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l Introduction* Let Xlf * ,Xn be n independent and identically
distributed random variables, each with continuous c.d.f. (cumulative
distribution function), F(x). Let Fn(x) be the empirical c.d.f. of the n
random variables and let Nx(n) be the number of times Fn equals F.
There is no loss of generality in supposing that the XJs are distributed
uniformly over the interval (0,1), and to be specific, N^ri) is defined by

N^ri) = number of indices, i, for which Fn(ί/n) = ί/n, i = 1, , n.

Similary, let X19 , Xnf , Ylf , Yn be 2n independent random
variables, each with the same continuous c.d.f., F(x), and let Fn,Gn

denote the empirical c.d.f.'s of the X/s and Yt's respectively. Let N2(n)
be the number of times Fn equals Gn. That is.

N2(ri) = number of indices i for which Fn{Xt) = Gn(Xt),

plus

number of indices i for which Fn(Yt) = Gn(Yi), i = 1, •••, n.

The purpose of this paper is to show that

= lim p ( N ^ < t) = 1 - e-4 J

The methods for obtaining these results are practically the same for
Nx and N2, so the first case is treated with somewhat greater detail.
In both cases, the random variables are related to other random variables
on appropriate stochastic processes with independent increments, to
obtain generating functions for the moments of Nt. The Karamata
Tauberian theorem is then applied to describe the asymptotic behavior
of these moments.

2. Some preliminaries on the Poisson process. Let Y(t) be the
Poisson process with stationary independent increments, t Ξ> 0, Y(0) = 0,
£'[i r(l)] = 1. Consider γί, the straight line coming out of the origin
with slope 7 > 1. The random function Y(t) can equal yt at times 1/γ,
2/7, etc. The event that Y(t) = yt is a recurrent event in the sense
of Feller [4]. Because 7 is greater than 1, this recurrent event is an
uncertain one. It was shown by Baxter and Donsker [1] that
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P[Y(t) <yt, all positive t] = 1 - 1/7 .

A completely elementary proof of this fact was given by Dwass [3]-
In other words, the probability that the uncertain recurrent event under
discussion never takes place is 1 — 1/7. To introduce some specific nota-
tion, let N = number of times that Y(t) equals yt. That is,

N = number of indices i for which Y{ijy) = y(i/y) = i, i = 1, 2, ~.

The random variable, N is geometrically distributed, specificially,

P(N = k) = (l/γ)*(l - 1/γ) ,

and for the rth factorial moment we have,

(2.1) EN{r) = EN(N - 1)(N - 2) . . . (N - r + 1) = rl/(r - l)r .

3 A generating function for E[Nfr)(n)]. The link between the
random variables N and Nλ{n) lies in the following lemma.

LEMMA 3.1. The conditional distribution of N given that Y(t) = yt
for the last time at time t = n\y is exactly the same as the distribution
of N^n).

Proof of Lemma 3.1. This follows directly from the well-known
fact that the places where the jumps of Y(t) occur in the interval (0, a)
are distributed as n randomly chosen points in (0, a) under the condition
that Y(a) = n.

Making use of this lemma, we can compute the rth factorical
moment of N in the following iterative way. Let Ah denote the event
that the last crossing of 7t by Y(t) takes place at time kjy. Then

I Ak )P(Ak) .

Since P(At) = (fc/y)*β-*"(l -

and

E(N" I At) - E[Nr(k)], (&, 0,1, 2, .) ,

we have, making use of (2.1), the following theorem.

THEOREM.

(3.1) ± ^
k\

7 / (7 — l ) r + 1

REMARKS.

(a) In (3.1), e-kkklkl should be understood to be 1 when k = 0.
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(b) u = eΎ~lh is a strictly decreasing function of 1/γ, for 7 i> 1, and
maps (1, oo) onto (0,1). Let 1/γ = P{u) denote the inverse function.
Then (2.2) can be rewritten,

(3.2) Σ ̂ f- ENr(k)u« = 1 = h(u) ,
^=0 kl P(u)[P~\u) — l]r+1

0 ^ u < 1 .

Since l i m 1 " ^ 7 -1/2
im ^ 7
*-* (a? — I) 2

or equivalently,

it follows that

. _ r!(3.3) lim (1 - u){

If the coefficients of u* in h(u) form an increasing sequence, then
Karamata's Tauberian theorem is applicable and we could conclude that
the sum of the first k coefficients of powers of u in (1 — u)h(u) is asym-
ptotically equal to

J.ίr-lW2 T\

2 )

or equivalently,

lim'
1 \

by the '^duplication formula'? for the gamma function (p. 240 [6]).
Since the asymptotic behavior of the rth factorial moment is the

same as that of the rth ordinary moment, we would have finally,

where f(x) is the probability density function
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={;2xe~x\ x^O

0, x < 0 '

However, it is not at all clear that the usual conditions for Karamata's
theorem to hold are applicable, and a slightly more delicate argument
is required.

4 The limiting distribution of N^n). Following the discussion in
the last section, the main effort which remains is to justify the appli-
cability of Karamata's theorem.

LEMMA 4.1. Let a^u), (i — 1, , r) be power series having positive,
non-decreasing coefficients. Then a(u) — I L ^ M has the same property.

Proof of Lemma 4.1. a^u) has positive, non-decreasing coefficients
means that the coefficients of (1 — u)at(u) are non-negative.

(1 - u) Π iφ) = Π [(1 - M)α4(M)](l - **)-'-»
i i

is a product of power series all with non-negative coefficients, which
completes the proof.

LEMMA 4.2.

(a) Σ * ^ l 1 6 * = / ( t t )
fco k\

(b) c(l - u)-1'* - f(u) = g(u)

is a power series with positive, non-decreasing coefficients if c is suffi-
ciently large.

Proof of Lemma 4.2. Part (a) follows from (3.1) for r = 0. The
coefficients of (1 — u)~112 are of the order of \\Vk and strictly positive.
The coefficients of —f(u) are strictly increasing and also of the order
of 1/τ/ k . Hence choosing c sufficiently large will guarantee the result.

Finally, we want to state the following form of Karamata's theorem.

LEMMA 4.3. Let a(u) = ΣfcUα^ where {ak} is a non-decreasing
sequence, and suppose (1 — u)ya(u) —*A as u—*l, for 7 ^ 0 . Then

as k —> oo.

Proof of Lemma 4.3. For γ > 1 the result follows from the con-
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ventional form of Karamata's theorem (for example see Theorem 4.3,
p. 192, [5]) by considering that

(1 - uy~ι(l - u)a{u) — A

and that the partial sums of coefficients in (1 — u)a(u) are αfc.
For 0 ^ 7 < 1 we have that

and we can apply Hilfassatz 3, p. 517, Doetsch, [2], to conclude that

α 4l #» = -A—
* Γ(y + 1) Γ(γ)

We can now prove the following.

THEOREM.

tonp(*WL<

Proof. The limiting distribution is determined by its moments,
hence it is sufficient to show that

lim E(^ΆY = 2\° xr+ιe-χ2dx = Γ(r/2 + 1) , r = 1, 2, .

Referring to (3.2) and to Lemma 4.2, we can write

(4.1) h(u) = rl[l+f(u)][f(u)Y

= [c(l - u)-^ - g(u) + l][c(l - uY^ - g(u)Y .

Since g(u) has positive and increasing coefficients then by Lemma 4.1
so does (1 — u)~ml\g{u)\n for m, n positive integers, because

- (1 - u)~Ml\l - u)[g(u)]n

has positive coefficients. Hence by Karamata's theorem, since

(1 - u){m+n)l2(l - uyml2[g(u)]n -> (c - ±X

the coefficients of (1 — u)~mβ[g(u)]n are asymptotically equivalent to

(e-
m + n

2
On expanding the right side of (4.1), an elementary computation yields
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the result that the coefficients of h(u) are asymptotically equivalent to

rl I.ίr-lW2

\\

2

According to the discussion in § 4, we conclude then that

which completes the proof of the theorem.

5* The limiting distribution of N2(ri). In this section we prove the
following.

THEOREM.

The main points of the proof are essentially the same as in the
preceding theorem, so we offer an outline of the method only.

Let Xl9 X2, be a sequence of independent, identically distributed
random variables such that

(1 with probability p,

lθ with probability 1 — p.

and let Sn denote the sum of the first n random variables.
The event that for a positive integer n, S2n — n, is a well-known

recurrent event, representing return to the origin, in a discrete random
walk on the line. Suppose p < 1/2. Then the probability that the
recurrent event never takes place is 1 — 2p. (See Feller, p. 288, [4].)
Using JV exactly as above, let N= number of indices i for which S2i = if

i — 1, 2, •••. As before, JV is a geometric random variable, such that

and hence

ENir) = r

Analogous to Lemma 3.1 is the following combinatorial lemma.

LEMMA 5.1. The conditional distribution N given that S2i = i for
the last time when i = n is exactly the same as the distribution of
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N2(n). We omit the proof which is elementary.
Let Ate denote the event that S2i = i for the last time when i = k.

Then

ENir) = ±E{N{r) \Ak)P(Ak)

— J£ ENjr)(k)( , W(l — p)k(l — 2p) .

Hence

'2fcW.,_ r!
(5.1) / ( ^ ) = ^ , ^ χ , 2 V . Λ fc

where 4p(l — p) = u9 0 ^ p ^ 1/2, is an increasing function of p which
maps (0,1/2) onto (0,1), and where p = h(u) is the inverse function.

We next notice that

lim (1 - u){r+ι)l2f(u) = r! ,
W->1

This follows from the fact that

2p

The application of the Karamata theorem can now be justified ex-
actly as before. In fact if g(u) is defined in terms of f(u) as in § 4,
then the details go through exactly word for word. Hence we conclude
that

limE-
fc-»oo fcvr-x,,* r , l Ί +

hence

>ir)(k) rl V~π

2rΓι

which completes the proof.

6, Final remarks^ The asymptotic distribution of -Ni(w) has been
studied by N. V. Smirnov in "Sur les ecarts de la courbe de distribution
empirique", Mat. Sbornik, 6 (48), pp. 3-26 (1939), (Russian, French
summary). His methods are not based on the Karamata Tauberian
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theorem and seem considerably more complicated than those of this
paper, though he actually dealt with a more general situation. Also,
the referee has kindly pointed out that the random variable N2(n)
is related to a random variable studied by W. Feller in "The num-
ber of zeros and of changes of sign in a symmetric random walk",
LΈnseignement Mathematique, III, 3, (1957), 229-235.
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