AVERAGES OF FOURIER COEFFICIENTS

RICHARD R. GOLDBERG

We shall say the sequence a,(n=1,2, ---) is a p-sequence (1 < p < =)
if there is a function f e L?(0, 7) such that

anzgnf(t)cosntdt n=12 .-
0

(i.e. the a, are Fourier cosine coefficients of an L? function).
A famous theorem of Hardy [1] states that if a, is a p-sequence
1Zp< x)and b, = %(a1 +a,+ --- + a,), then b, is also a p-sequence.

In this paper we shall prove the following generalization of Hardy’s
theorem:

THEOREM 1. Let (x) be of bounded variation on 0 <2z <1, and
let 1 <p < oo. Then, if a, s @ p-sequence and

b, 1s also a p-sequence.

Hardy’s theorem is the special case Jr(x) =1 for 0 < o < 1.

If the conclusion of Theorem 1 holds for each of two functions
it clearly holds for their difference. Hence it is sufficient to prove
Theorem 1 in the case where +(x) is non-decreasing for 0 <z < 1.
Further, since any non-decreasing function may be written as the dif-
ference of two non-negative non-decreasing functions (the second of
which is constant) to prove Theorem 1 it is sufficient to prove

THEOREM 1A. Let +(x) be non-negative and mnon-decreasing on
0x=<1and let 1 £p < . Then, if a, s a p-sequence and

m )a ,
n
b, is also a p-sequence.
The proof of Theorem 1A will follow a sequence of lemmas.

LEMMA 1. Let By(x) = Szcos ytd(y — [y]). Then there is an M > 0
0
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such that
|B(x)| = M 0=st=m0=er< .

The symbol [y] denotes the greatest integer not exceeding y.

Proof. Let n be any non-negative integer. Then for ¢t > 0

S"cos ytdy = sin nt
0
and
"cosyt d[y] = St cosmt = Sn( F 12t 1
S" vl Zl 2 sin /2 2
Hence
B.(n) — sinnt  sin(n+41/2)t 1
== 2smi2 | 2
= sin nt<_1_ — _1‘ cot i) __ cosnt 4 l
t 2 2 2 2
and so
(1) 1Byl = |+ — Leot Ll 41 n=0,12 -
t 2 2

The right side of (1) is bounded for 0 < ¢t < x. Thus for some M >1
(2) |B(n)l =M —1 n=0,1,2 - 0<t=m.
Now take any # = 0 and let » = [2]. Then
B/(@) = B(n) + | cos ytd(y — [v)
so that from (2) we have for any « = 0
B@) s M—1+[1du - W) =M-1+a-nsMo<t=z

and the proof is complete since By(x): = —[¢] <1 < M.

(Henceforth we assume +(x) =0 and +(x) non-decreasing for
0sz<1)

LEMMA 2. There ts an M > 0 such that

lgn«,b<-x—>cosxtd(w—[x]) =M 0st<m,n=1,2,---
o' \m

Proof. With B,(x) as in Lemma 1 we have
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S:qf(%)cos ot d(z — [2]) = S:«p(%)de(x)
= VOB [ B@du(L).
Thus with M as in Lemma 1
(2 Jeos ot e — )| = M) + [ dp(2) = 2090
and the lemma is prove (with 2M+(1) instead of M).

LeMMA 3. Let fe L'(0, ) and let

d, = %S:f(t)dt5:1p<%>cos std(w —[a]) m=1,2, -
Then

®) d, = o(_lﬁ) " — oo

and hence d, is a p-sequence for every p = 1.

Proof. By Lemma 2 there is an M > 0 such that |d,| < %S:If(t) |dt

from which (3) follows. From (3) it follows that >\7_,|d,|* < «, for
every ¢ > 1. By the Hausdorff-Young theorem and the fact that
Lr < L if 1 < p' < p, this implies that d, is a p-sequence for every
p=1. (See [2].)

From now on we shall write f~a, as an abbreviation for

a, = Sﬂf(t)cosnt dt,n=1,2,--- .

0

LEMMA 4, Let 1< p< oo, feL?0,7) and a(x) = S”f(t)cos xt dt
0
so that
f~a,=a(n).
Let
= {"Ly(2 1 (=
0@ = [Ty (L)swat en = 2 W( L a@yda .

Then g e L*0, 7) and

g~c,.

Proof. Since |g(z)] < «;r(l)gﬂﬁ?-l-dt it follows from the proof in
[1] that ge L?. Also
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S g(x)cos nx dx = Sﬂcos na dxgﬂ%x,l(%)f(t)dt
0 0 z
1
0

= Sﬂlf (t)dtSL\I»<£>cos nx dae = Snf (t)dtg Vr(a)eos nat dt
ot 0 t 0
_ l T n‘ i . l nl" :,,]i Fe B
= njo fF)dt SO }r<n>cos xt dt = p SO J <n>gof(t)cos xtdt =c, .
The changes in order of integration are valid since

(171t 1rcos natlda = )] 17O < e .

(Note fe L'(0,7) since fe L?0,7).) Thus g ~c¢c, which is what
we wished to show.
We can now establish our principal result.

Proof of Theorem 1A. Let fe L*0,x) be such that f ~ a, and let
a(x), g(x), ¢, be as in Lemma 4. Then

o= (o= L[ e

m=1 n

so that
6o — b, = %S:«p(%)ﬂx)d(x _ ) = %S«p(%) A — [oc])g: £ (t)cos xt dt

— %S Ft)dt S:«]r(%>cos at d(w — [x]) .

The last iterated integral clearly converges absolutely, justifying the
change in order of integration. By Lemma 3 ¢, — b, is a p-sequence.
Also ¢, is a p-sequence since, by Lemma 4, ge L”(0,7) and g ~c,.
Hence b, = ¢, — (¢, — b,) is a p-sequence and the theorem is proved.

REMARK. Note that except for the result of Lemma 1 the only
properties of the cosine function used were its boundedness and the fact

that O(%) is a p-sequence for all p = 1.

LEMMA 5. Let Cyx) = stin yt d(y — [y]). Then there is an M > 0
0
such that

‘Ca(x)l§M 0st=s=m0=zar< o,

Proof, Let n be any non-negative integer. Then for ¢ > 0
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Snsinytdy ~ 1 _ cosmt

0 t t

and
"sinyt dly] = S sin kt = cos t/2 — cos (n + 1/2)t .
S(’Smy ] ’glsm 2 sin t/2

Hence

C,(n) = 17 _ cosmt _ cost/2 — cos (n + 1/2)t

¢ 2 sin t/2
e (1 —_ Cosnt)(l — l.cot_t_) _ M .

The remainder of the proof follows as in Lemma 1.
In view of Lemma 5 and the remark preceding it the exact analogue
of Theorem 1 for sine coefficients must hold. This we now state:

THEOREM 2. Fix p = 1. If, for some fe L?,
a, = Yf(t)sin ntdt n=1,2 .-,
0

and if b, =%§n)«p<—"£—)am where r(x) is of bounded wvariation on

0 < x <1 then there exists ge L* such that

b, = Sng(t)sin nidt n=12 -
0
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