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1. Introduction* The object of this paper is to prove the ideal-
theoretic version of Wiener's tauberian theorem for algebras which we
will call group algebras of vector-valued functions. These algebras are
defined as follows. Let G={a, 6, •••} denote a locally compact abelian
group and let X— {x,y, } represent a complex commutative Banach
algebra. Our group algebra B=B(G, X) consists of the set of all measur-
able absolutely integrable functions defined over G with values in X
Of course we must identify functions which differ on sets of Haar
measure 0. As norm for an element feB we take

!/U=(
JO

da .

(Hereafter, we will omit an indication of the domain of integration if
the integral is taken over the entire group G.) The space B(G, X) is
known to be complete in the given norm [4]. Further, we introduce
into B the following operations

where λ is a complex number, and

where the integral is taken in the sense of Bochner [1, 4] with respect
to Haar measure db. The algebra B(G, X) thus becomes, as is easily
shown, a complex commutative Banach algebra which specializes into
the classical group algebra L(G) if X is chosen as the complex numbers.
It is these algebras B(G, X) which will be the object of our study.

The tauberian theorem for B{G, X) will be proved by appealing to
a theorem in the general theory of Banach algebras (see [5], p. 85
corollary, or [6], Theorem 38.) This latter result might be designated
as the "general tauberian theorem." It says that if a complex com-
mutative S-algebra Y is semi-simple, regular, and is such that the set
of ye Y with φM(y) having compact support in Wl(Y) is dense in Y, then
every proper closed ideal in Y is contained in a regular maximal ideal.
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Here 9JΪ(F) denotes the space (in the usual weak topology) of regular
maximal ideals in Y and φM represents the canonical homomorphism from
Y onto the complex numbers associated with an MeW(Y). It will be
taken as known that the classical group algebra L(G) satisfies the hy-
potheses of this general tauberian theorem. This amounts, then, to
assuming the tauberian theorem in the case of L(G). It will also be
assumed, but only in the final theorem of the paper, that the range
space X meets the conditions of the general tauberian theorem. It is
clear, therefore, that the proof of the tauberian theorem for B(G, X)
found here, does not yield a new proof in the case of L(G). However,
this paper does provide, it is hoped, an interesting application of the
general tauberian theorem in the case of our generalized algebras.

2 Proof of the theorem. It is important to know the form of
the most general multiplicative linear functional in B(G, X). This is
determined in Lemma 1 which requires the following preliminary obser-
vations.

The convolution f*g of a function / e L(G) with a function g e B(G, X)
results, as in easily seen, in a function contained in B(G, X). Suppose
{jw} is an approximate identity for L(G) that is, for each neighborhood
W of the identity 0 in G, j w is some (numerical) non-negative function

vanishing off W such that \jw{a)da — l. Then for every f e L(G) we

have jw*f-+f as TF->0. (Of course, convergence is here understood in
the sense of directed systems.) But {jw} acts, also, as an approximate
identity in B(G, X), that is, jw*g-+g in β-norm for every geB. This
can be shown, just as in the case of L(G), by noting that functions in
B are continuous in j?-norm [4], i.e., for any ε>0 there is a neighbor-
hood Ws of 0 in G such that \\f(a-b)-f(a)\\B<ε if be Wz.

The approximate identity will be of service to us in proving Lemma
1 which we now state.

LEMMA 1. Let G—{ά,b, •••} denote the dual group of G in the
usual Pontrjagin topology. Define the " Fourier transform " of f eB as

f(M, a) = \φMf(a) (a, a) da .

The Fourier transform evaluated at a fixed (M,a)e Dΐ(X)xG is a non-
zero, continuous multiplicative linear functional in B and, further, all
such functionals are of this type, that is, if μ is a non-zero, continuous
multiplicative linear functional in B, then there is some (M, a) such that
μ(f)=f(M,ά) for every feB.
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Proof. That the Fourier transform, at a fixed (Λf, ά), is a multi-
plicative functional is easily shown. We, consequently, turn to the
second half of the lemma. Choose a function feB such that μ{f)Φθ
and let {jw} be an approximate identity. For every x e X, lim μ{jwx)

exists. (Here, jwx denotes the function {jwx){o)—3w{o)'X' Of course,
jwxeB.) For

μ(jwχ * /)=KJwχ)Kf)=μi(άw * / > ] - * KM as W -> o

because 0V*/)# —•/#. Hence μ{jwx) necessarily converges to a limit
independent of the approximate identity {jw}, namely μ(f%)lμ(f). This
limit is likewise independent of the feB with μ(f)φQ, for if geB is
such that μ(g)φθ, then

KM Ko) = tAkf * Φl = KQ* * /) = Λ(fl̂ ) ̂ (/)

so that μ(fx)lμ(f)—Kdχ)lKΰ) We will denote the limit of μ(jwx) by
φμ(a?) for xeX.

Suppose, temporarily, that X possesses an identity e. Then </>μ is
certainly not zero. For Φμ(e) = μ(fe)lμ(f) = μ(f)lμ(f) = l. Further, φμ is
easily seen to be additive and homogeneous, that is,

for all x,yeX and complex numbers λl9 λ2.

so that φμ is multiplicative. Therefore, as is well known, there is some
MeWl(X) (depending on μ) such that Φμ,(x) = φM(x)

Still assuming that X has an e (which we may take of norm 1), let
geL{G), xeX. Then

But

* Φl

so that μ(gx) = φM(x)μ(ge) for any geL(G) and any a e l , Since
Lβ={grβeS|flreL(G)} is isometrically isomorphic with L(G) and since μ
is a continuous multiplicative linear functional on LeaB (not identically
zero on Le, because linear combinations of functions gx with geL(G),
xeX are dense in B [1,4]) there is an άeG (depending on μ) such

that μ(ge)=\g(a)(a, a)da for all geL(G).

Suppose, now, that / is any function in B. Then, because the
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simple functions are dense in B(G, X) as we observed above, there

exists a sequence gneB such that gn-+ f and μ(gn)=gn(M, a) -> f(M, a)

and so μ(f) = f(M, a).
We now remove the restriction that X possess an identity. If X

lacks an e, then we imbed X, isometrically and isomorphically, in a
Banach algebra X' with unit e in such a way that maximal ideals in
Xf are the regular maximal ideals in X and X itself. This is done in
the usual well-known manner. The homomorphisms of X' onto the
complex numbers are φM (MeWl(X)) and the additional functional φx,
where φx{x+λe) — λ for xeX, λ a complex number. By what we have
already proved, the non-zero multiplicative functionals in B{G, X') are
of the form f{M, a) and the additional functionals f(X, a). These latter

functionals, namely, \φxf(a)(a, ά)da are, however, all identically zero

in B{G, X) and thus the lemma is established.
The following lemma gives a topological characterization of the space

of regular maximal ideals ΪUl(B) in B(G, X). For a similar result and
proof see [2].

LEMMA 2. The space ϊΐ(β) of regular maximal ideals in B, topolo-

gized in the weak topology, is homeomorphic with Wl(X)xG, that is the

topological product of Wl(X) and G.

Proof. There is a 1 — 1 correspondence between the points of Wl(B)
and those of 3Jί(X)xG. To see this, suppose (ikf, ά)φ(N, b). If aφb
and M — N, take xφM and find an /eL(G) such that

Then

MM, ά) = f(ά)φM{x)ΦMN,

If aΦb and MΦN or if ά=ί> and MΦN, then we may proceed in the

same way to construct a function fx with / e L(G), x e X such that the

Fourier transform of fx separates the points (M, ά), (N, δ). No two

points in Wl(X)xG give rise to the same regular maximal ideal in

The topology of 3Jί(I?) is precisely that induced by the family

3={/(M, ά)\feB} of functions defined on 3Jί(X)x&. We must show

that this topology is identical with the product topology of 2Ji(X)xG.

This will be done by showing that the $-topology of Wl(X)xG is iden-
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tical with that induced by another family of functions g c $ defined on

M(X)xG. Then the proof will be completed by showing that this g-

topology is identical with the product topology of Wl(X)xG.

First we must define g. For each positive integer n and each

choice flt f2, , /» β L{G) xlfx2, • ι , ^ 6 l , there is a function h de-

fined on 3Jί(X)xG by h(M, α)= ΣΛ^(M, α), Let g be the family of
i l
Σ

all functions h so defined. Clearly g c ^ But g is also dense in $ in
the uniform norm. For, suppose / e B. Then we can find /4 6 L(G),

x,h e X, such that / -
i - 1

<ε. Hence
B

Therefore, sup ^ε where the sup is taken over

Wl(X)xG. This shows g is dense in 3 in the sup-norm and it is easy

to see, from this, that the g- and ^-topologies on 9Jί(X) x G are identical.

It remains to show that the g-topology on (tΰl(X)xG is the same
as the product topology. To do this we first develop a few properties
of g.

(i) The functions in % separate the points of Wl(X)xG as we saw
in the beginning of this proof.

(ii) Functions in g are continuous over yjl(X)xG in the product
topology. For, if feL{G), xeX, (MQ,ά0) is a fixed point of %Jl(X)xG,
and e>0, then

}MM,ά)~MM0,ά0)\

^ \f(ά)φM(x)-f(ά)φMo(x

if (M, a) 6 U(M0) x U(ά0) where U(MQ), U(ά0) are neighborhoods of Mo,

d0 in 5Di(X) and G, respectively, such that \φM(x)—0MO(^)l<e/2|/L for

MeU(M0) and l/(ά)-/(do)|<ε/2|^| for άeϋ{άo). Since g consists of

finite linear combinations of fx(feL(G),xeX), each function in g is

continuous in the product topology of 3Jl(X)xG.

(iii) Let (Mo, ά0) e 5Dl(JC) x G. Choose f e L(G) such that f(άo)Φθ
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and let xeX be such that x$M0. Then /#(M"0, άo)=£θ, so that not all

functions in % vanish at a fixed point in 2JΪ(X) x G.

(iv) Each function in % vanishes at infinity in 9JΪ(X) x G. For,

suppose e>0 is given. If ΣJWΛf, &)eg, then

/\ < e

if

where l/,(α)l<*> lφjr(aθl<3 if άfέC^cG and M0e4c3R(X). Here,
with Kλ— sup |a?t| and ϋΓ2= sup sup |/«(ά)l

Cι and 6̂  are compact sets which exist because each ft and each xt

vanish at oo in G and 3Jί(X), respectively. Γ is compact in Wl(X)xG
so that each function in % vanishes at oo.

We now appeal to a result in general point-set topology (see [5] p.
12) which states: If © is a family of complex-valued continuous func-
tions vanishing at infinity on a locally compact space S, separating the
points of S and not all vanishing at any point of S, then the weak
topology induced on £ by (S is identical with the given topology of S.

We take S=Tc(X)xG and © = g. This finishes the proof.
The next lemma deals with the radical and regularity in B(G, X).

Following this we conclude with the tauberian theorem.

LEMMA 3. ( i ) The radical of B consists of those functions f e B
with values in the radical of X a.e.

(ii) If X is regular, then B(G, X) is regular.

Proof. Necessity ( i ) . Suppose / takes values in the radical
9ΐ= Π M of X a.e. Then φMf=0 a.e. for each MeWl(X) and thus

MW(X)

/(ΛΓ, α) = 0 for each (M, α) 6 3Jί(X) x G. This means / is in the radical
of B.

Sufficiency ( i ) . Suppose that / is in the radical of B. We must

show that / takes values in the radical 91 of X, a.e. We have

/(ΛΓ,ά) = O for all (M,ά)eΉ(X)xG, that is f φMf(a)(a, ά)da=0 for all

(M, a). Since φMf is in L(G) and since L(G) is semi-simple, we have
φMf=0 a.e. for each MeTl(X).
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Let {jw} be an approximate identity for L(G) consisting of bounded
functions vanishing outside neighborhoods W of the identity in G. Since
/ is continuous in 5-norm, it follows that the functions jw*f from G
to X are continuous. Consequently, the functions jw*f take values in
3ΐ everywhere over G since 9ΐ is closed in X. Choose a sequence {jw }
from {jw} such that V̂w* / - > / in B-norm. Then, as is known, there
is a subsequence of the ύwn*f converging to / pointwise a.e. in X-
norm. Since 5R is closed, / takes values in 3ΐ a.e.

Proof of (ii). Suppose X is a regular algebra. We wish to show

that, given any point (MQf άo)eίSJl(X)xG and any open set £} containing
(MQ, ά0), there is a function geB(G,X) such that g(M09 ao) — l and
g(M, ά) = 0 if (Λf, ά)0 D. By Lemma 2, the open sets of Wl(B) are of the
form \J (Oι x yii) where the Ot are open in G and the 5i4 are open in

fflΐ(Z). Suppose our O equals \J(Otx5Rt); then (Λf0, α0) e (L x 5Rtn for

some i0 e Ω, that is, α0 6 O<0 and Mo e 5Jίίo. We can find a function

feL(G) such that /(άo) = l and f(ά) = 0 if ά0O< o. This follows from
the regularity of the group algebra L(G). Since X is regular, by hy-
pothesis, there is an xeX such that φMQ(x) = l and φM(x) = 0 if M$%0.
We will show that the g, above, can be taken to be fx. Firstly,
fx(M0, άo) = 1. Now, suppose (M, a) $ £}. Then (Λf, ά) 0 Oίo x 9ΐίo so that
a$OiQ or M05Rίo. In either case, fx(M,ά) = 0. Hence /α?(Λf, ά) = 0 for
all (Λf, α)0D.

We might add that if i?(G, Z) is regular, then X is likewise regular.
However, this fact will not be used in the following theorem and so we
do not enter into its proof.

COROLLARY. B(G,X) is semi-simple if and only if X is semi-simple.

THEOREM. Let X be semi-simple and regular. Suppose that the
elements xeX with φM{%) having compact support in Wl(X) are dense in
X. Then every proper closed ideal in B(G, X) is contained in a regular
maximal ideal.

Proof. By the hypothesis and Lemma 3, it follows that B{G, X) is
regular and semi-simple. Using the general tauberian theorem (see the
introduction), we can prove that any proper closed ideal in B is contained
in a regular maximal ideal by showing that if / is any function in B
and ε>0, there exists an heB such that \f—h\B^e and h(M, a) has

compact support in Wi(X)xG. Suppose, therefore, that feB and e>0
are given. We can find fiSUfi), xteX (i = l, 2, * ,n), such that
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We have functions fleL(G) such that \ft—f't\L<εl3Kn (i = l, 2, •••,%),

where ϋΓ= sup |α?*| and the /* have compact support C^cG. This follows

from the fact that L(G) satisfies the hypotheses of the general tauberian
theorem. By the hypotheses on X, we may find x\ in X such that
\Xi—x'i\<eβRn (i = l, 2, •••,%), where i2= sup |/ί |L and the Φκ{xd have

compact support 6^c3ft(X). Now

/ - Σ/Λ| =1/-
« || II

Take (see above) h=Σf'&'i - We see that h(M,ά) has support
ΐ = l

( n \ ί n A \ A

U K j x l \J C j which is compact in 9Jί(X)xG. The theorem is now
proved.
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