (see [1, Theorem 2]) A; =4;. This follows easily from
the relation p~(z)=p*(x,—x), 0 <2,

Finally, an intuitive proof gives the following analogue of Theo-
rem 2, The principal frequency of a nonhomogeneous membrane of
arbitrary shape decreases (v.e. does not increase) under Steiner symmetri-
zation or under Polya (circular) symmetrization. (cf. [9, Note A] and
[6, Chapter I]). Indeed, formula (12) holds also for these symmetriza-
tions. The Dirichlet integral of the first eigenfunction decreases and we
apply the one-dimensional case of the theorem on the rearrangements
of functions for each member of an (obvious) one parameter family of
straight or circular segments respectively. (Note that if D is not convex
with respect to this family, then p~ is in general not continuous in D*,
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On the other hand, - is always continuous in D*.) It is easily seen
that Steiner and Pélya symmetrizations are weaker than Schwarz sym-
metrization used in Theorem 2 ; the lower bounds obtained by the first
two kinds of symmetrization are not smaller than 1~ of Theorem 2.

3. The generalized Dirichlet integral. In this section we follow
closely Szegt’s treatment of the generalized Dirichlet integral ([10] and
[9, Note D]); however, our definition of this integral will be somewhat
simpler than Szegid’s. We consider a ring-shaped domain D in the z, y-
plane, that is, D is bounded by two Jordan curves C, and C, such that
C, is completely in the interior of C,. We call C, and C, the inner and
outer boundary of D respectively and we denote the interior of C, by
G. Let D* be the open annulus which has the circle CF of radius Ro
as inner boundary and the (concentric) circle Cf of radius R, as outer
boundary (0<R,<R;< ). The radii are so chosen that the disk
bounded by C; has the same area as the interior of C, and that the disk
G* bounded by Ci¥ has the same area as G. Hence D* has the same
area as D and we assume that the center of D* is the origin of a (new)
x, y-plane and use again r=(a*+y?)".

Let p(x,y) be nonnegative and continuous in the closure D of D.
Its rearrangements in symmetrically increasing and decreasing order are
defined in complete analogy to the case of a simply connected domain :

p*(@,y) and p~(x,y) are defined in D*; both functions have circular
symmetry p*(z, y)=p*(r), p~(x, y)=p~(r) and p*(r) is a nondecreasing,
p~(r) a nonincreasing function of », Ry<r<R,; p, p* and p~ are equi-
measurable ; finally, p*(R,) (p~(R,)) is equal to the minimum (maximum)
of p in D and p*(R)) (p~(R)) is equal to the maximum (minimum) of p
in D. Both rearrangements are nonnegative and continuous in D*.

The admissible functions are now defined as follows. A function
¢(w, y) is called admissible in D if it is continuous in D, vanishes on C,,
is equal to 1 on C,, has piecewise continuous first derivatives in D and
if the integral

SDS! grad ¢ *do

exists. The admissible functions in D* are defined analogously and will
be denoted by ¢(x, y). Using these definitions, we state.

THEOREM 3. Let D be a ring-shaped domain in the x,y-plane and
let the Jordan curves C, and C, be the inner and outer boundary of D

respectively. Let the function p(x, y) be positive and continuous in D and
have continuous first derivatives in D. Let p~(x,y)=p"(r) (R, <r<R))
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be the rearrangement of p(x,y) in symmetrically decreasing order defined

in the closed annulus D.* Denote by 4y the minimum of the generalized
Dirichlet integral

(16) E(¢)= SS {lgrad ¢ [*+ p¢*} do

in the class of all admassible functions ¢(x,y) in D. Similarly, denote
by 4dny~ the g.l.b. of the generalized Dirichlet integral

(16°) B-9)=([{grad g+ g} ar

in the class of all admissible functions ¢(x, y) in D* which satisfy |¢ <1,
Then'

(177) T2

We rely again on Courant-Hilbert [3, Vol. 2, Chapter VII]. To
minimize E(¢) in the class of all admissible functions ¢(x,y) in D is
a special case of their Variational Problem I corresponding to the first
boundary value problem. (See their §2; and put in their notation
p=k=1, a=b=f=0, and replace their ¢ by our p. To assure that
all their assumptions are satisfied, we have to show that there exists
a function g which is continuous in D, vanishes on C,, is equal to 1 on
C, and has piecewise continuous first derivatives in D which are such
that

SSIgradglgdo

D

exists. The existence of such a function g follows by conformal map-
ping. Set z=x+1iy and let {=¢(2) be the function which maps D onto
the annulus p<|¢|<(1. The harmonic function g(z, y)=g(2),

oo 2] 1
g(z)=log 0 / log p

has all the required properties.)

We again use the result of their § 4 with an implication similar to
the one stated in our § 1. With regard to the same problem for E-(¢),
the conditions of Courant-Hilbert are satisfied only if p~(«,y) has con-
tinuous first derivatives in D*. As this is in general not true, 47y~ has
to be defined as the g.l.b. E-(¢).

4 The words “ which satisfy |¢|<< 1” may of course be deleted. But we shall need the
above given formulation of Theorem 3 to obtain Theorem 3’,
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The variational problem to minimize FE(¢) in the class of all admis-
sible functions ¢(x, y) in D has a unique solution w(x,y). This admis-
sible funection w(x, y) has continuous derivatives of first and second order
in D and is also the unique solution of the corresponding boundary value
problem ; that is, u(x, y) solves the system

(18) Au(x! y)—p(xy y) u’(xy y)=0 for (.’E, y) eD, u’(CU)=0 ’ u’(Cl)=1 ’

and is the only admissible funection having continuous first and second
derivatives which solves this system. (18) and p(z, y) >0 imply
0<u(x, y) <1 for (x,y)eD.

For the same reason as in § 2, we prove Theorem 3 first under the
assumption that p(x, y) is not only positive and continuous in D but is
also analytic in D. (18) implies the analyticity of w(x, ) in D and in
complete analogy to § 2—using (11*) below— it follows that u*(z, y)=u*(r)
is an admissible function ¢(«, y) in D* which, by the above, satisfies
|¢|<1. We have now

(19) 4nr=§j {|grad wpP+ pu) dazgg{lgrad @*) P+ p-(u*)} do

D

= g.].b.“ {lgrad ¢ P+ p~¢*}do=4nr~ .

To establish (19) it remains only to justify its first inequality sign. For
thisYpurpose we use

1) Sglgrad uPdag“lgrad (") Pdo ;

D

that is, the fact, proved by Szegoé [10], that also in this case the
Dirichlet integral decreases under symmetrization. The remaining inequ-
ality

Sgpuzdagggp‘(u‘“)zda

D D¥
is again a consequence of the theorem on the rearrangements of func-
tions. (See footnote 3) and complete u, u*, p and p~ in an obvious way
into a bounded region containing D and D*.) This establishes (19) and
thus proves Theorem 3 for analytic functions p(z, ¥).

This special case implies (17-) for any function p(x, y) satisfying the
conditions stated in the theorem. We use the same approximation as
in the analogue step in § 2. ps(x, ¥)=p; is again a polynomial satisfying
(18) in D and (13-) holds therefore for D*. Replacing in (16) p by p;
and in (16°) »~ by p;, we denote the corresponding minimum and g.l.b,
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by 427(8) and 4zy-(5) respectively. By (18) and the definitions of y and
7(0) we obtain (using that 0 <u<1)

4dry= -ES {lgrad u|*+ pu®} do > SSI grad u|*do + (1 —Ti(g)gpau?da

D

> dny(8)— 6P,

where P is the maximum of p(x,y) in D and d denotes the area of D.
Setting a=Pd/4r we have
(20) r=r(d)—oa.

By (138-) and the definitions of y~ and 7-(6), there exists for each ¢>0
an admissible function ¢(x, y) in D*, satisfying |¢|<1, so that

() +e= ([ lgrad g+ 9o = [ grad g+ -9} do =t

D* D¥
hence,
(21) @) =1
For each polynomial ps(x, ¥) we proved

7(6)=77(9) .

As ¢ tends to 0, we obtain from (20), (21) and the last inequality the
desired conclusion (17-) and we thus completed the proof of Theorem 3.

The assumptions of this theorem can be weakened ; that is, as in
Theorem 2', there is no need to assume the existence (and continuity)
of the first derivatives of p(x, y). Theorem 3 remains correct if we as-
sume with respect to p(x,y) only its being positive and continuous in D
and if we accordingly define 4ny as the g.l.b. E(p) in the class of all
admissible functions ¢(x,y) in D which satisfy |¢|<1. Indeed, the just
given proof remains unchanged except for a slight modification in the
derivation of (20).

We mentioned that definition (16) differs from Szegd’s definition of
the generalized Dirichlet integral. In order to obtain his result on this
integral it will be convenient to restate Theorem 3 using his definition.

THEOREM 3’ Let D, C, C, D*, C¥ and C} have the same meaning
as in Theorem 3 and denote the interior of C, by G and the interior of
C¥ by G*. Let p(x,y) be positive and continuous in G and have con-
tinuous first derivatives in G (or at least in D). Let p (z,y)=p(r)
(0L r<R) be the rearrangement of p in symmetrically decreasing order

(in the semse of §1) defined in G*. Further let k(x,y) be positive and
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continuous in G*, have continuous first derivatives in G* (or at least in
D*) and satisfy for each (x,y)ec G*

1-) k(x, y) =p~(, y) .

Denote by 4dnc the minimum of the generalized Dirichlet integral

22) D)= [{1grad ¢ 1+ pg*} do— [ (s

G

wn the class of all admissible functions ¢(x,y) in D. Stmilarly, denote
by 4nc(k) the minimum of the generalized Dirichlet integral

23) D)= t1grad g+ 1y} do- ([ o

D¥*
i the class of all admaissible functions ¢(x,y) in D*. Then
(24) c=c(k) .

For the proof let 4zc= be the g.l.b. of the generalized Dirichlet
integral

(22°) @)= (lgrad g+ p~ ¢tdo— (|-

% G

in the class of all admissible functions ¢(x,y) in D* which satisfy
|¢1<1. We show first that

(25) ccm .
As

o=

G*

and as these two integrals are independent of ¢ and ¢ respectively,
(25) is equivalent to

(26)  min Sg {lgrad ¢ |*+ pg?} do > g.Lb. “ugrad SP+pdtde ;

D¥

here the minimum is taken over all admissible functions ¢ in D, the
g.1.b. only over those admissible functions ¢ in D* which satisfy |¢|<1.

p~ in (26) is obtained by rearranging —in the sense of § 1—the in G

defined function p and then considering this rearrangement only in D*,
p~ in (16-) is the rearrangement—in the sense of the beginning of this

section—of the restriction of the function p to D. It is easily seen
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that, at each point (x, y) € D*, p~(x, ) in the sense of (26) is not larger
than p~(x,y) in the sense of (16°). Theorem 3 implies thus (26) and
hence the proof of (25).

Let now k(x, y) be any function satisfying the conditions stated in
Theorem 3. By the definition of ¢-, there exists for each ¢>0 an
admissible function ¢ in D* satisfying |¢|<1, so that 4mc™+e=D=(¢).
Using (17), (22-), (23) and |¢[<<1 we obtain

4nc-+egD~(¢)=SS|grad ¢1‘1d0—“p—(1—¢2)d0— iS p-do

D D* G*¥ - D¥

ggglgrad ¢|2do—“k(1—¢2) do— SS fedo— Dy (¢) > dre(k) .

D* D¥* G- D¥

We thus obtain ¢~ >>¢(k) which together with (25) gives (24). Theorem
3’ is therefore established.

We state now Szegid’s theorem on the generalized Dirichlet integral
({10], [9, Note D]) in the following restricted form: Let the function
oz, y) be given in the whole x, y-plane and satisfy there conditions (a’),
(b) and (¢) stated in §2. Let D be a ring-shaped domain in this plane
bounded by the imner Jordan curve C, and the outer Jordan curve C..
Denote by 4rnc the minimum of the generalized Dirichlet integral

22) Dio)={ | (lgrad ¢+ pg*) do— [ [pas

D G

in the class of all admissible functions ¢(x,y) in D. Of all ring-shaped
domains D with given area and with given area of the containing simply
connected domain G, the annulus whose center coincides with the origin
of the given plane has the minimum generalized capacity c.

This theorem follows from Theorem 3’ in the same way as our re-
stricted form of Szegt’s theorem on the membrane followed from Theorem

2. ((15) holds now in G*.) Szegb proves this theorem on the generalized
Dirichlet integral assuming only conditions (b) and (¢) stated in §2°
instead of our more restrictive conditions (a’), (b) and (c¢’).

Similarly to the final remark of §2, it follows intuitively that
Theorem 3 and Theorem 3 remain correct if we use Steiner or Pdlya
symmetrization instead of Schwarz symmetrization. For the analogues
of Theorem 3, Steiner and Pélya symmetrizations of functions given in
a ring-shaped domain have to be defined in an obvious way.

Theorem 3 corresponds to Theorem 2 on the membrane. We state
now a theorem on the generalized Dirichlet integral which corresponds
to Theorem 1. ‘

5 We aré’ unable to follow Szegd’s argument allowing to drop the condition p >0 (that is,
condition (a) of §2).
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THEOREM 4. Let D be the annulus Ri<a*+y*< R}, 0<Ry<R,<
and denote its inner boundary by C, and its outer boundary by C,. Let

p(x, y) be positive and continuous in D and have continuous first deriva-
tives in D. Let p*(z, y)=p*(r) (BRy<r<R)) be the rearrangement of

(@, y) in symmetrically increasing order defined in D (=D*). Let v have
the same meaning as in Theorem 3 and denote by 4ny* the g.l.b. of the
generalized Dirichlet integral

(16°) E()= [ lgrad gP+p* ¢ do

in the class of all admissible functions ¢(x, y) in D which satisfy |¢|<1.
Then

17+) T=r*.

For the proof let m(x. y)=m(r) be a function having circular sym-
metry in D and assume that m is continuous in D and has continuous
first derivatives in D. Moreover, for each (x, y)€ D let m(z, y)=>p*(z, ¥).
Denote by 4ny(m) the minimum of

Eu()={ | lgrad o+ mytdo

D
in the class of all admissible functions ¢(xz, ) in D. Then it is easily
proved that
r*=g.Lb.r(m),

where the g.l.b. is taken over all functions m(z, y)=m(r) satisfying the
above conditions. Let now m be such a function and let v(x, y) be the
uniquely given admissible function for which E, (v)=4ny(m). The unique-
ness of » and the circular symmetry of m imply that v too has cir-
cular symmetry, v(x, y)=v(r). As v(r) solves the differential system

, A*,A{rr_d_v(fr)}—m('r)v(r)=0 for Ry<<r<R,, v(R)=0, v(R)=1,
r dr U dr

and as m(r)>0 and v(r)>0 for R,<r <R, it follows that v(r) is a non-
decreasing function of = in this interval. We thus obtain

47rr(m)=gg {lgrad v [ +me?) dag“ (lgrad o[+ p*o} do

= ([ tgrad op+p07}do = amr .

D

This proves Theorem 4. The last step of this proof shows that tie
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(ttalicized) statement following the proof of Theorem 3 holds also true
with respect to Theorem 4.

We started this paper with quoting the one-dimensional analogue of
the results on the nonhomogeneous membrane. With regard to the
generalized Dirichlet integral we state now the one-dimensional analogue
of Theorem 3. It will be convenient to exchange the boundary condi-
tions. We thus require the vanishing of the admissible functions at the
outer endpoints of the two disjoint segments, so that p* (instead of p~
of Theorem 3) appears in our statement. Moreover, we let the inner
endpoints of the two segments coincide and thus obtain

THEOREM 5. Let p(x) be positive and continuous for —x,<x =,
0<Zay< o0, and let p*(x) be the rearrangement of p(x) in symmetrically
increasing order. Let u(x) be the unique solution of the differential
system

w'(@)—-pr@)u@)=0 for —a<r<0, w(—x)=0, u(0)=1,

and set a=2u'(0). Let ¢(x) be any function of class D' in —x,<x<x’
which satisfies ¢(—x,)=¢(2,)=0 and denote the maximum of |¢(x)| in this
interval by ¢. Then

Ty

S (¢ + pe)dw=>ad’ .

—xy

Equality is obtained in the case p(x)=p*(x) and ¢(x)=Cu(z) for —x, <
<0, ¢@)=¢(—2) for 0 <z=<w.

For the proof let x; be a point in <7 —uwu,, x,°> such that |¢(x)|=¢
and assume that ¢(x,)=¢. Let us minimize the integral

o1

[ @+ pyae

-2y

under the boundary conditions y(—a,)=0 and y(x,)=¢. The Euler equa-
tion ¥y’ —py=0 has (by »>>0) a unique solution satisfying the boundary
conditions and it follows by standard criteria of the calculus of variations’
that this unique extremal satisfying the boundary conditions gives the
absolute (strong) minimum of the variational problem. Considering also
the analogue problem for < @, #, > with the boundary conditions y(x)=¢
and y(a,)=0 we finally obtain

Cllo (to

S (¢ + pp*)de = S "+ py’)dz ,

) %

7 See Bolza [2; pp. 101, 102] and use his conditions (I), (IIb’) and (III").



PRINCIPAL FREQUENCY OF THE NONHOMOGENEOUS MEMBRANE 1675

where y(x) is the unique solution of y’'—py=0 for —ax,<x<x, and
o, < <, which satisfies y(— ) =y(x))=0, y(x,)=¢. (Note that 0<y<¢
follows). We have now

170 a:“

| @ pao= | @y er @y do=2 | 1)+ @) de

e -z

0 0 0

=>2¢* S(u”+p+u2)dx=a¢2 .

0

Here we used again the calculus of variations to justify the last inequ-
ality sign and we obtained the last equality by partial integration of
u”?. This completes the proof of Theorem 5.

In case of p(x) being a monotonic function we obtain

THEOREM 6. Let p(x) be positive, continuous and non-decreasing for
a<x<b (—oo <la<lb<x). Let y(x)and y,(x) be any (nontrivial) solu-
tions of

y'(@)—p(x)y(@)=0, a<xr=<b,
which satisfy y(a)=y, (0)=0. Then

Ui6) @)
T S A

For the proof we may assume y,(b)=y.(a)=1. As the Wronskian of
the two solutions y,(x) and y,(x) is constant, (and using p_>0) we obtain

yi(a)=—y.(b) >0 .
Setting p*(x)=p(a+b—2z), a<ax<b, we have

b

b
yi(b)= S (W + py)da = S(y? + Pyl do

b

gg(y;2+pyz)dx= — @) .

Dividing (b)) = —yi(a) by yi(a)=—1y:(b) we obtain the assertion of the
theorem.
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