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1Φ Introduction* Let X be a non-empty set and S^ be a σ-algebra
of subsets of X. Consider the infinite product space Ω = Hn=-ooXn where
Xn = X for n — 0, ± 1 , ± 2 , and the infinite product σ-algebra j ^ —
Hn=-~^ζ where άζ = ^ for w = 0, ± 1, ± 2, . Elements of β are
bilateral infinite sequences {• , #_i, #0> #i> •} with #w e X. Let us
denote the elements of Ω by w. If w = {• , x_i, xo> %i, •••}<&» is called
the wth coordinate of w and shall be considered as a function on Ω to
X Let T be the shift transformation on Ω to β: the nth. coordinate
of Tw is equal to the n + l th coordinate of w. For any function g on
Ω, Tg is the function defined by Tg(w) = g(Tw) so that ^Txn = xn+1 for
any integer n. We shall consider two probability measures μ, v defined
on J C For w = 1, 2, let βw = Π ?=i-X* where X, - X, ΐ = 1, 2 , n
and ^ n = Π l i Λ where ^ έ = .5f i = 1, 2, , n. Then Ω± = X and
j?"1=zS^ Let J^™n, m ^ w, w = 0, ± 1 , ± 2 , , be the σ-algebra of
subsets of Ω consisting of sets of the form

[w = {••-, «;_!, xq, xλ •••}: (xm, xm+1, •••, xn)eE]

Where £ e / " M + , Then ^ n a ^Qn+1c: <βC Let μm w, 2^mw be the con-
tractions of μ,v, respectively to J ^ n . If vm n is absolutely continuous
with respect to μm n, the derivative of vm n with respect to μm n is a func-
tion of xm, ' ,xn and shall be designated b y / w n ( # w , •••, #n). Since
/m n(ffm, > a«) is positive with j -probability one l//mn(a;Λ, a!n) is
well defined with ^-probability one. We shall let the function
Vim!®™,, •••,&») take on the value 0 when fmn(xm, , xn) ^ 0. Thus
Vfmnfrmf - -', %n) ™ well defined everywhere. In fact llfmn(xm, ••-,»„)
is the derivative of vw ^-continuous part of μmn with respect to vmn.
According to the celebrated theorem of E. S. Anderson and B. Jessen
[1] and J. L. Doob ([2]), pp. 343) llfmn(xm, •••,#„) converges with im-
probability one as n—> oo. If we assume that μ, v are stationary, i.e.,
μ, v are T invariant, more precise results may be expected. A funda-
mental theorem of Information Theory, first proved by C. Shannon for
stationary Markovian measures [5] and later generalized to any stationa-
ry measure by B. McMillan [4], may be considered as a theorem of this
sort. In their theorem X is assumed to be a finite set. In this paper
we shall first treat Markovian stationary measures μ, v with X being
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1372 SHU-TEH C. MOY

any set, finite or infinite, and <5f any σ-algebra of subsets of X. It
will be proved that rr1logfmn(xm, •••,#„) converges as n —• oo with
^-probability one and also in Lx(v) under some integrability conditions.
The case that v is only stationary is also treated. Similar convergence
theorem is proved under the assumption that X is countable.

2. Asymptotic properties of derivatives of a Marikovian measure with
stationary transition probabilities with respect to another such measure*

L e t X, <9?Ω, J^Ωn, J?~n, j r n 9 μmnf Vmnfmn(χmy ...,χn) b e a s i n § 1 .

xnf n = 0, ± 1 , ± 2 , •••, are considered as functions or random variables
on Ω to X. Notations for conditional prababilities and conditional ex-
pectations relative to one or several random variables will be as in [2],
chapter 1, §7. Since we have two probability measures we shall use
subscripts μ, v to indicate conditional probabilities and conditional ex-
pectations taken under measures μ, v respectively. In this section μ, v
are assumed to be Markovian i.e., for any Ae S/fm < n, n = 0 ± 1 ,
± 2 , •••,

( 1 ) Pμ[xn e A I xm9 , a?n_J = Pμ[xn e A \ xn_^\ with /^-probability one and

(2 ) Pv[xn e A I xm, , xn-τ] = Pv[xn e A \ a?n_J with ^-probability one. For
any set E c Ω let IE be the real valued function on Ω defined by

IE(w) = 1 if w e E

= 0 if wφE .

LEMMA 1. // vn^ln is absolutely continuous with respect to μn-ln

then for any i e y

( 3 ) Pv[Xn β A I Xn-^fn-λ n-i&n-d

= ^μ[4Λei)/n-in(*n-i, »n) I V i ] with //-probability one.

Proof. For any i ,

v[xn e A, xn^ e B]

= I Py[xn e AI Xn-J

= I P,[xn e AI v J

On the other hand

v[xn e A, xn^ e B]

= \ IχneAfn-i tfan-if »«) I Xn-i
Jlxn-l€B]
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Hence for any

= 1 E^I eAfn-i n(xn-i, O I ̂ - i
J[»w_iej5]

therefore (3) is true with //-probability one. Dividing both sides of (3)

by fn-i n-ifan-i) we then have

/Λ\ P Γ / v ^ / l l / v . 1 — Eμ.[IXneAfn-i n(Xn-i> xn)

J W - l W—lV ^W — 1 /

With //-probability one on the set [fn-! n-i(%n-i) > 0]. Since y[/»-i n-i(ίcn_i) >
0] = 1, (4) is true with v-probability one.

THEOREM 1. If vn-ln is absolutely continuous with respect to μn^ n

for n = 0, + 1 , ±2, then vmn is absolutely continuous with respect
to Pmn f°r w = 0, ± 1 , ±2, and m ^ n with

( K \ f (<r . . Ύ \ -f (v v V r

\ u ) J m nx^mi f ^n) — J m m+lK^m) ^m+l) ~~ Jm+l m+l (^m+l)

•F (Ύ v \

% , m J n-l nK^n-lf *"n.)

J n-l n—iK^n—i/

with μ-probability one.

Proof. We shall prove the theorem for the case that m = 1, n —
2, 3, . The proof for the general case that m is any integer is
similar. Since vλ 2 is absolutely continuous with respect to μλ 2 by hypo-
thesis, (5) is trivially true for m = 1, n = 2. Suppose vlk(k^ 2) is ab-
solutely continuous with respect to μ1 k and fλ k(xlf , xk) is given by
(5) with //-probability one. For any Ae SζBe ^ k

v[xk+1 e A, (x19 , xk) e B]

= \ PV[%JC+I € A I a?i, , xk]dv .
JCίaJi. .Xfcjejs]

Since v is Markovian and by (4)

v[xk+1 e A, (xlf , χk) e B]

=
JC(x1.....x
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)uχv....χk)eBi fkki%k)

Since μ is Markovian

jc+x^ΛJk k+ix^ki %k

k* Xjc+l) I *̂ 1> * * * 9 %k

with /^-probability one. Hence

v[xk+1 e A, (a?!, , xk) e B]

= \ E\l Aj^iψlf11c(Xu ...,χk)\χu..., xk]dμ
J(χv....χti)eB I k+1 fkk(xk) J

— \ T f (r r \ *k fc+^^fc* xk+i) /I*.
J ( x 1 , . . . , % ) e 5

 n+1 fkki%k)

Hence

v[^fc+1 e A, (xlf , xk) 6 J5]

for any i e ^ f ΰ e ^ f c . Hence for any

Therefore vlfc+1 is absolutely continuous with respect to μlk+1 and

V Ό j J1 fc+iV^i, , Jyjc+i) — / l fcV^l> * > xk) —-. r
Jk k\Xk)

with /^-probability one. (6) together with the supposition that (5) holds
true for m = 1, n — k implies that (5) holds true for m = 1, w = fc + 1.
Thus the theorem for the case that m = 1 is proved.

Any Markovian probability measure on J?~ is said to have stationary
transition probabilities if E being a set of probability one implies that
TE, T~XE are also of probability one and for any i e y and any n

P[xn+1 eA\xn] = TP[xne A\ a?n_J

with probability one. Thus for a Markovian probability measure with
stationary transition probabilities we have for any pair of integers m,
n and any A e y
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(7 ) P[xn e A I xn_λ] = Tn~mP[xm e A | xm_^ with probability one and

(8 ) E[g(xn_lf xn) I xn^] = Tn-mE[g(xm_lt xm) \ xm^] wtih probability one
for any real valued ^Vmeasurable function g on Ω2.

THEOREM 2. Let both μ, v have stationary transition probabilities.
If vn n is absolutely continuous with respect to μn n for n — 0, ± 1 , ± 2 ,
and v12 is absolutely continuous with respect to μ12 then vmn is absolutely
continuous with respect to μm n for m g n, n = 0, ± 1 , ± 2 , and

( Q\ f (r v \ — f W 1

J\

with μ-probability one.

Proof. By Lemma 1, for any

(10) Pv[x2e,

with ^-probability one. For any A, Be .

v[xn e A, a?Λ^ e 5]

= Pv[a?n e A I

e A I x±]dv

2 e A ] ajJlΛ

Hence by (10) and (8)

v[xn e A, xn^ e 5]

- f T»-« J
— \ -̂  1

^w-l> ^w) I Xn-l]
Jn-l n-

- i€B] w /π(Vi)

— \ Jn-l n-A^n-l)

Thus for any £7 e ^Γ_! „
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(11)

Hence for any integer n, vn-x n is absolutely continuous with respect to
μn-ln and Theorem 1 is applicable. (11) also implies that

with //-probability one. Hence

J n—\ n\Xn—l? %n) __ J\ 2v^n—l? «̂ w)/IQ\

Jn-i n-i\%n-i) Ji i\%n-i

with //-probability one on the set [fn-i n-i(&n-i) > 0]. However, except
that w belongs to a set of //-probability 0, n > 1,/n-in-i0&n-i(w)) = 0
imply that /2 n-i(«i(w), , xn^{w)) = 0, hence

/* (φ /y
Jn-l n-i\ftn-l) /l

with /^-probability one. Thus by (6)

(r . . . r \ — f (r . . r λ /i 2\xn-i> %n)

}\ lV ^w-l/

with //-probability one. Combining (12) (13) and by induction, if n > 1

-P (rψ . . . /y \ -F (rψ\ / 1 2V̂ 1> ^2) . . . / 1 2(^^-1? ^w)
J\ n\άi, j Λn) — J1 !{&!) — — — — —

/life) /llfe-l)
with //-probability one. Thus we have proved the theorem for the case
that m = 1. For the general case the proof is similar.

THEOREM 3. If μ has stationary transition probabilities and v is
stationary and if

j I Iogfmm+1(xm, xn+1) I dv < oo then

J I log/w n(xm, , xn) I dv < oo for n = m, m + 1, m + 2,

and n~λ \ogfmn{xm, '"fxn) converges as n-^ oo with v-probability one

and also in Lx(v) to a function g with \ g dv = a where

a = J [log/12fe, x2) - logf^ix^dv ^ 0

In particular, if v is ergodic, g = a with v-probability one.
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Proof. We shall first prove the theorem for the case that m = 1.
Since for any

φ i e A] = I fx 1(x1)dμ, = I fλ 2(xly x2)dμ ,

hence

Since I | log/Ί ^α^, #2) | c£v < 00 hence

J i /12(^1, »2) log/i 2(&x, x2)\dμ = y log/; 2 (^ , ̂ 2) I cίy < 00 .

The real valued function L(|) = ξ log | defined for all real ξ ^ 0[L(0) is
taken to be 0] is convex. By Jensen's inequality for conditional ex-
pectations ([2], pp. 33)

<15) Eμ[L{A 2{xλx2)} I xλ] ^ L{fλ &,)} .

By (15) and the fact that L(ξ) is a function bounded below by a con-
stant, we have

J I L{f, .(x,)} I dμ = j I log/, xfe) I dv < co

and

1 log/ 1 2(^, x2)cίv - log/nί^Odv = a ^ 0 .

Now by Theorem 2

log/i»(a?i, , xn) = log/nίajO + Σ{log/;,(&,_!, »ι)

Since v is stationary, l o g / ^ ^ , •••,«?„) is v-integrable. Applying the
ergodic theorem w"1 log/!„(»!, * ,α?n) converges with ^-probability one
and also in Lx{v) to a function g with

j ^ = J N / n ( ^ υ O - log/n(^)]ώv = α ^ 0 .

For m being any integer, we only need to mentioned that by (13),

logfmm+1(xm, xm+1) — logfmm(xm) = Iogf12(x19 x2) -

with ^-probability one and therefore the same conclusion follows with
a similar proof.
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COROLLARY 1. Suppose μ, v satisfy the hypothesis of Theorem 3
for m = 1. If v is ergodic and if there is an AeS^ such that

(16) v{Pv[x2 eA\xx]Φ Pμ[x2 e A \ x,]} > 0

then v is singular with respect to μ.

Proof. First we shall show that follows from (16)

(17)

For, if fλ jfai) = /i 2(xlf x2) with //-probability one then by Lemma 1
P. [x2 e A I xλ]fλ iίaji) = Pμ[x2 e A | xλ]fλ ^xj with /^-probability one. Thus

Py\x2 e A | scj — Pμ[x2 e AI a?!] with ^-probability one for every A e 5 f Now
the function L{ξ) = ξ log £ is strictly convex, hence it follows from (17)
that

a = J 0

Applying Theorem 3 fln(x19 •••,»„)—>oo with v-probability one as w—>oo#

Hence llfn(xlf , »„) —> 0 with ^-probability one as n —> oo. Let
_ ^ ' be the cr-algebra generated by U»=i-^ί» a n ( i ^ Ί ^' b e ^he contrac-
tions of μ,ι> to ^ ^ ' respectively. Since llfln(xlf •• ,xn) is the deriva-
tive of vx^-continuous part of μln with respect to vlnjl/fln(xf « ,xw)
converges with ^-probability one as n —> oo to the derivative of y'-con-
tinuous part of μr with respect to vf ([2], pp. 343). Now llfln(x19 , xn)
converges to 0 with ^-probability one, hence the ^'-continuous part of
μ' is 0 and μ\ v' are mutually singular. Hence μ, v are mutually singular.

3. Extension to ά-Markovian measures^ The results of the pre-
ceding section can be extended to fc-Markovian measures immediately.
We shall state the theorems only since the proofs in the preceding sec-
tion with obvious modifications apply as well.

THEOREM 4. Let μ, v be any two k-Markovian measures on ̂ Γ If
vn-kn is absolutely continuous with respect to μn-kJ n for n — 0, ± 1 , ± 2 ,
• , then vm n is absolutely continuous with respect to μm n for n — Q,
± 1 , ± 2 , and m <, n with

f (v . , , /y \ - / (v . . . T \ fm+l,m+l+k\%
7 Z Γ

Jn-k n-i\

with μ-probability one.
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THEOREM 5. Let μ> v be two k-Markovian measures on ^ with
stationary transition probabilities. If vn-k+ltn is absolutely continuous
with respect to μn^k+1>n for n = 0, ± 1 , ± 2 , ••• and vlk+1 is absolutely
continuous with respect to μx k+1 then vm n is absolutely continuous with
respect to μmn for n = 0, ± 1 , ± 2 , , m <; n and

•f (Ύ . . . ^ ^ f ί v . . . ^ r ^ J i k+i\Xm+l> * * * i Xm+k+i)
J m n\™mf J ™n) J m m + k—lK^m* f ^m+k—l/ J? / \

with μ-probability one.

THEOREM 6. Let μ, v be two k-Markovian measures such that v is
stationary and μ has stationary transition probabilities. If

J I log/™ m+k(xm, , xm+k) I dv <

then \ I \ogfm n(xm, , xn) \ dv < oo for n = m, m + 1, m + 2, and

wΠog/ronίa?™, m ,%n) converges as n—> oo with v-probability one to a

function g with I gdv = a ^ 0 where

In particular, if v is ergodic, g — a with v-probability one.

COROLLARY 2. Suppose μ, v satisfy the hypothesis of Theorem 6
for m — 1. If v is ergodic and if there is a set Ae S^ such that

(20) v {[P v fe + 1 e A I α?!, , α J =£ Pμ[a?Λ+1 e A] \ x19 . . , ^fc]} > 0

Then v is singular with respect to μ.

4» A generalization of McMillan's theorem* In the setting of this
paper, McMillan's Theorem may be stated as the following. Let X be
a finite set ,of K points and £f be the σ-algebra of all subsets of X.
Let v be any stationary probability measure on ^ and μ be the
measure on ^ such that μ[Xm = α0, Xw + i = αx, , Xn = α n _ J ! = i?:-^-^+1)
for any intergers m, w and α0, αx αw_m in X. jW may be described as
the equally distributed independent measure on ^ Γ Then nrfln(xly ,xw)
converges as w —> oo in Lx{v). In particular, if v is ergodic, the limit
function is equal to log K — H with v-probability one where H is the
entropy of v measure [4], We shall generalize this theorem to the
case that X is countable and μ is Markovian with stationary transition
probabilities.
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THEOREM 7. Let the totality of elements of X be alf α2, and v

be a stationary probability measure on j ^ ~ such that I — log v^x^dv < oo

where vλ is the function defined on X by vλ{a^) — v[xλ — α j . Let μ be

a Markovian measure on j ^ ~ with stationary transition probabilities.

Let p(at, a5) be the value of P μ |X = a5 \xQ] when x0 = at. Let vln be

absolutely continuous with respect to μln for n = 1, 2, •••. //

\ —logp(x19 x2)dv < oo

and \ I logΛ ^x,) \ dv < oo then \ | \ogfx n(xlf , xn) \ dv < oo for n =

1, 2, and n~Ύ log/x n(x19 •••,»„) converges as n —> oo in Lλ(v), In par-

ticular, if v is ergodic, the limit is equal to a constant with v-prob-

ability one.

Proof. Let

Vffaiv α*2> , α * J = v[%i = «*!> ^2 = ah, •••,»« = α « J

a n d

^ ( α ^ , α < 2 , , α < n ) = μ[xx =; α 4 l , ̂  = α v , x n = ain] .

T h e n

with /i-probal .3 and

with ^-probability one and

with //-probability one. Hence

ί\ n\&i9 * * * f ffin) _ . >r̂

with ^-probability one and

(21) log / i rc- i (^ '••><> = I

- l o g i)(a?n_!, α?n)
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with ^-probability one where

(22) gn = Σ logpA%o = at I ff-i, , a?_(n_1)]IBo = α t

We know t h a t Pv[#o = α * l#-i> " •> # - ( » - D ] converges with ^-probability

one as n—*co to Pv[α?0 = α j α ? ^ , a?_2, •••] by Doob's Martingale Con-

vergence Theorem. Hence L{P^[x0 = α41 x-l9 , #_<„_!)]} converges with

^-probability one to L{PJx0 = ai\x-1, x-2f •••]}. But L{ξ) is a bounded

function for 0 ^ ξ <£ 1, hence L{Pv[x0 = α t | £c_lf £c_(n_1}} are uniformly

bounded with ^-probability one. Hence L{Pv[x0 = flj41 x^19 , »_(„_!,]} also

converges in Lx(v) to L{PJ[xQ = at\x-.l9X-2f •••]} as ^—> oo. Now by
rr

Jensen's inequality I — L{Pv[x0 = α̂  | x_l9 , ίc.^.DJjeίv ^ —L{Pv[x0 = α,]}.

Since

Σ —
1 = 1

= α*]} = — log ^(ίCoJίZv
J

Σ {[ = αg I x_2, , »_(„_!
ί = l

converges in Lx(v)9 as m—> oo, to

CO

Σ -
ί = l

uniformly in tι. Hence

Σ -

converges in Lx(y) to

oo

Σ ~~ L{PJ[xQ = ai I x_19 x__2> * •]} &s n —> oo. N o w

\ - Σ
J i—1

= I - Σ •i'î vt^o = α« I ί»-i, , x-(w-i)]}d^ and
J ί=l

j - Σ log Pv[%o = α« I ^-i, B-2, ]JΓ

aSo=αίrf^

= I — Σ L{P*[xQ = at I ̂ _2, X-2, ]}dv, hence
J ί=l

(23) lim - Σ
n-*o° J i=l

= \ — Σ
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(23) together with the facts that the sequence

{ - Σ log P^[x0 = x i I x-lf , 8_ ( n _ 1 ) ]/ X o = α i |

is also convergent with v-probability one and that the functions

oo

___ X ' l/*\rγ "P Γ'ϊ /yι I /yι • Ύ» IT
j_ι l u g ± VL ^O — *^ί I t*/—1> > dj— (n-l)\-Lx0=ai

are non negative with ^-probability one imply that

oo

Σ Pf/y. ft I rγ> . . . / y 1 Γ
•*• vL ̂ O — Wi I | Λ / —1> > t Λ / — ( w — 1 ) J - t a ; o = a i

converges as n —> oo in Lχ(v) to

oo

ί = 1 * ' x0 α ι

Thus we have {gn} to be an Lλ(v) convergent sequence. Let the limit

of the sequence be h. Let h be the Lλ{v) limit of l/n(h + Th H h Tw/z)
as n —> oo. Now by (21)

, xn) = log/n^) + Σ Γ ^ ί T h u s

•, 8 n) -( I — lθg/ l f > (8 l f

J I %

^ l | l o !

<iυ

+ f | i (Σ Γ'flr. - Σ Γ λ

dv

n «=2
civ —> 0 as n

COROLLARY 3. Under the hypothesis of Theorem 7, i/ v is ergodie
and not Markovian then v is singular to μ.

Proof. If v is ergodie then the Lλ{v) limit, h, of {Ijn logf± n(xl9 •••,.
xn)} is equal with v probability one to

1 Σ L{Pil%o = Uί 18-i, a?_2, -]}dv — I logpίa?-!, ^ 0 ) ^ ^

which is greater or equal to
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1 Σ L{PA%o = α«I x-i, x-2]}dv — j log p(x-lf xQ)dv .

Hence by (21)

^ = ] Σ logPv[^o = at I x-i, X-2]IXQ=Hdv - j logp(x-lf xo)dv

= \ log/isfe, %2, xϊ)dv - \ \ogf12(x19 x2)dv .

However I Iogf13(xly x2, x3)dv — I Iogf12(x19 x2)dv = 0 if and only if

(24) μ[fi*{Xi, X2) Φ fAxu %2, x*)] = 0 .

(24) implies that

JΓ\\X-3, Q Jx \ Xif X2\
 =~ ±μ\X% β J\. \ Xιf X2]

with ^-probability one for any i e 5 f This is impossible since μ is
Markovian and v is not. Hence h > 0 with ^-probability one. Hence
/1 n(Xi, , xn) —> °° with v probability one and v is singular to μ by the
same argument used in the proof in Corollary 1.

The extensions of Theorem 7 and Corollary 3 to Λ -Markovian μ is
obvious.
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