CHARACTERISTIC DIRECTION FOR EQUATIONS OF MOTION OF NON-NEWTONIAN FLUIDS

J. L. ERICKSEN

1. Introduction. According to the Reiner-Rivlin theory of non-Newtonian fluids, the stress tensor t_j^i is given in terms of the rate of strain tensor d_j^i by relations of the form

$$(1) t_j^i = -p\delta_j^i + \mathscr{T}_1 d_j^i + \mathscr{T}_2 d_k^i d_j^k ,$$

where p is an arbitrary hydrostatic pressure, the \mathscr{F} 's are essentially arbitrary differentiable functions of

(2)
$$\text{II} = -\frac{1}{2} d_j^i d_i^j, \qquad \text{III} = \det d_j^i,$$

and d_j^i satisfies the incompressibility condition

$$d_i^i = 0.$$

The tensors d_j^i and t_j^i are both symmetric.

It is known [2] that the characteristic directions of the corresponding equations of motion are the unit vectors ν_i satisfying

$$(4) F(\nu_i) = 2U^2 + 2UU_i^i + (U_i^i)^2 - U_i^i U_i^j = 0,$$

where

$$egin{aligned} U &= \mathscr{T}_1 + \mathscr{T}_2 \, \mu^i
u_i \;, \ U^i_j &= \mathscr{T}_2 \, (d^i_j -
u^i \mu_j) + 2 (\mu^i -
u^i \mu_k
u^k) \Big(\, \mu^m d_{mj} rac{\partial \mathscr{T}_1}{\partial \Pi \Pi} - \mu_j rac{\partial \mathscr{T}_1}{\partial \Pi \Pi} \Big) \ &+ 2 (d^i_m \mu^m -
u^i \mu_m \mu^m) \Big(\, \mu^n d_{nj} rac{\partial \mathscr{T}_2}{\partial \Pi \Pi} - \mu_j rac{\partial \mathscr{T}_2}{\partial \Pi} \Big) \;, \ \mu_i &= d_{ij}
u^j \;. \end{aligned}$$

Since $F(\nu_i)$ is a continuous function of ν_i on the compact set $\nu_i \nu^i = 1$, a necessary and sufficient condition that no real characteristic directions exist is that $F(\nu_i)$ be of one sign for all unit vectors. Using this fact, we obtain simpler necessary conditions which are shown to be sufficient when $\mathscr{F}_2 \equiv 0$.

2. Necessary conditions. Let d_1 , d_2 and d_3 denote the eigenvalues of d_i^i . From (3),

Received April 12, 1957.

¹ This theory was proposed independently by Reiner [4] for compressible fluids, by Rivlin [5] for incompressible materials. We treat the latter case.

$$(5) d_1 + d_2 + d_3 = 0.$$

We restrict our attention to unit vectors ν_i which are perpendicular to an eigenvector of d_j^i and note that $F(\nu_i)$, being a continuous function of ν_i , must be of one sign for all unit vectors in order that no real characteristic directions exist. Given any unit vector ν_i perpendicular to an eigenvector e_i corresponding to d_3 , we may introduce a rectangular Cartesian coordinate system such that, at a point, ν_i is parallel to the positive x^i -axis and e_i is parallel to the x^3 -axis. Then

$$u_i = \delta_{i1}, d_{13} = d_{23} = d_{1i}d_3^i = d_{21}d_3^i = 0,$$
 $2d_{13} = (d_1 - d_2) \sin 2\phi, d_{23} = d_3.$

where ϕ is the angle between ν_i and an eigenvector corresponding to d_1 . Making these substitutions in $F(\nu_i)$, given by (4), we obtain, by a routine calculation,

$$egin{aligned} F(
u_i) = & 2[\mathscr{F}_1 - \mathscr{F}_2 \, d_2] \Big\{ \mathscr{F}_1 - \mathscr{F}_2 \, d_3 - rac{1}{2} (d_1 - d_2)^2 \sin^2 2\phi iggl[rac{\partial \mathscr{F}_1}{\partial \mathrm{II}} iggr] \\ & - d_3 rac{\partial \mathscr{F}_2}{\partial \mathrm{II}} + d_3 rac{\partial \mathscr{F}_1}{\partial \mathrm{III}} - d_3^2 rac{\partial \mathscr{F}_2}{\partial \mathrm{III}} iggr] \Big\} \;, \end{aligned}$$

which must be of one sign for all real angles ϕ . This is clearly true if and only if it is of the same sign for $\phi=0$ and $\phi=\pi/4$. That is, either

$$[\mathcal{F}_1 - \mathcal{F}_2 d_2][\mathcal{F}_1 - \mathcal{F}_2 d_3] > 0$$

and

$$\begin{split} [\mathscr{F}_1 - \mathscr{F}_2 \, d_{\scriptscriptstyle 2}] \Big\{ \mathscr{F}_1 - \mathscr{F}_2 \, d_{\scriptscriptstyle 3} - \frac{1}{2} (d_{\scriptscriptstyle 1} - d_{\scriptscriptstyle 2})^{\scriptscriptstyle 2} \Big[\frac{\partial \mathscr{F}_1}{\partial \mathrm{II}} \\ \\ - d_{\scriptscriptstyle 3}^{\scriptscriptstyle 3} \frac{\partial \mathscr{F}_2}{\partial \mathrm{II}} + d_{\scriptscriptstyle 3}^{\scriptscriptstyle 3} \frac{\partial \mathscr{F}_1}{\partial \mathrm{II}} - d_{\scriptscriptstyle 3}^{\scriptscriptstyle 2} \frac{\partial \mathscr{F}_2}{\partial \mathrm{II}} \Big] \Big\} > 0 \;, \end{split}$$

or (7) and (8) hold simultaneously with the inequalities reversed. By similarly analyzing the cases where ν_i is perpendicular to eigenvectors of d_i^t corresponding to d_1 and d_2 , we conclude that either

$$[\mathscr{F}_1 - \mathscr{F}_2 d_i][\mathscr{F}_1 - \mathscr{F}_2 d_j] > 0 \qquad (i \neq j),$$

and

$$\begin{aligned} & [\mathscr{T}_1 - \mathscr{T}_2 d_j] \Big\{ \mathscr{T}_1 - \mathscr{T}_2 d_k - \frac{1}{2} (d_i - d_j)^2 \Big[\frac{\partial \mathscr{T}_1}{\partial \Pi} \\ & - d_k \frac{\partial \mathscr{T}_2}{\partial \Pi} + d_k \frac{\partial \mathscr{T}_1}{\partial \Pi} - d_k^2 \frac{\partial \mathscr{T}_2}{\partial \Pi} \Big] \Big\} > 0 \qquad (i, j, k \neq), \end{aligned}$$

or

$$[\mathcal{F}_1 - \mathcal{F}_2 d_i][\mathcal{F}_1 - \mathcal{F}_2 d_j] < 0 \qquad (i \neq j),$$

and (10) holds with the inequality reversed. Now (11) cannot hold for all i and j, so this possibility is ruled out. We thus have

THEOREM 1. A necessary and sufficient condition that no real characteristic directions exist is that $F(\nu_i)>0$; in order that there exist no real characteristic directions perpendicular to an eigenvector of d_j^i , it is necessary and sufficient that the inequalities (9) and (10) hold.

For (9) and (10) to hold, it is necessary and sufficient that either

and

$$(13) \qquad \mathscr{F}_{1} - \mathscr{F}_{2} d_{k} - \frac{1}{2} (d_{i} - d_{j})^{2} \left[\frac{\partial \mathscr{F}_{1}}{\partial \Pi} - d_{k} \frac{\partial \mathscr{F}_{2}}{\partial \Pi} + d_{k} \frac{\partial \mathscr{F}_{1}}{\partial \Pi} - d_{k}^{2} \frac{\partial \mathscr{F}_{2}}{\partial \Pi} \right] > 0$$

$$(i, j, k \neq),$$

or

$$(14) \mathcal{F}_1 - \mathcal{F}_2 d_i < 0$$

and

$$(15) \qquad \mathscr{F}_{1} - \mathscr{F}_{2} d_{k} - \frac{1}{2} (d_{i} - d_{j})^{2} \left[\frac{\partial \mathscr{F}_{1}}{\partial \Pi} - d_{k} \frac{\partial \mathscr{F}_{2}}{\partial \Pi} + d_{k} \frac{\partial \mathscr{F}_{1}}{\partial \Pi} - d_{k}^{2} \frac{\partial \mathscr{F}_{2}}{\partial \Pi} \right] < 0$$

$$(i, j, k \neq).$$

3. Equivalent conditions. Let t_i denote the eigenvalues of the stress tensor corresponding to the eigenvalue d_i of d_{mn} so that from (1),

$$t_i = -p + \mathcal{F}_1 d_i + \mathcal{F}_2 d_i^2$$
.

Using (5),

(16)
$$t_{i}-t_{j}=[\mathscr{I}_{1}+\mathscr{I}_{2}(d_{i}+d_{j})](d_{i}-d_{j})$$

$$=[\mathscr{I}_{1}-\mathscr{I}_{2}d_{k}](d_{i}-d_{j})$$

$$(i,j,k\neq).$$

From (2) and (5),

(17)
$$II = -\frac{1}{2}(d_1^2 + d_2^2 + d_3^2) = -\frac{1}{4}(d_i - d_j)^2 - \frac{3}{4}d_k^2,$$

$$III = d_1 d_2 d_3 = \frac{1}{4}d_k [d_k^2 - (d_i - d_j)^2]$$

$$(i, j, k \neq).$$

Using (16) and (17) to express $t_i - t_j$ as a function of $d_i - d_j$ and $d_k(i, j, k \neq)$, we calculate

(18)
$$\frac{\partial (t_i - t_j)}{\partial (d_i - d_j)} \bigg|_{d_k = \text{const.}}$$

$$= \mathscr{T}_1 - \mathscr{T}_2 \, d_k - \frac{1}{2} (d_i - d_j)^2 \bigg[\frac{\partial \mathscr{T}_1}{\partial \mathrm{II}} - d_k \frac{\partial \mathscr{T}_2}{\partial \mathrm{II}} + d_k \frac{\partial \mathscr{T}_1}{\partial \mathrm{III}} - d_k^2 \frac{\partial \mathscr{T}_2}{\partial \mathrm{III}} \bigg] \, .$$

From (12), (13), (14), (15), (16), (18) and Theorem 1, we have

THEOREM 2. When the eigenvalues of d_j^i are all unequal, a necessary and sufficient condition that there exist no real characteristic direction perpendicular to an eigenvector of d_i^i is that either

$$(t_i - t_i)/(d_i - d_i) > 0$$
 and $\partial (t_i - t_i)/\partial (d_i - d_i)|_{d_i = \text{const.}} > 0$,

or

$$(t_i - t_j)/(d_i - d_j) < 0$$
 and $\partial (t_i - t_j)/\partial (d_i - d_j)|_{d_i = \text{const.}} < 0$ $(i, j, k \neq)$.

When (12) holds, the stress power Φ , given by

$$3\Phi = 3t_i^i d_i^i = (t_1 - t_2)(d_1 - d_2) + (t_2 - t_3)(d_2 - d_3) + (t_3 - t_1)(d_3 - d_1)$$

is negative, a possibility which many writers exclude on thermodynamic grounds.

4. The case $\mathscr{T}_2 \equiv 0$. When $\mathscr{T}_2 \equiv 0$, $\mathscr{T}_1 \neq 0$, the characteristic equation (4) has been shown [2] to reduce to

(19)
$$G(\nu_i) \equiv \mathscr{T}_1 + A^i B_i = 0 ,$$

where

$$egin{aligned} &A^i\!=\!2(\mu^i\!-\!
u^i\mu_k
u^k)\;,\ &B_i\!=\!\mu^md_{mi}rac{\partial\mathscr{F}_1}{\partial\Pi\Pi}\!-\!\mu_irac{\partial\mathscr{F}_1}{\partial\Pi}\;. \end{aligned}$$

In fact, $F(\nu_i) = 2\mathscr{T}_1 G(\nu_i)$. When $\mathscr{T}_2 = 0$, $\mathscr{T}_1 = 0$, every direction is characteristic, a case which we exclude. Using the Hamilton-Cayley theorem,

$$d_i^i d_k^j d_m^k = \text{III} \delta_m^i - \text{II} d_m^i$$

we can reduce (19) to the form

(20)
$$G(\alpha, \beta) \equiv \mathcal{F}_1 + 2(III - II\alpha - \beta\alpha) \frac{\partial \mathcal{F}_1}{\partial III} + 2(\alpha^2 - \beta) \frac{\partial \mathcal{F}_1}{\partial II} = 0,$$

where

(21)
$$\alpha = \mu_i \nu^i = d_{ij} \nu^i \nu^j , \qquad \beta = \mu^i \mu_i = d_k^i d_{im} \nu^k \nu^m .$$

Now (21) is a mapping of the unit sphere $\nu_i \nu^i = 1$ onto a region R in the $\alpha - \beta$ plane. The conditions

$$\begin{split} &\frac{\partial G}{\partial \alpha} = -2(\mathrm{II} + \beta) \frac{\partial \mathscr{I}_1}{\partial \mathrm{III}} + 4\alpha \frac{\partial \mathscr{I}_1}{\partial \mathrm{II}} = 0 \ , \\ &\frac{\partial G}{\partial \beta} = -2\alpha \frac{\partial \mathscr{I}_1}{\partial \mathrm{III}} - 2 \frac{\partial \mathscr{I}_1}{\partial \mathrm{II}} = 0 \ , \\ &\pm d^2 G = \pm 4 \left[\frac{\partial \mathscr{I}_1}{\partial \mathrm{II}} d\alpha^2 - \frac{\partial \mathscr{I}_1}{\partial \mathrm{III}} d\alpha d\beta \right] \geqq 0 \ \text{for all} \ d\alpha, d\beta \ , \end{split}$$

must be satisfied at any interior point of R at which G is a maximum or minimum. These conditions cannot be satisfied unless $\partial \mathcal{F}_1/\partial II = \partial \mathcal{F}_1/\partial III = 0$, in which case $G(\nu_i)$ is independent of ν_i , and $\mathcal{F}_1 \neq 0$ is then necessary and sufficient that there exist no real characteristics. From the implicit function theorem, values of ν_i corresponding to boundary points of R are such that the equations

$$dlpha\!=\!2d_{ij}
u^id
u^j$$
 , $deta\!=\!2d_k^i\,d_{im}
u^kd
u^m$, $0\!=\!
u_id
u^i$

do not admit a unique solution for $d\nu^i$ in terms of $d\alpha$ and $d\beta$. We thus have

THEOREM 3. Maximum and minimum values of $G(\nu_i)$, hence of $F(\nu_i)$, hence of $F(\nu_i)$, occur only at values of ν_i such that the vectors ν_i , $d_{ij}\nu^j$ and $d_i^k d_{km}\nu^m$ are linearly dependent or, equivalently, at values such that the determinant D of these three vectors vanishes.

Whatever be the unit vector ν_i , we can always choose rectangular Cartesian coordinates such that, at a point, $\nu_i = \delta_{i1}$, $d_{23} = 0$. The condition D=0 then reduces to

$$0\!=\!egin{array}{c|cccc} 1 & 0 & 0 \ d_{\scriptscriptstyle{11}} & d_{\scriptscriptstyle{21}} & d_{\scriptscriptstyle{31}} \ d_{\scriptscriptstyle{21}}^2\!+\!d_{\scriptscriptstyle{13}}^2 +\!d_{\scriptscriptstyle{13}}^2 & d_{\scriptscriptstyle{21}}\!(d_{\scriptscriptstyle{11}}\!+\!d_{\scriptscriptstyle{22}}\!) & d_{\scriptscriptstyle{31}}\!(d_{\scriptscriptstyle{11}}\!+\!d_{\scriptscriptstyle{33}}\!) \end{array}igg|\ =\!d_{\scriptscriptstyle{21}}\!d_{\scriptscriptstyle{31}}\!(d_{\scriptscriptstyle{33}}\!-\!d_{\scriptscriptstyle{22}}\!) \;.$$

If $d_{21}=0(d_{31}=0)$, $\delta_{i2}(\delta_{i3})$ is an eigenvector of d_{ij} . If $d_{21}d_{31}\neq 0$, $d_{33}=d_{22}$, the vector with components $(0,d_{31},-d_{21})$ is an eigenvector of d_{ij} , whence follows

THEOREM 4. The vectors ν_i , $d_{ij}\nu^j$, $d_i^k d_{km}\nu^m$ can be linearly dependent only when ν_i is perpendicular to an eigenvector of d_i^i .

Theorems 3 and 4 imply that, when $\mathscr{T}_2 \equiv 0$, we will have $F(\nu_i) > 0$ for all unit vectors ν_i if and only if $F(\nu_i) > 0$ for each unit vector ν_i which is perpendicular to an eigenvector of d_j^i . From Theorem 1, we then deduce

THEOREM 5. When $\mathscr{I}_2 \equiv 0$, a necessary and sufficient condition that there exist no real characteristic directions is that the inequalities (9) and (10) hold.

REFERENCES

- 1. M. Baker and J. L. Ericksen, *Inequalities restricting the form of the stress-deformation relations for isotropic elastic solids and Reiner-Rivlin fluids*, J. Wash. Acad. Sci. **44** (1954), 33-35.
- 2. J. L. Ericksen, Characteristic surfaces of the equations of motion for non-Newtonian fluids, ZAMP 4 (1953), 260-267.
- 3. , A consequence of inequalities proposed by Baker and Ericksen, J. Wash. Acad. Sci. **45** (1955), 268.
- 4. M. Reiner, A mathematical theory of dilatancy, Amer. J. Math. 67 (1945), 350-362.
- 5. R. S. Rivlin, The hydrodynamics of non-Newtonian fluids I., Proc. Roy. Soc. London (A) 193 (1948), 260-281.

APPLIED MATHEMATICS BRANCH, MECHANICS DIVISION, U. S. NAVAL RESEARCH LABORATORY.