ANALYTIC AUTOMORPHISMS OF BOUNDED
SYMMETRIC COMPLEX DOMAINS

HeLmuT KLINGEN

In a former paper [2] I determined the full group of one-to-one
analytic mappings of a bounded symmetric Cartan domain [1]. Those
investigations were incomplete, because it was impossible to treat the
second Cartan-type of n(n — 1)/2 complex dimensions for odd » by this
method. The present note is devoted to a new shorter proof of the
former result (n even), which furthermore covers the remaining case of
odd 7.

Take the complex n(n — 1)/2-dimensional space of skew symmetric
n-rowed matrices Z. The irreducible bounded symmetric Cartan space
in question is the set &, of those matrices Z, for which

I+2Z2>0, 2= —2,

is positive definite. Here I is the n by m unit matrix. Obviously &, is
the unit circle. It is easy to see that analytic automorphisms of &, are
described by the group ¢ of the mappings

(1) W = (AZ + BY(—BZ + Ay,
where the n-rowed matrices A, B fulfill
* _ . _ AB (I 0
M*KM = K with M = <~§ Z>’ K_<O _I>.
Here M™* denotes the conjugate transpose of M. For n =4
W=2

is a further analytic automorphism, where Z arises from Z by inter-
changing the elements z,, and z,,

0 %12 Rz R
Z —Zp 0 By Ry
T =2y —2y 0 N

— Ry —Ry TR 0

For WW and ZZ have the same characteristic roots. But this mapping
is not contained in ¢, since CZ = ZD cannot be satisfied identically in
Z by non-singular constant matrices C, D. On the other hand the fol-
lowing theorem holds.
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THEOREM. FEach analytic automorphism of &, can be written as
W = f(Z) or W= f(Z) (only for n = 4) with f € ¢.

Therefore the group ¢ is already the full group of analytic auto-
morphisms for n #= 4. Only in the exceptional case n = 4 there are
the further mappings W = f(Z~ ), which together with ¢ form the full
group of analytic automorphisms. The proof of this theorem consists
of two parts. The first analytic part is a reproduction of my former
proof [2], which will be given here again for completeness, the second
part is of algebraic character.

The group ¢ acts transitively on &,. For take an arbitrary point
Z, of &,, choose the matrix A such that

A(I + Z,Z)A* =

and define B= —AZ,. Then (1) maps Z into 0. Therefore it is suf-
ficient to investigate the stability group of the zero matrix.

First we show that each analytic one-to-one mapping W = W(Z) of
&, with the fixed point 0 is linear. For an arbitrary point Z, €&, let
P ooy P 01 < oo <7, <1, be the characteristic roots of Z, Z}.
Then also tZ, belongs to &,, if t is a complex number with ¢fr, < 1.
Consequently there exists a power series expansion

(2) W(tZ) = 3t WdZ) , ttr, <1.

The elements of the skew-symmetric matrices W,(Z,) are homogeneous
polynomials_of degree k in the independent elements of Z,. Because of
I+ WtZ)W(tZ) > 0 for tt =1, one obtains from (2)

=1+ 3 W(Z)W(Z) > 0

1 t
271 7, t

3) =]+ wezweznl

and in particular I+ Wy(Z,) Wi(Z,) > 0. Therefore the linear function
Wi(Z) is an analytic mapping of &, into itself. Its determinant D is
at the same time the Jacobian of the function W(Z) with respect to Z.
By interchanging Z and W it can be assumed DD > 1. Consequently
W(Z) is an analytic automorphism of £, and even maps the boundary
onto itself. ’I_‘ake now in particular

(4) Z, = UPU, P:[(O)’p1F9'°"me]’ F:(——g é)

with an unitary matrix U, m = [n/2]. P shall be the matrix, which is
built up by the two-rowed blocks p, F, ---, p,, F' and possibly by the ele-

ment 0 along the main diagonal. Z, belongs to the interior of &,, if
—1<p,<1((k=1,---,m), and to the boundary,if —1=p, =1k =
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1,.++,m) and p, = + 1 for at least one k. Now | I+ W(Z)W,| is a
polynomial in p,, ---, p,, of total degree 4 m and on the other hand (see
[2], Lemma 4) the square of a polynomial. As|I+ Wy(Z,)W,| vanishes
on the boundary of &,, this polynomial is divisible by

11+lellzﬁ(1~pz)2.

Because the constant terms and the degrees of both polynomials are
equal, one obtains

(5) I+ W(Z)W, | = |1+ Z.Z,]

even identically in Z,; for each skew-symmetric matrix Z, permits a rep-
resentation (4) (see [2], Lemma 3). On account of (5) and the linearity
of W, the matrices W,W, and ZZ always have the same characteristic
roots and this implies

(6) W(Z)=UZU

with unitary U, which for the present still depends on Z.
Put now

Z=uX, X=U,[eF, ...,e%F 0)U, 0=u=1,
with real variables ¢, --+,¢,. Then Ze&, and by (6)

I(n-~1) 0

W, Wi = uZU'U{<0 0

)0.0
for all w between 0 and 1. Because of (3) one obtains

OU0I+ WW,+ W,W)U'U, >0 (k=2,3,++).

If u tends to 1, one gets
0 0
<0 (1)> +

hence W(X)=0. As W, is a polynomial, W,(Z) even vanishes iden-
tically in Z. Therefore the stability group of &, is linear.

The investigation of W = W.(Z) is now a purely algebraic problem.
The representation (6) shows that rank W = rank Z and beyond this
the equality of the characteristic roots of WW and ZZ. These proper-
ties will be used in order to determine W(Z) explicitly. We have to
prove

lﬁchkU’U{ > 0 ’

(7) W(Z) = U'ZU or W(Z)=UZU
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with unitary constant U, where the second type only occurs for n = 4.
The proof of this fact will be given by induction. The assertion (7) is
trivial for the unit circle (» =2). Let us assume its correctness for
2,3, .++,n —1 and consider &,. Write the linear mapping W(Z) of &,
onto itself as

W= 3 2z.44
k<1

with constant skew-symmetric » by 7 matrices A,,. Because of the
equality of the characteristic roots of WW* and ZZ* the hermitian
matrix A4,,4}F has 1,1,0, ---, 0 as characteristic roots. Therefore after
unitary transformation of W we can assume A,, = E,, where in general
E,, denotes the skew-symmetric matrix the elements of which are all
zero besides the element in the kth row and Ith column and the ele-
ment in the Ith row and kth column, which are 1 respectively —1.
Since tr(A4,4,) = 0 for (k, 1) # (1, 2), one obtains

a,=(0"7) (e, ) = (1,2) .

A, = E,, does not change, if W is transformed by

G v)

with unitary U, V,|U| = 1. Therefore

4=y o) =04 0

can be assumed. From rank W = rank Z identically in Z one obtains
possibly after unitary transformation A, = E,.

For A, = (a,;) we get two possibilities. First the equation tr(4,4,,) =
tr (A4,) = 0 implies a,, = a,; = 0. After unitary transformation all the
elements of the first row besides a,, are zero. Then take only the ele-

ments 2, 2., 21, 0f Z distinet from zero; from rank W = rank Z = 2 one
sees

A,=FE, or A,=E,.

By a similar consideration A4,, turns out to be E,, or E,. But actually
for v > 4 the second possibility 4,, = E,; may not occur. For 4,, = 4,, =
E,, is impossible because of tr(4,,4,,) =0. If A, = E,, A, = E,, choose
only the elements z,,, 2, # 0, then rank Z = 2 but rank W = 4. Therefore
A,=E, (v+4),A,=FE, or Ey. Furthermore A,, = E,, may only hap-
pen if n = 4. For assume A,, = E,,, A;; = E,; and take only the elements
2., %25 + 0. This implies rank Z = 2 but rank W = 4.
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Let us summarize our results. After a suitable unitary transforma-
tion W can be written as

W= (—g L(QZf),>’ Z= <—2 ;,) ’

besides the exceptional case n =4, A, = E,;. Now L(Z,) is an analytic
automorphism of &,_, with the fixed point 0. For n = 38 we know L(Z,) =
e¢%Z, with a real constant &. Therefore W = U'ZU with a constant

unitary matrix U, which is the theorem for » = 3. For n > 5 the in-
duction hypothesis shows

=% %)

with constant unitary U. From the equality

rank W = rank Z

U turns out to be a diagonal matrix. Finally consider the sum of the
two-rowed principal minors of WW and ZZ. These two quantities are
equal identically in Z because of the fact that WW and ZZ have the
same characteristic roots. By this identity one obtains U = al with
a complex number a of absolute value 1, which again proves our theorem.

There still remain the cases n =4 and 5. For n =4, A,, = E,, we
can use the reasoning above. Let A, = E,;; since

tr (AIVA%) =tr (AIVAM) = tr (AIVA_34) =0 (V =2, 3, 4)

W only differs from Z in the last row, where a linear combination of
a3y 24y 25, appears. The identity between the ranks of Z and W shows
Wiy = Qy2g5, Wy = Oy 2y, Wy = Ay2s,. NoOw it is easy to compute the sum
of the two-rowed principal minors of WW and ZZ. This computation
shows again the assertion for n = 4.

For n = 5 we know by the induction hypothesis

LZ)=UZU or LZ)=UZU

with constant unitary U. The first case can be treated as above. In
the second case one obtains

= (o 2)

Choose once only =z, 2, 0, then only =z, 2,,2:;%# 0. In any case
rank Z = 2, hence rank W = 2. But this implies that all the elements
of the third column of U vanish, which is a contradiction to the unitary
character of U. This final remark completes the proof.
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