ASYMPTOTIC PROPERTIES OF DERIVATIVES
OF STATIONARY MEASURES

Suau-TeExH C. Moy

1. Introduction. Let X be a non-empty set and .&” be a g-algebra
of subsets of X. Consider the infinite product space 2 = [] ;-_..X,, where
X,=X for n =0, +1, =2, ... and the infinite product o-algebra & =
o_...5 where & =& for n =0, +1, + 2, -.-. Elements of 2 are
bilateral infinite sequences {--.,2_;, ®p, %, ++-} with 2,e X. Let us
denote the elements of 2 by w. If w= {---,2_, %, %, ---} 2, is called
the nth coordinate of w and shall be considered as a function on £ to
X. Let T be the shift transformation on 2 to Q: the wnth coordinate
of Tw is equal to the » + 1th coordinate of w. For any function g on
Q, Tg is the function defined by Tg(w) = g(Tw) so that Tx, = x,,, for
any integer n. We shall consider two probability measures p, v defined
on % Forn=1,2.-+-1let 2, =11~ X, where X, =X,1=1,2--+, 10
and & , = [[%,.&; where &, = %1=1,2,.+.-,n. Then 2, = X and
F,=.9 Let I ,m=nn=0,=+1, +2, ..., be the o-algebra of
subsets of 9 consisting of sets of the form

[w = {"" Xoqy Loy Xy "'}: (xm’ L1y ** % {X}n)GE]

Where Ee % 1. Then #,,C Fpni C© A Let Uy, Ymn be the con-
tractions of p, v, respectively to &, ,. If v, . is absolutely continuous
with respect to f,,,, the derivative of v, , with respect to g, , is a func-
tion of ,, +-+,®, and shall be designated by f, .(®n, *--, %,). Since
Smn(@my ++,2,) 1s positive with v-probability one 1/f,,.(Tm, *++ ©,) is
well defined with v-probability one. We shall let the function
1/fmn@m, +++, ,) take on the value 0 when f,, (%, -+, 2,) <0. Thus
1/fm n(@my ==+, %,) is well defined everywhere. In fact 1/f,, (%, ***, Zn)
is the derivative of v, ,-continuous part of p,, with respect to v, ,.
According to the celebrated theorem of E. S. Anderson and B. Jessen
[1] and J. L. Doob ([2]), pp. 343) 1/f. .(2,, +--, x,) converges with v-
probability one as n— oo. If we assume that p, v are stationary, i.e.,
u, v are T invariant, more precise results may be expected. A funda-
mental theorem of Information Theory, first proved by C. Shannon for
stationary Markovian measures [5] and later generalized to any stationa-
ry measure by B. McMillan [4], may be considered as a theorem of this
sort. In their theorem X is assumed to be a finite set. In this paper
we shall first treat Markovian stationary measures g, v with X being
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1372 SHU-TEH C. MOY

any set, finite or infinite, and & any o-algebra of subsets of X. It
will be proved that n'logf, .(Xm, *--, %,) converges as n — oo With
y-probability one and also in L,(v) under some integrability conditions.
The case that v is only stationary is also treated. Similar convergence
theorem is proved under the assumption that X is countable.

2. Asymptotic properties of derivatives of a Mazrkovian measure with
stationary transition probabilities with respect to another such measure.
Let X, 572, Z 20y F ny Fmny tnns Yoo S oy =+, ) be as in §1.
Xy =0, &1, 2, ---, are considered as functions or random variables
on 2 to X. Notations for conditional prababilities and conditional ex-
pectations relative to one or several random variables will be as in [2],
chapter 1, §7. Since we have two probability measures we shall use
subscripts #¢, v to indicate conditional probabilities and conditional ex-
pectations taken under measures p, v respectively. In this section g, v
are assumed to be Markovian i.e., for any Ae &m < mn,n =0 =*1,
42 .en,

(1) Pla,eAl|x,, «-+, %yy] = PJx, € Al x,,] with p-probability one and

(2) PJx,cAlx,, +++, ] = PJx, e A|x, ] with v-probability one. For
any set £ C Q let I, be the real valued function on 2 defined by

I(w)=1if weFE
=0if we¢FE.

LemmA 1. If vy, , ts absolutely continuous with respect to f,_;,
then for any Ae &

(3) Pz, e Al 1] fo1ns(Cny)
= EJJI e n1n(Tns €4) | 2,-;] With p-probability one.

Proof. For any A, Be .&¥
v[x,€ A, x,_,€ B]

- S Pz, e A|x, ]dv
[z, _1€8]

- S Pt € A| 2] fact wor@ar)tt -
[zy-1€B]

On the other hand

v[z,e A, x, € B]

S[”n—ﬁ 81 IxneAfn—l n(xn—;u xn) | wn_l)dﬂ
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| BIL e, @) |2

o (7, 1€B]
Hence for any Be &¥
| . Plosedla, (o, )dp
[z, _1€B]

= S E/J«[IanAfn—l n(xn—-ly xn) ] xn-—l]d# ’
[z, _1€B]

therefore (3) is true with p-probability one. Dividing both sides of (3)
by fu-1na(%,—.) we then have

( 4 ) P‘,[xn cA l xn—].] — E/»L[Ixnez;‘fn—l n(a(i:;_l, )xn) I x,,-l] .

With p-probability one on the set [ f,_1 »n_1(2%,—1) > 0]. Since [ f,_1 na(®p—) >
0] =1, (4) is true with v-probability one.

THEOREM 1. If v, ., is absolutely continuous with respect to tt,_; ,
for n=0, £1, £2, -+ then v, , is absolutely continuous with respect
to Uy, for n=0,+1, &2 --- and m < n with

X, @,
( 5 ) fm n(xm’ see, xn) :fm m+1(xm’ xm+1)fm+1 m+2( m+1s m+2)
fm+1 m+1 (xm—H)

cee fn—l n(mn-—ly xn)

fn-1 n—l(xn—l)

with p-probability one.

Proof. We shall prove the theorem for the case that m =1, n =
2,8, +-+. The proof for the general case that m is any integer is
similar. Since v,, is absolutely continuous with respect to ., by hypo-
thesis, (5) is trivially true for m =1, n = 2. Suppose v, ,(k = 2) is ab-
solutely continuous with respect to p, and f,.(x, -+, ;) is given by
(5) with p-probability one. For any Ae . Be 7 ,

”[xk+leA’ (xu cty xk)eB]

]Py[xk—neA[xu oo, wyldy .

Since v is Markovian and by (4)
”[xlﬁl € A’ (wly ey wk) € B]

Pl e Alw,]dv

SE(zln--,xk)eBJ
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_ S EM[Irk+IEAfk 5+1(Zry Tpia) | ) dy
[(zg.e0,25) € B] fk Ic(xk)

_ S EM[ka+1eAfk w1(Tes Tir) | ] Fral@yy + oo, z)dpe .
[(zg,e++,25) €B] fk k(mk)

Since p is Markovian

E’;L[Izk+leAfk k(T Tia) | L]
= ;L[IzHleAfk k1(Tiy Tpia) [ X1, o005 T

with p-probability one. Hence
v[xk+1 € A’ (xly ccty xk) € B]

S( ‘e Eu[kaHeA—fk—k}L(x(k—;:gc)k-ﬂlf1k(xu ct xk)lwl’ R xk]dﬂ
Ty TR €8 x x\Lk

S 60Ty Toa
Ixn+1€Af1 (@1 v vy xk)—%—)dﬂ .

I

S(zl,---,wk)eB

Hence

V[xkﬂ € A’ (961, ttty xk) € B]

f”‘(xl’ ) xk)&‘il(x"—’x"ﬁd#

S[zkﬂeA,(xl,u-,zk)eal S 1(®e)

for any Ae & Be & ,. Hence for any Ee 9,

R I

Therefore v, ., is absolutely continuous with respect to g ., and

(6) f1k+1(x1,-..1xk+1):f1k(x1,...,xk)j%

with p-probability one. (6) together with the supposition that (5) holds
true for m = 1, n = k implies that (5) holds true form =1, n =k + 1.
Thus the theorem for the case that m = 1 is proved.

Any Markovian probability measure on & is said to have stationary
transition probabilities if E being a set of probability one implies that
TE, T—E are also of probability one and for any Ae.&” and any n

Plx,,, e Alx,] = TPz, e A|x,]

with probability one. Thus for a Markovian probability measure with
stationary transition probabilities we have for any pair of integers m,
n and any Ae &’
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(7) Plz,eAl|x,,] = T"™P[x,, € A|x,_,] with probability one and
(8) Elg(w,—, 2,) | %0es] = T ™E[g(®y_, %) | X—s] Wtih probability one
for any real valued . ;-measurable function g on 2,.

THEOREM 2. Let both p, v have stationary transition probabilities.
If v, » s absolutely continuous with respect to tt,, for n =0, £1, 42, ««.
and y,, is absolutely continuous with respect to p,, then v,, , is absolutely
continuous with respect to (t,, for m <m,n =0, +1, +2 -+« and

_ F1o®my Tmrr) ..
( 9 ) fm n(xmr 1 xn) fm m(xm) fl l(xm)

v J1o(®ns, @)

Si1(n)

with p-probability one.

Proof. By Lemma 1, for any Ae.&¥

(10) Pv[xz cA l xl] — EM[IxzeAfl 2(901’ 902) ] xl]
Jia(,)
with y-probability one. For any A4, Be.&¥

Ve, € A, x,_, € B]
= S Pz, e Az, |dv
[z, _1€B]

— S Tn=P[x, e A |z,]dy
[2p—1EB]

_ S[x RV SERVIEN VARSNCENT 78

Hence by (10) and (8)
vz, € A, x,, € B]

= n—2 E“‘[nge 1J1a(2y, ) | 2]
- S[xn_leB] ! { fl 1(371) fn_l n_l(xnﬂ)d#

— S EM[IanAfl 2(xn—19 xn) l mn—l]
[2y_1€B] Ji(,-,)

fn—l nvl(xn—l)d#

fl Z(xn—l» xn) d
IanAfn—l n—l(xn—l) f1 1(11'7;—1) #

g[xn_leB]

fl 2(xn—1y xn) d
S[wne""%—ﬁlﬂ fn-l ngl(xn_l) fl 1(xn—1) e

Thus for any Fe 9,,,
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(1) UB) = | frina ) LB B gy

Hence for any integer =, v,_,, is absolutely continuous with respect to
Un—rn @nd Theorem 1 is applicable. (11) also implies that

_ J1s(@nsy Zn)
(12) N (e ) = Fnt na(Fus) J1:1(%ns)

with p-probability one. Hence

Jno12(@n1y Ba) _ S1o(Bps, %)

fn——l n—l(xn—l) fl l(xn—l)

with p-probability one on the set [f,—in-(®n—) > 0]. However, except
that w belongs to a set of g-probability 0,7 > 1, 1 a(Xai(w)) =0
imply that f,,_.(z(w), -+, ,,(w)) = 0, hence

(13)

Foni@yy ooy my ) T @an T ooy Fii B Ta)

N (. | J11(®n—y)
with g-probability one. Thus by (6)

xn—1) fl z(xn—l; xn)

S11(%n—1)
with p-probability one. Combining (12) (13) and by induction, if n > 1

(14) fln(xlr ey x,,) :fln—l(xu tt

. - Sio®, ) . i@, )
fl ”(x“ , xn) fl 1(w1) f1 1(9’/'1) fl l(xn—l)

with p-probability one. Thus we have proved the theorem for the case
that m = 1. For the general case the proof is similar.

THEOREM 3. If p has stationary transition probabilities and v is
stationary and if

SIIngm mt1(@my Tmiy) | dy < oo then
Sllogfmn(xm’ "'9xn)]dv < oo fO’r n=m,m -+ 1,m+2, e

and w7 10g frn w(Cm, =+, &,) converges as n — oo with v-probability one
and also in L,(v) to a function g with \gdy = a where

a = S [log fi i, 2,) — log f; (2)]dy = 0

In particular, if v is ergodic, g = a with v-probability one.
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Proof. We shall first prove the theorem for the case that m = 1.
Since for any Ae.&”

w e 4] = S[: eaf“(xl)d“ - S[

1 1

fl 2(x17 xz)dll’l ’
€4]
hence

E#[f1 2(“'1: %) , xl] = /i I(xl) .

Since S | log fi 4(2,, 2,) |dy < oo hence

Slflz(xli x,) log f1 (2., wz)ld;u = S [log f; o(:, ) [dy < oo .

The real valued function L(§) = £log £ defined for all real &£ = 0[L(0) is
taken to be 0] is convex. By Jensen’s inequality for conditional ex-
pectations ([2], pp. 33)

’(15) EM[L{.ﬂ 2(x1x2)} l wl] = L{fl l(xl)} .

By (15) and the fact that L(£) is a function bounded below by a con-
stant, we have

|1 Ltz g = [ 110g @) |4 < e

and

S log f, (2, @,)d, — g log fi.(x)d, =a =0 .

Now by Theorem 2

log f,o(a, -+, 2,) = log fis(®) + 31108 f1@-s, ) — log fi(wic)} -

Since v is stationary, log f,.(x, +++, z,) is v-integrable. Applying the
ergodic theorem n~1log f;.(x, -+, %,) converges with v-probability one
and also in L,(v) to a function g with

ggdv = S[logfl o2y, ) — log fi.(x)]dv =a = 0.
For m being any integer, we only need to mentioned that by (13),

10g fin ms1(®my Tms1) — 108 frn (@) = log f14(w,, @) — log f,.(2,)

with v-probability one and therefore the same conclusion follows with
a similar proof.
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COROLLARY 1. Suppose p, v satisfy the hypothesis of Theorem 3
Jfor m =1. If v is ergodic and if there is an A€ &7 such that

(16) VP, e A|x,] # PJfw.e Al > 0

then v 1s singular with respect to .

Proof. First we shall show that follows from (16)

a7 L) # i, 2,)] > 0.

For, if f,.(x,) = fi.(21, 2,) with p-probability one then by Lemma 1
Plx,e A|x]fi(2,) = PJfw,e A|x,]f,.(x,) with g-probability one. Thus
PJx,e Alx] = P,Jx, e A|x] with v-probability one for every A e .5 Now

the function L(§) = £log & is strictly convex, hence it follows from (17)
that

a = | IL{f, o, 20} = L{f @)1, > 0 .

Applying Theorem 3 f, (%, **+, 2,)— o with v-probability one as n—co.
Hence 1/f.(%,, +-+, z,) — 0 with v-probability one as n— o. Let
' be the o-algebra generated by U;., % . and ¢/, v be the contrac-
tions of p, v to & ' respectively. Since 1/f;.(2,, ++-, x,) is the deriva-
tive of v, ,-continuous part of p,, with respect to v, ,, 1/fi (2, «««, 2,)
converges with v-probability one as n — o to the derivative of u’-con-
tinuous part of g’ with respect to v’ ([2], pp. 343). Now 1/f; n(2;, + =+, 2,)
converges to 0 with v-probability one, hence the v’-continuous part of
1 is 0 and £/, v’ are mutually singular. Hence g, v are mutually singular.

3. Extension to k-Markovian measures. The results of the pre-
ceding section can be extended to k-Markovian measures immediately.
We shall state the theorems only since the proofs in the preceding sec-
tion with obvious modifications apply as well.

THEOREM 4. Let p,v be any two k-Markovian measures on . If
Yoon n 48 absolutely continuous with respect to fly,—z, » for n =0, £1, £2,
«e., then v, , 1s absolutely continuous with respect to p,, for n =20,
+1, £2, -+« and m < n with

(18) Fua@ms *+*s B2) = Frrmss@my =+ Gpysy) Lritmteeminy =25 i)
fm+1,m+k(xm+17 c xm+k)

fn-—k n(xn—lm ) xn)
fn~k n—l(xn—lm ) xn—l)

with p-probability one.
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THEOREM 5. Let u,v be two k-Markovian measures on &# with
stationary transition probabilities. If v, ... 18 absolutely continuous
with respect to Uy _yi1n Jor m =0, £1, £2, -«« and v, .., is absolutely
continuous with respect to .., then v, , ts absolutely continuous with
respect to p,, for n =0, +1, +2, .-« . m < n and

X cee,
(19) fm n(xm! ) xn) = fm m+k—-1(xmv M) xm+k—1) fl k+1( il . m+k+l)
fl,k(xmﬂv ] xm-!—k)

fl k+1(9cn—m M) xn)

fl k(xn—k; °t %y n—l)

with p-probability one.

THEOREM 6. Let p, v be two k-Markovian measures such that v is
stationary and p has stationary transition probabilities. If

S IIngmm+k(xm, tt xm+lc) l dy <

then Sllogfmn(xm, e, ) ldv < oo for n=m,m+1,m+2 - and
N110g [ (T, *+ ¢, T,) CONVErges as m — oo with v-probability one to a
function g with \ gdv = a = 0 where

a = Sllnglkﬂ(xl, 0ty xk+1) - Ingllc(xly ] xk)ld” = 0.

In particular, if v is ergodic, g = a with v-probability one.

COROLLARY 2. Suppose p, v satisfy the hypothesis of Theorem 6
for m =1. If v is ergodic and if there is a set Ae . &” such that

(20) 1"{[Pv[xk+1e A l Lyy o0y xk] + PIJ-[xlc+1 GA] ] Lyy v 0y xk]} >0

Then v is singular with respect to p.
'

4. A generalization of McMillan’s theorem. In the setting of this
paper, McMillan’s Theorem may be stated as the following. Let X be
a finite set of K points and & be the c-algebra of all subsets of X.
Let v be any stationary probability measure on & and g be the
measure on . such that Y[ X, = ay, Xy =0y, ¢+, X, = @, ]|= K~
for any intergers m,n and @, @, +++ @,, in X. ¢ may be described as
the equally distributed independent measure on % Then n" f, (%, +,%,)
converges as n— oo in L,(v). In particular, if v is ergodic, the limit
function is equal to log K — H with v-probability one where H is the
entropy of v measure [4]. We shall generalize this theorem to the
case that X is countable and g is Markovian with stationary transition
probabilities.
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THEOREM 7. Let the totality of elements of X be a,, a,, +-- and v
be a stationary probability measure on F such that S —log v,(x)dy < o

where v, is the function defined on X by v(a;) = v[x, = a;]. Let p be
a Markovian measure on # with stationary transition probabilities.
Let p(a;, a;) be the value of PJx, = a,|x,] when x, = a;. Let v,, be
absolutely continuous with respect to t,, for n =1,2, --.. If

g —log p(x,, 2)dy < o

and {logfu(w)|dv < = then {Ilogfin(o, -+ 0| < o for =

1,2, --- and n7'log fi (2, - -+, ®,) converges as n — oo in L,(v). In par-
ticular, if v is ergodic, the limit is equal to a constant with v-prob-
ability one.

Proof. Let

”n(a'ily iy = * 2, ain) =z, = Qypy Lo = Qyyy * 00y Ty = a’in]

and
f’en(ai’aiy -.o,ai):ﬂ[x1:aiyx2=ai, oo, B, = ay ] )
1 2 n ) 2 ]
Then
j.l ST xn) = M
#n(wb oo, )
with p-probal s and

”n(xly cety By1y (1/,;)
un—l(xly ft 0y xn—l)

S | Xy o, By =

with v-probability one and

s P/L[xn =a, ] wn—-l] = Aan(xl’ ey Tnoyy (17;)
#n(xly M) xn—l)

with p-probability one. Hence

Sra(®y oo+, @) :i Pv[wn=ai|xn—1;"'»x1]]' .
z, =
fl n—l(wly M) xn—l) i=1 Pp.[xn = Qy l xn—l] mo

with y-probability one and
@1) logLrni®u 2 B) S 00 P, = a, |2, -, 2]
fl n—l(wly ct xn—l) i=1

—IOg p(xn—b xn)
=T"yg,

n= %
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with v-probability one where

(22) g, = ;{ IOg Pv[xo = Q; l Ly * =y x—(n—l)]Ixo =a;
—log p(x_y, @,) .

We know that PJx,=a,|x_, ++-, ®_,_y,] converges with v-probability
one as n— o to Plx,=a,|x_, 2, -] by Doob’s Martingale Con-
vergence Theorem. Hence L{P,[x, =a;|® 4, ++-, 2_,_,,]} converges with
y-probability one to L{P[x,=a;|x_;, x_,, ---]}. But L(&) is a bounded
function for 0 <& <1, hence L{PJx,=a;|® , 2, ,} are uniformly
bounded with v-probability one. Hence L{P,[z, = @;|®_;, +++, ®_,_y ]} also
converges in L,(v) to L{PJ[x, =a;|%_, 2, -]} as #— . Now by
Jenson’s inequality S CL{PJws = ;| B, ey %y MY < — AP, = a,]}
Since

S~ L{PJw, = ay = | — logn(e)dy < o

g; - L{Pv[xo = a; ’ gy oo, x—(n—l)]}

converges in L,(v), as m — o, to

M3

- L{Pv[xo = Q; ' Loqy * o, x—\{ 1)]}

.
i
-

uniformly in n. Hence
Z - L{Pv[xo = Q| Xegy 200y oy
i=1

converges in L,(v) to

2 — L{PJx, = a;|®_,, %, -++]} a8 n— . Now

ey

- 12{ log Pv[xo = O I Togy ***y x—(n-—l)]Izo=aid”

S — S L{PJty = ay| @y, +++, @ uy]}dy and

ey

— Slog Pifay = |y, wos, Wyl
=1
= | = S LPlm = a| oy, 5y -y, hence
@3) lim | — 3% log oo = @[y -+, @-quoy oyl

= S — i log P2y = a; | @y, @y, =+ + ] L;=0, @Y .
i=1
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(23) together with the facts that the sequence
{= Silog Plog = aulw-s, ++ 0, 0ol Lapea}
is also convergent with v-probability one and that the functions

> log P, = 2| %y, =+, T_(npy| L=,

are non negative with v-probability one imply that

M

Pv[xo = Q4 | Logy o0y w—(n—l)]Iaco=ui

i=1

converges as n — o in L,(v) to
;;{ Pv[xo = a, [ L1y Logy ']Iz0=az .

Thus we have {g,} to be an L,(v) convergent sequence. Let the limit
of the sequence be h. Let % be the L,(v) limit of 1/n(k + Th + -+ + T"h)
as n— . Now by (21)

log f14(@s, -+ -, x,) = log f1.(x;) + izngig" Thus
”i—logfm(xl,--~,xn)—ﬁ‘dv
Lot [ (G- 1)
L
= L {|rog fston|av+ L & 19— n1av
Xl%}i} ih—ﬁldv——»o as m— oo .

COROLLARY 3. Under the hypothesis of Theorem T, if v is ergodic
and not Markovian then v is singular to .

Proof. If v is ergodic then the L,(v) limit, h, of {1/nlog fi (%, *+ -,
x,)} is equal with v probability one to

S g L{P,Jxy = a;|®_y, _y, ++ - J}dy — S log p(x_,, x)dy

which is greater or equal to
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S S L{PJw, = | 2oy, w_l}dy — j log D@, 2)dv .
i=1

Hence by (21)
k= S S log Pyfw, = a, | x_,, C_yl Lm0, dy — S log p(x_,, x,)dv
i=1

= Slogfla(xl, Ty, To)dy — Slogfl (2, 2,)dy .

However Slog f1 (2, 2o, )Y — Slog Ji 2, 2)dy = 0 if and only if

(24) )u[f1 (2, @) # fi 3(%'1, Lay xa)] =0.
(24) implies that
Plx,e Alx, x,) = Pla,e A, )

with v-probability one for any Ae .S This is impossible since g is
Markovian and v is not. Hence % > 0 with v-probability one. Hence
Sin(®y o0, @,) — o with v probability one and v is singular to ¢ by the
same argument used in the proof in Corollary 1.

The extensions of Theorem 7 and Corollary 3 to k-Markovian p is
obvious.
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