
EMBEDDING OF ALGEBRAIC SYSTEMS

GERALD BERMAN AND ROBERT J. SILVERMAN

1. Introduction* The representation of semi-groups and algebras
by systems of transformations has proved useful in algebra. This paper
develops a representation theory for systems with an arbitrary number
of algebraic operations by systems of transformations. Among the systems
considered will be systems having n binary compositions + u +2> *> +m
such that (A), + 4 is associative, i = 1, 2, , n, {B), +j is left distrib-
utive with respect to +ι for 0 < i < j , j = 2, , n. Many of the well
known algebraic systems are of this type, e.g., semi-groups, groups,
rings, near-rings, and semi-rings.

It is shown that any system satisfying conditions (A) and (B) can
be embedded isomorphically into a system whose elements are transforma-
tions on a set, and whose binary compositions are either operator
multiplication or derived from operator multiplication in a simple way.
It is noted that this transformation system is completely characterized
by a set, and the theory is a natural generalization of the correspond-
ing theory for groups. Further, these transformation systems may have
the additional property that the elements of the isomorphic image are
right multiplication operators relative to operator multiplication on other
systems.

The systems considered are generalized to include systems contain-
ing operations which need not satisfy (A) or (B) or be defined everywhere.
An example of such a system is a neo-ring (defined in § 5). Embedding
theorems into transformations (in particular into right multiplications)
are proved for such systems, and, as in the previous case, the binary
compositions having properties (A) and (J5) are identified with operator
multiplication. Generalizations of modules, operator groups, and algebras
are also considered and the corresponding embedding theorems indicated.

The theory developed subsumes many of the well known embedding
theorems. For example, a ring is embedded isomorphically into a ring
of transformations (endomorphisms). This is done without first embed-
ding into a ring with identity.

In § 2 algebraic systems are defined, notation is introduced, and
some examples are presented. The transformation systems are considered
in § 3. They are used to show the existence of the systems defined in
§ 2, and some of their properties are developed. Section 4 contains the
main embedding theorem which asserts that any one of the systems
defined in § 2 is isomorphic to a subsystem of a transformation system
as defined in § 3. Applications of this embedding theorem are made in
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§ 5 to algebraic systems with two binary compositions. In § 6 the systems
which generalize operator systems are discussed.

2 Definitions and examples^ A semi-composition on a non-empty
set S is a mapping from a non-empty subset of S x S to S. A composi-
tion (binary composition) on a set S is a semi-composition whose domain
is S x S. A t-polyoid is an algebraic system @ = (S, + x , + 2 , •••, +*),
where S is a non-empty set and + t is a semi-composition on S, i = 1,2, , t.
Denote the domain of +t by Si a S x S, and denote the image of
(α, ft)6ίS( by α + ( 6 . A 0-polyoid is a non-empty set S.

A semi-composition + 2 is left distributive with respect to a semi-
composition + ! if a +2(b + ! c) is defined if and only if (α + 2 6) +x(α + 2 c)
is defined, and the two expressions are equal. A semi-composition + is
associative if, whenever a + b and b + c are defined, then (α + b) + c
is defined if and only if a + (b + c) is defined and (α + b) + c = α + (b + c).
A semi-composition + is commutative if a + 6 is defined if and only if
6 + a is defined and a + b = b + a.

A (ί, n)-polyring is a (ί + w)-polyoid @ = (S, +i, +2> •> +t+n) such
that

( i ) (S, + w ) is a semi-group, j" = 1, 2, , w, and
(ii) +j is left distributive with respect to +, ίorl^i<j, t+n^j>t.

An n-polyring is a (0, w)-polyring.
A semi-group is a 1-polyring. Rings, near-rings and semi-rings are

2-polyrings. An associative left neo-ring (§ 5) is a (1, l)-polyring, but
not a 2-polyring. Further realizations of (t, w)-polyrings will be indicated.
In fact, it will be shown that any ί-polyoid can be embedded nontrivially
into a (ί, w)-polyring for any positive integer n.

A loop is an example of a polyoid which is not a polyring. Operator
groups can also be considered as 2-polyoids if S is taken asMuG, where
M is the set of operators, and G is the set of elements of the group.
(If the group operation is denoted by +19 and if + 2 is the operation
which applies an operator to a group element, then the domain of +j
is Sx = G x G, and the domain of + 2 is M x G). Lie, Jordan, alterna-
tive, and other non-associative rings are also examples of 2-polyoids
which are not poly rings. A well known example of a 3-polyring (with
right distributive law instead of left) is the set of real-valued functions
over the real numbers, the operations being point-wise addition, point-
wise multiplication, and functional substitution. Vector spaces, and in
general, modules, can be considered as 4-polyoids.

A mapping φ from S to S' is a homomorphism from a 1-polyoid
@ = (S, +) to a 1-polyoid @' = (Sf, +'), if, whenever a + b is defined
then (aφ) +' (bφ) is defined and (α + b)φ = (aφ) +' (bφ). The mapping
Φ is an isomorphism if in addition

(i ) φ is a 1 — 1 map, and
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(ii) if (aφ) + ' (bφ) is defined, then a + b is defined. If, further,
Φ is onto, then @ is isomorphic to ©'. A mapping φ from a ί-polyoid
@ - (5;+,, + 2 , . . . , +£) to a ί-polyoid @' = (S'f + [, +;, . . . , +0 is an
(ordered) homomorphism if φ is a homomorphism from (S, +4) to
(£', +J), i = 1, 2, •••, t. Analogously φ is an isomorphism if φ is an
isomorphism from (S, +Λ) to (S', +0, i = 1, 2, , ί. A 1-polyoid (i2, + ')
is a subsystem of a 1-polyoid (S, +) if RaS and the identity map on R
is an isomorphism from (R, +') into (S, + ). An r-polyoid (S, +19 + 2, , + r )
is a subsystem of a ί-polyoid (S', +{, +J, •••, +0 if S(zS' and if there
exists a 1 — 1 correspondence between + 4 and + '., i = 1, 2, , r, such
that (S, +i) is a subsystem of (£', +;.).

3 Transformation polyrings The theorem of this section asserts
that (t, n)-polyrings exist, and in fact can be realized in terms of systems
of transformations, where a composition which is associative and left
distributive is either operator multiplication or derived from operator
multiplication by pointwise addition corresponding to operator multiplica-
tion defined on underlying sets of transformations. These particular
systems are important in that any (£, w)-polyring is contained isomorphic-
ly as a subsystem. This will be shown in § 4. In the process of con-
structing the transformation systems it is shown that any (t, w)-polyring
can be embedded properly into a larger system. However, relative to
the corresponding isomorphism the compositions cannot be identified with
operator multiplication.

Let @ = (S, +!, + 2, •••, +t) be a ί-polyoid such that S contains
more than one element. Define Σ (0, ©) = ©, and let S° = S, + = + 4 ,
i = 1, 2, , t. Further define Σ 0\ @) = (&> +1 +1 , +i, °l, °L , °b,
j = 1, 2, , where, inductively Sj is the set of transformations on S3'1,
j = 1, 2, •••, and +] is point-wise addition in S1 corresponding to +if

i = 1, 2, , ί, i.e. s(a +• 6) = (sα) +€(s6), s e S, α, 6 e S1, wherever
defined, and inductively +{ is pointwise addition in Sj corresponding to
+Γ 1 in Sj~\ i — 1, 2, , ί; j = 1, 2, The composition o£ is operator
multiplication on Sk, and o^+1 is point-wise addition in Sk+1 correspond-
ing to oji. Inductively o{ is point-wise addition in Sj corresponding to
o "̂1 in Sj~\ for i > k. The system Σ 0\ @) w i l l b e called a (ί, j)-trans-
formation poly ring, j = 1, 2,

THEOREM 1. A (ί, ^-transformation polyring is a (£, j)-polyring.
Further, Σ (i^ @) contains a subsystem isomorphic to Σ (̂ > @) / o r

k = 1, 2, •-., i.
The following lemmas from which the theorem follows are easily

verified.

LEMMA 1. Point-wise addition is a semi-composition and is a (as-
sociative, commutative) composition if and only if it is derived from
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a (associative, commutative) composition.

LEMMA 2. The semi-composition + 4 is (right) left distributive with
respect to +j if and only if the semi-composition +f is (right) left
distributive with respect to +?•

LEMMA 3. The composition operator multiplication in Sj is left
distributive with respect to any point-wise addition defined in S3.

Let μ3 be the mapping from S3 to S3+1, j = 0, 1, defined by
aμ3 = xa, where bxa = α, a, beSj.

LEMMA 4. The system (S3μ3, +ί + 1 ) is isomorphic to (S3, +{) relative
to μ3.

The system Σ (1» ®) is a (ί + l)-polyoid by Lemma 1, a (ί, l)-poly-
ring by Lemma 3, and @ is isomorphic to a subsystem of Σ OU ®) by
Lemma 4. The theorem follows by induction making use of Lemma 3
to go from Σ (j - 1, @) to Σ O\ @) The isomorphism from Σ (&» ®)
into Σ Ut @)> i > &> is μkμk+1 JM>-\ The following corollary is im-
mediate.

COROLLARY. ( i ) For any integer n, there exists an n-polyring
such that the n compositions are distinct.

(ii) Given any (t, n)-polyring @ and any positive integer m,
there exists a (t, n + m)-polyring X containing a subsystem @' which
is a (t, n)-polyring isomorphic to @.

(iii) Corresponding to any (t, n)-polyring @ with underlying set S,
there exists a (t, n)-polyring % with underlying set T having cardinality
greater than the cardinality of S such that 2 contains an isomorphic
image of @.

The isomorphism μ3 is not the main embedding discussed in this
paper. The primary use made of this mapping is to show that the
systems considered can be embedded into larger systems. Not only is
the cardinality of the underlying set larger, but additional compositions
are introduced, and the semi-compositions corresponding to those in S
are defined over a larger domain than the isomorphic image.

The domain of +{+1 (the point-wise addition in S j+1 corresponding to
+ i in S) contains pairs whose components are not in S3μ\ the image of
S, provided only that there exist two pairs of elements in S, (a,b)Φ(c,d),
such that a + t 6, c +td are defined. This implies that @ is embeddable
non-trivially into a larger system. To see this, partition S into two
non-empty subsets A and B. Define a', b'eS1: fa' = α, feA, fa' = c,
feB; fV = 6, feA, fV = d, feB. Then a' + b' is defined and is not
in the isomorphic image of S. The general result is immediate by
induction.

A few of the properties of point-wise addition, some of them well
known, are now presented.
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The following properties of @, which are carried over to the isomorphic

image, are also properties of the larger system Σ 0\ @)

( a ) The semi-composition + * is
( 1 ) a composition,
( 2 ) associative,
( 3 ) commutative.

(b ) ( 1 ) There exists an (unique) identity eh (right, left, two-sided)
relative to +t in (S, +i).

( 2 ) Every element of S has an inverse (right, left, two-sided)
relative to + 4 and e4.

( c ) The right equation a +tx = b has a (unique) solution x e S for
every a, beS (A similar statement holds for left equations).

( d ) The system (S, + 4 ) is a group (loop, semi-group, semi-loop, i.e.
+ ι is a composition).

( e ) The semi-composition +t is left (right) distributive with respect
to +j.

( f ) The system (S, +if +j) is a ring (near-ring, semi-ring, neo-ring).
( g ) The system @ is an (r, m)-polyring.
( h ) If there exists an at in S such that α4 + t 6 = c + αέ = at

whenever the sums are defined and there exist b, ceS such that the
sums are defined, and if the image of at under the embedding is
aleS3, then a +{a\ = a{ +{a — a{, whenever the sums are defined.

However, some of the properties of & are not carried over to the
whole of Σ Uf @) For example, referring to (h): There exist elements
bf ceSj, bf cΦa\ such that 6 +{c = a{. This property is a generaliza-
tion of divisors of zero. The elements aif a{ behave like an additive
zero relative to the multiplication in a ring. Thus, the system (S , + , +{),
j — 1, 2, •••, is not a division ring (integral domain, near-field, left or
right neo-field) even though (S, +*, +*) is such a system.

4. The embedding theorem. In this section it is shown that any
(ί, w)-polyring can be embedded into a transformation polyring Σ O\ @)>
where the associative and distributive compositions are associated with
operator multiplication on sets of transformations. Further the elements
of the isomorphic image can be identified with right multiplications
relative to operator multiplication on an underlying set of transforma-
tions. The method of proof is different from the usual one for rings
in that the embedding is accomplished without first adjoining an identiy
to the system.

Let @ = (S, + ! , + 2 , , +t+n) be a (ί, w)-polyring. An isomorphism
from @ into the transformation polyring Σ ( m > %>) = (^m, +Γ, + ? , •••,
+ T, °?f °7> •••, °m) is a natural isomorphism if +tH corresponds to
o7t, i = 1, 2, , n, where j\<j2< < i n < m.
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THEOREM 2. There exists a natural isomorphism from a {t, n)-
polyring to a transformation polyring Σ (m> %) for some t-polyoid %,
m > n. Further if m > n, the elements of the isomorphic image can
be taken as right translation operators relative to operator multiplica-
tion in Tm~ι.

By virtue of the corollary of Theorem 1 (§ 3) there exists a (t, n)-
polyring % = (T, + ί, + J, •••, +ί + w ) containing an isomorphic image of
@ and such that the cardinality of T is greater than the cardinality of
S. Let &j = (S, +19 + 2 , . . . , + ,+,).

LEMMA 1. Given a 1-polyoid (A, + ), a set B and α l - 1 map φ
of A into B, then there exists a semi-composition + ' on Aφ such that
(Aφ, +') is isomorphic to (A, + ) under φ.

It can easily be checked that the semi-composition + ' defined by
bx +' b2 — {aλ + a2)φ, where aλφ = blf a2φ = 62, whenever aλ + a2 is defined,
has the required property.

LEMMA 2. There exists a natural isomorphism from ©, into Σ(i> £)•
Identify @ with its image in X, and for convenience set + « = + « ,

i = 1, 2, •••, t + n. Let φx be the map from S to T1 defined by
a(sφi) = a +t+i8, aeS, aisφj = s, α e Γ , α 0 S , for s e S . Let +• be
defined as point-wise addition in T1 corresponding to +t in Γ, i =
1,2, . . . , ί . The system (Sφ^ +ί, +ϊ, •••, +ί, °1) c Σ (1, £) (where o}
is operator multiplication in Γ1) is isomorphic to @lβ The map φx is
1 — 1, for if aφ1 = δφ^ then, for c e Γ , c$S, a = c{aφ^) = φφj = 6. The
map φj is a homomorphism from (S, +t) to (Sφ^ + 0 , i = 1, 2, •••, ί,
since if α +t b is defined, then, for ceS, a((a +t b)φλ) = c+t+1(a + 4 &) =
(c + t + 1 α) + f (c +f+i δ) = φ φ O + f c{bφx) = c((αA) +1 (&Φi)), and for c 0 S,
c e Γ, c((α + 4 6)^) = a +t b - c(αφx) + 4 c(6^) - c((a&) +} (6^)). Further,
a +& is defined if and only if (aφλ) +1^^ is defined since for c e ϊ 7 ,
c $ S, c({aφ^ +} (δφj)) = α + t 6. The map φx is also a homomorphism from
(S, +t+1) to (Sφ, oj) since for c e S , c((α+ t + 16)φ 1) = c + t + 1 ( α + t + 1 6 ) =
(c + t + 1 a ) + M b = (c(aφ1))(bφ1) = c((aφd°lΦΦi))f a n d > f o r c ^ S , c e Γ ,
c((α + t + 16)φO = α + t + 1 b = αίδφO = (ciaφ^bφ,) = c((<fa)o\φφj). Thus the
lemma holds for j = 1. The proof follows by induction. Assume the
lemma for j = fc. Let φk be the isomorphism from @ft into Σ (fc, X).
Let (Sφfc, o*+1) be the image of (S, +t+*+i) as in Lemma 1. Define φk+1

from S to Γfc+1 by φk+1 = φfc6>fc+1, where, for a e Sφfc, c(α6>fc+1) = c o ξ + 1 α
for ceSφk, c(aθk+1) = α, for c e ΓΛ, cφSφk. As in the case i = 1, the
system (Sφfc, +*, +2

fc, . . . , +*, o», oj, . . . , o*+1) is isomorphic to (Sφfc+1, +f+1,.
+ ? + 1

; •••, +? + 1 , of+i, oj+s . . . , oJ+O c Σ ( H U ) under 0 ι + 1. Hence
φfc+1 is an isomorphism.

LEMMA 3. There exists a natural isomorphism from @, into
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Σ U + k, %) such that the elements of the isomorphic image are right
translations relative to operator multiplication on Tj+1c~\ k = 1, 2,

Consider the map μJ+1 from Tj to T3+1 defined by b(aμJ+1) = b oj α,
a, be Tj, (oj is operator multiplication on T3). The fact that there is
an identity relative to operator multiplication in Tj guarantees that μj+ί

is 1 — 1, 3 = 1, 2, •••. Then, as an easy extension of the corresponding
theorem in ring theory, μj+1 is an isomorphism from Σ U> &) to Σ (i + l» &)>
where the elements of the isomorphic image are right translations relative
to oj. Thus Φj/̂ j+i is an isomorphism satisfying the conditions of Lemma
3 for k = 1. By using the same construction the Lemma follows by
induction.

Theorem 2 can now be proved. By Lemma 2 there exists a natural
isomorphism from @ into Σ (n> £)> and Lemma 3 yields a natural iso-
morphism into Σ (m> %)t m > n. Lemma 3 also insures that for m > n
the elements of the isomorphic image are right translations relative to
operator multiplication on Tm~\

This embedding theorem is an example of a class of embeddings
of {t, %)-polyrings into transformations. For example, the family of
transformation polyrings Σ (2i, £), ΐ = 1, 2, « ,w fcαs ffre property
that, for each i, i = 1, 2, •••, w, ί/z r̂β exists a natural isomorphism
from &i into Σ (2ί, X) ŝ cfe ίfeαί £/&e elements of the isomorphic image
are right translations relative to operator multiplication on Tu~\

5 Applications* The results of this paper can be applied directly
to many of the standard algebraic systems. For example, the well
known embedding theorems of groups (semi-groups) and rings into trans-
formation systems follow at once from Theorem 2.

There are other polyrings in the literature to which the embedding
theorems apply. For example, near-rings [1], semi-rings [2], and as-
sociative neo-rings [3]. An associative left semi-neo-ring % is a system
(S, +, °), where S is a non-empty set, + is a composition, (S, o) is a
semi-group, and © is left distributive with respect to +. An associative
left neo-ring S3 is an associative left semi-neo-ring with the property that
(S, +) is a loop. An associative neo-ring E is an associative left neo-
ring in which th operation o is right distributive with respect to +.
A left semi-ring ® is an associative left semi-neo-ring with the property
that the operation + is associative (i.e. (S, +) is a semi-group). A semi-
ring @ is a left semi-ring with the property that o is right distributive
with respect to +. A near-ring g is a left semi-ring with the property
that (S, +) is a group.

Examples of systems SI, 35, ®, and g are given by the following
construction. Consider a system (R, +) which is a semi-loop (i.e., + is
a composition), loop, semi-group, or group. Then the system (S, +', o),
where S is the set of transformations on R, + ' is point-wise addition
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on S defined from + in R, and o is operator multiplication is S, is a
system of type 51, 33, 3), or g respectively.

The following corollary to Theorem 2 is immediate.

COROLLARY. Any system 2ί, 33, K, ®, @, or g can be embedded iso-
morphically into the transformations on a semi-loop, loop, loop, semi-
group, semi-group, group, respectively, where the second operation
(multiplication) is operator multiplication, and the other operation
(addition) is point-wise addition. Each of these systems can be embedded
isomorphically into a system of the same type with multiplicative
identity. Further the isomorphic image can be taken in the right
translations relative to operator multiplication defined on an under-
lying set of transformations. In case the right distributive law holds,
the system is embedded into the endomorphisms of the underlying ad-
ditive system.

Several of the (1, l)-polyrings above are 2-polyrings, i.e. rings
near-rings, (left-) semi-rings. For such systems stronger statements
can be made. For example, there exists a natural isomorphism from
any 2-polyring @ = (S, +, .) to Σ (2, T) for some set T. (This
statement also holds for w-polyrings.) It is interesting to note that
Σ (2, T) (Σ (n> T)) is completely determined by the set T. In case
@ contains identities for both compositions (e.g. ring with identity),
then £ can be taken to be @. The conditions that identities exist can
be replaced by the left cancellation law for each composition, or by
the condition that for a Φ beS, there exist elements c, c' eS such that
c -f a Φ c + b, cfa Φ c'b. In particular fields, division rings, or more
generally near-fields, and integral domains can be embedded into Σ(2, S),
the second transformation polyring on the underlying set S.

6* Some generalizations* It is possible to generalize the concept of
groups with operators, modules, algebras, and so forth to w-polyoids
with operator systems which are themselves r-polyoids. These generaliza-
tions of modules can be considered as (t + r + l)-polyoids. However, in
order to treat the distributive and associative properties of the semi-
compositions it is desirable to consider these systems separately.

A (u, t)-polymodule is a system (5R, @, x), where
( i ) 3ΐ = (R, o19 o2, . . . , ou) is a w-polyoid,
(ii) @ = (S, +!, + 2 , •••, + J is a <Hpolyoid, and
(iii) x is a mapping from a subset of S x R to S. Examples of

poly modules are vector spaces, or more generally groups with operators
and algebras. Any multiplicative system is an example of a (1, 0)-po-
lymodule or a (0, l)-polymodule. A module, in particular a vector space,
is a (2, l)-polymodule. Algebras are (2, 2)-polymodules.
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A (u [n], t [m])-polymodule Π = (3Ϊ, @, x) is a (u + n, t + m)-po-
lymodule such that 5R is a (u, w)-polyring, and T is a (ί, m)-polyring.
In associative algebra is a (0 [2], 0 [2])-polymodule. It can be shown
that there are nontrivial realizations of (u[n\, t[m])-polymodules for
all non-negative integers u, t, m, and n, where the elements are trans-
formations, and also that any (u, t)-polymodule can be embedded iso-
morphically into a (u[m], t[n])-polymodule for any positive integers m
and n.

Every (u, t)-polymodule can be considered as a (u + t + l)-polyoid.
Let G = (9ΐ, @, x) be a (u, £)-polymodule, where 9Ϊ, @, and x are defined
as previously. Let T = iϋllS, +t, i = 1, 2, •••,!*, and oj9 j=zlf 2, •••, t
be considered as semi-compositions on T. Similarly the binary mapping
x from a subset of R x S to S can be considered as a semi-composition
on Γ. Hence (Γ, + l f + 2 , •••, + t t , ox, o2, . . . , ot, ^) is a (w + t + 1)-
polyoid.

Another way of studying (u, ί)-polymodules (ίR, @, α?) is by identify-
ing the operators (elements of R) with transformations on the set S.
The following definitions are needed. The (u, £)-polymodules £ = (9ΐ, @, x)
and %' = (SR', @', x') are weakly isomorphic if

( i ) ςJt' is a homomorphic image of 31 under a mapping θf,
(ii) ©' is isomorphic to © under a mapping θ", and
(iii) if α e S, 6 e i? such that axb is defined, then (axb)θ"=(aθ")x(bθ').

A (tt, ί)-polymodule X = (3ΐ, @, cc) is a transformation polymodule if the
set of elements of R is contained in S1, the set of transformations on
S, and b eR, aeS such that axb = ab, the image of α under the map-
ping 6.

Every (u, t)-polymodule is weakly isomorphic to a subsysystem of
a (u, tytransformation polymodule. Let % = (sJi, @, a?) be a (w, ^-po-
lymodule.

Case 1. If r =£ r' eR there exists an s e S such that sxr and s#r'
are defined and unequal. Let Is be the identity map on S. Let φ be
the mapping from R to S1 such that α(δφ) = axb if αα δ is defined, and
a(bφ) = α otherwise, α e S , beR. Define the semi-composition +5, ΐ =
1, 2, •••, w, to be the semi-composition in RφcS1 where (aφ) +{(&£) is
defined if and only if a +t b is defined and (aφ) +[ (bφ) = (α +i b)φ. The
semi-composition is well-defined since φ is a 1 — 1 map. The system
2:' = (3ϊ', @', a?') is weakly isomorphic to %, where 9ϊ' = (J?φ, +{, +2', , +;),
and αcc'6 is the image of a under the transformation b e Tφ. For,
trivially, Is is an isomorphism from @ onto @; φ, by definitions of the
semi-compositions in 3ΐ, is a homomorphism of 9ί onto 5R', and (axb)Is =

= α(&£) = (als)x'(bφ).

Case 2. Let ϊ " = (SR", @ff, a"), where 3ΐ" = SR, @" = (SU-B, +Γ,
» •> +ί')> +*' i s the semi-composition of @ considered in the extended
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set S[jRf i = 1, 2, , t, and x" is defined as follows: for α e S , beR
such that axb is defined, let axb = α#"6, otherwise let ax"b = 6. £ " is
clearly a (w, £)-Pθlymodule containing a weakly isomorphic image of Z.
Further £ " satisfies the condition of Case 1, and the Theorem follows.

Many of the theorems of the previous sections can be generalized.
A few of these are stated informally without proof. Given a (u, t)-
polymodule X = (sJί, @, x), the conclusions of Theorems 1 and 2 follow
for 9Ϊ and @ separately. Further it is possible to a get a weak iso-
morphism from Z to £ * = (SR*, @*, a?*) where

( i ) 2:* is a transformation polymodule,
(ii) @* is contained in a transformation polyring,
(iii) there is a natural isomorphism from @ to @*, and
(iv) there is a homomorphism ('natural') from 3ΐ to 31*. The map-

ping x can be extended to these larger systems of transformations so
that there exists a larger (u, ί)-polymodule containing a weakly isomorphic
image of £. The corollary of Theorem 1 can be generalized to guarantee
the existence of (u[ri\, £[m])-polymodules £ = (9ΐ, @, x) for any non-
negative integers m, n, t, u, so that 3ΐ and @ are (w, m)- and (ί, w)-po-
lyrings of transformations, respectively.

The concept of a (u, ί)-polymodule can be further generalized. For
example

( i ) A ((ulf u2, •• ,uk), £)-polymodule is a system (3tlf 3ϊ2, •••, <tRJcf

@, x19 x2, •• ,# f c), where 3ϊ4 is a ^-polyoid, i = 1, 2, , fc, & is a
ί-polyoid, and a?4 is a mapping from a subset of SxRi to S, ΐ = l, 2, , k.

(ii) A ( f̂c( f̂c-i( (u19 t) )-polymodule is a system (3tlf 9ϊ2, ,
3ϊfc, @, a?!, a?2, •• ,^ f c ), where 3l4 and @ are defined as in (i), and xt is a
mapping from a subset of {Rι-λ x i2ί-2 x x Ri x S) x Rt to (i?^! x
Rt-2 x x Rx x S). Many other types of similar systems can also be
built up from ί-polyoids. In fact consider any ordered collecton of
symbols representing ί-polyoids. Then various bracketings and punctua-
tions by commas of these symbols indicate other algebraic systems which
may be defined (and which exist). Any such system can be considered a
u-polyoid for a proper u. Generalizations of the previous theorems can
be obtained.
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