
AUTOMORPHISMS OF CLASSICAL LIE ALGEBRAS

ROBERT STEINBERG

l Introduction. Starting with a simple Lie algebra over the
complex field C, Che valley [2] has given a procedure for replacing C
by an arbitrary field K. Under mild restrictions on the characteristic
of K, the algebra so obtained is simple over its center, and it is our
purpose here to determine the automorphisms of each such quotient
algebra g. In terms of the group G defined in [2] and also in § 3 below
and the group A of all automorphisms of g, the principal result is that,
with some exceptions, which occur only at characteristic 2 or 3, A\G is
isomorphic to the group of symmetries of the corresponding Schlafli dia-
gram. As might be expected, the main step in the development is the
proof of a suitable conjugacy theorem for Cartan subalgebras (4.1 and
7.1 below). The final result then quickly follows.

Definitions of the algebras and automorphisms to be considered are
given in § 2 and § 3. Sections 4, 5 and 6 contain the main development
and § 7 treats some special cases. The last section contains some remarks
on the extension of the preceding results to other algebras. In 4.6, 4.7,
4.8, 7.2 and 7.3 the results are interpreted for the various types of
algebras occurring in the Killing-Car tan classification, thereby yielding
results of other authors [4, 5, 6, 7, 8, 9, 12, 14, 15, 16, 18] who have
worked on various types of algebras from among those usually denoted
A, B, C, D, G and F. For other treatments in which all types are con-
sidered simultaneously, the reader is referred to [4; 16, Exp. 16] where
the problem is solved over the complex field, however by topological
methods which can not be used for other fields, and to [14] where general
fields occur but only partial results are obtained. General references to
the classical theory of Lie algebras over the complex field are [1, thesis;
3; 16; 19].

2 The algebras. Let us start with a simple Lie algebra Qo over
the complex field C, a Cartan subalgebra f)0, the (ordered) system Σ of
(nonzero) roots relative to f̂ , the set Φ of fundamental positive roots, and
for each pair of roots r and s, define crs to be the Cartan integer
2(r, s)/(s, s), and prs to be 0 if r + s is not a root and otherwise to be
the least positive integer p for which r — ps is not a root. Then Che val-
ley [2, Th. 1] has shown that there exists a set of root elements {Xr}
and a set {Hr} of elements of ί)0 such that the equations of structure
of Qo are:
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2.1 H-r = — Hr, and if r, s and t are roots such that r + s + t = 0
and r is at most as long as s or t, then

Hr + (8, 8)l(r, r)Hs + (ί, ί)/(r, r ) ^ - 0 .

2.2 i 7 r # s = 0.

2.3 HrXs = csrXs.

2.4 XrX_r = ίΓr.

2.5 X rX s = ± prsXrίs if r + s Φθ.

The equations 2.1 imply that each Hr is an integral linear combina-
tion of the elements Ha(a e Φ), which form a basis for ί)σ. Just as in
[2] the base field C can now be replaced by an arbitrary field K (because
the structural constants are all integers), yielding an algebra g over K,
an Abelian subalgebra %, a set of numbers {prs, crs} in K, and a set of
roots relative to ϊj" defined by r(Hs) — crs. We use the notation {Xr, Hr}
for the generating set of g, the subscript r referring to a root of the
original system Σ.

2.6 Assume that Q is one of the algebras just constructed, but if
Σ has roots of unequal length or if Σ is of type Aλ assume that K is
not of characteristic 2, and if Σ is of type G2 assume further that K
is not of characteristic 3. Then

(1) if prs Φ 0, then prs Φ 0, whereas if crs Φ 0, then crs Φ 0 unless
r = ± s and K is of characteristic 2;

(2) no Hr is in the center of g;
(3) the center c of g consists of those H in ξ such that r(H) = 0

for all r in Σ;
(4) if ί) = ξ/c and g = g/c, then ^ is a Cartan subalgebra of g;
(5) g is simple.

Proof. (1) From known properties of root systems if r Φ ± s then
prs and crs take on values other than 0, ± 1 only if Σ has roots of dif-
ferent lengths: the values ± 2 and ± 3 if Σ is of type G2 and ± 2 if Σ is one
of the other types. The possibility of these numbers becoming 0 in if
has been ruled out by the assumptions. On the other hand crr = 2 which
is 0 if and only if K is of characteristic 2.

(2) If K is not of characteristic 2, then HrXr = 2Xr Φ 0, and if K
is of characteristic 2, then there is a root s not orthogonal to r, whence
ίZrX, = csrX, Φ 0 by (1). Thus Hr is not in the center.

(3) Assume that X = H + ΣcsXs is in the center. Then multiplica-
tion by X_r yields cr = 0 because of 2.4, whence

0 = XXr - HXr = f
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so that f(H) = 0. The converse is easily checked.
(4) ΐ) is Abelian, and if X = H + ΣcsXs is in the normalizer of Ij,

then cr = 0 just as before and X is in ί). Hence ϊ) is a Cartan subalge-
bra of %

(5) Let m be an ideal in ή and Y a nonzero element of m. Then
by repeated multiplication by elements of the form Xa (a e Φ) (now con-
sidered to be in g) we arrive at a nonzero X which is in m and com-
mutes with all Xa. By (1) this implies that X is a scalar multiple of
Xd9 d being the unique root such that d + a is not a root for each a
in Φ. Thus Xd is in m and by repeated multiplication by elements of
the form X_α (α e (?) we get all Xr in m, whence nt = g. Hence g is
simple.

In regard to the cases excluded by the assumptions of 2.6, let us
observe first that if K is of characteristic 2 and Σ is of type Ax then §
is nilpotent while if Σ is of type G2 then g is isomorphic to the algebra
g of type D3, as is seen by an examination of the multiplication tables.
In the other cases g is not simple because those Xr and Hr for which
r is a short root span an ideal as is seen from 2.1 to 2.5 and the follow-
ing properties of Σ: if r is a long root and s is a short one, then crs is
0 or ±(r, r)l(s, s); if r + s is also a root then it is a short one (because
(r + s, r + s) = (1 + csr)(r, r ) + (s> s) which is not a multiple of (r, r));
if r and s are short roots and r + s is a long root, then

P™ = (r + s, r + s)/(r, r)

(check for Σ of type i?2 or G2).
In the sequel, each algebra g of 2.6 is called a classical Lie algebra,

and the algebra 5 and the set of elements {Xr, ίfr | r e Σ}, now consider-
ed to be in g, which occur in the explicit mode of construction describ-
ed are called standard Cartan subalgebra and standard set of generators,
respectively. (Actually the subset {Xa \ ± a e Φ} is enough to generate
g.) In addition the notations prs, crs and r are used in reference to g
rather than g. Observe that r is defined in a natural way on ϊj because
of (3) of 2.6.

A consequence of (4) of 2.6 which should be borne in mind is that
r Φ 0 if r Φ 0, although it may happen that r = s with r Φ s.

3 The groups Following Chevalley [2], let us now describe certain
automorphisms of classical Lie algebras. Let g be such an algebra and
{Xr Hr I r e Σ} a standard set of generators. For each r in Σ and each
k in K, let xr(k) be the automorphism of g which has the same effect
as exp ad kXr on each generator, with the sole exception: if K is of
characteristic 2, then xr(k)X.r = X_r + kHr + k2Xr (see [2, p. 24]), and
then let G' be the group generated by all such automorphisms as r runs
through Σ and fc through K. Then for each w e W, the Weyl group
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of Σ, there is ω(w) in G' such that ω(w)Xr = ± Xwr and ω(w)Hr = ίZ ,̂.
for each r in I [2, p. 35], If χ is a homomorphism of the additive
group generated by the roots of Σ into the multiplicative group K* of
K, then there is an automorphism h of g such that hXr = %{r)Xr for
each r in J . The group of such automorphisms is denoted ξ>, and the
subgroup corresponding to those homomorphisms which can be extended
to the group of weights relative to Σ is denoted ξ>\ Let G be the
group generated by G' and ξ>. One has [2]:

3.1. G' is normal in G, ξ>' = ξ> Π G', G = G'ξ>, and G/G' is isomor-
phic to

Finally, if r—*rf is a permutation of 0, the set of fundamental
roots, such that ca.h, = cah for all a and 6 in Φ, then there is a graph
automorphism # of g defined by: gXa = Xa, if ±a is in Φ (see one of
[3, p. 116; 16, p. 11-04; 19, p. 94] for the proof of existence and [1, p.
361] for an interesting discussion). Although the automorphisms of
this paragraph are defined in [2] to act on g, we can (and shall) think
of them as acting on g. Nothing is lost in the passage from g to g: if
x is an automorphism of g which induces the identity on g then, in the
notation prior to 2.6, xXr = Xr mod c for each r, whence xHr = Hr by
2.4 and then xXr = Xr by 2.3, implying that x is the identity.

The following observation will be used later:

3.2. Let S be a standard set of generators of g and x an automor-
phism of g. Let Gf be the group defined above relative to S, and let
G" be the corresponding group defined relative to the standard set xS.
Then G" - xG'x~\

Proof. Let B be a subset of S which is also a vector space basis
for g. Then the matrices representing G" relative to B are the same
as those representing G" relative to xB, whence G" = xG'x~~\

4. Principal results^ Throughout the next three sections, g denotes
a classical Lie algebra with a fixed standard set of generators

S - {Xr, Hr\reΣ}

and corresponding Car tan subalgebra £), K is the underlying field, the
symbols G\ G, £>', and "graph" refer to the automorphisms of g defined
relative to S as in § 3, and A denotes the group of all automorphisms
of g. It is assumed that Σ is not of type A2 if K is of characteristic
3 and not of type Dn if K is of characteristic 2. These exceptional cases
are considered in § 7.
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4.1. Conjugacy theorem. If \ and Ija are standard Cartan sub-
algebras of g, there is x in Gr such that x§x — ί)2.

4.2. Each % in A can be written uniquely x = ihg9 with i in G',
h in φ and g a graph automorphism.

4.3. Gf and G are normal subgroups of A.

4.4. GjG' is isomorphic to ξ>/ξ>', hence is Abelian.

4.5. The graph automorphisms form a system of coset representa-
tives for A over G. Hence AjG is isomorphic to the group of sym-
metries of the Schlafli graph.

These results may be amplified thus:

4.6. G = G' if Σ is of type E8, F4 or G2 or if Σ is of arbitrary
type and K is algebraically closed. GjGr is isomorphic to K*/K*3', with
f = n + 1, 2, 3, 4, 3, 2 in the respective cases that Σ is of type Any Bn,
Cn, Dn (n odd), E6, E7, and is isomorphic to the direct product of 2
copies of K*[K*2 if Σ is of type Dn (n even).

4.7. A = G with the exceptions: AjG is of order 2 if Σ if of type
An(n ^ 2), Dn(n ̂  5) or EQ, and is isomorphic to the symmetric group
on 3 objects if Σ is type Z>4

4.8. A = G'j hence is simple, if Σ is of type E8, F4 or G2 and K
is arbitrary or if Σ is of type Bn, Cn or E7 and every element of K
is a square. AΦ G' otherwise.

5 The theorem of conjugation* We first show that the group G'
depends only on ί), not on all of S.

5.1. If r and s are in Σ and r Φ s, then r = s if and only if
both r = — s and K is of characteristic 2.

Proof. Let r and s be roots such that r Φ s and f = s. Assume
first that K is of characteristic other than 2. The equations

( - r)(Hr) = - 2 = - r(Hr)

show that rφ—s. Then since crscsr = 0,1, 2 or 3 and crscsr = crrcss = 4,
the only possibility is that crscsr = 1 and K is of characteristic 3.
From crs = css = 2 = — ϊ , we see that r and s have the same length
and form an angle of 2ττ/3. Since Σ is not of type G2, this implies that
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r and s can be incorporated into a fundamental set [2, p. 19], and since
Σ is not of type A2, this set contains a third root t which can be taken
orthogonal to one of r, s and not to the other. But then crt Φ cst by
(1) of 2.6, contradicting r = s. Now assume that K is of characteristic
2. Then all roots have the same length. Thus if r is orthogonal to s,
then r and s can be incorporated into a fundamental set, and since Σ
is not of type Dn, one reaches a contradiction just as before. On the
other hand if r is not orthogonal to s, then the equation crs = css — 0
implies that crs — ± 2 , whence r = ± s because r and s have the same
length. Since (— r) = r if K is of characteristic 2, 5.1 is proved.

5.2. Lei S = {Xr, Hr \ r e Σ) be the standard set of generators of
Q introduced m §4 and let S' = {Xq, Hq\q e Σ'} be a second standard
set such that S and S' determine the same Cartan subalgebra f). Then
there exists a bίjective mapping r —* rf of Σ onto Σ' such that

(1) if r, s and r%+ s are in Σ, then rr + s' is in 2", (r + s)' =
r' + 8r, and (— r)' = — r', and

(2) for each r in Σ, Hr, = Hr and Xr, — crXr with cr in K and

Proof. The nonzero root spaces of g relative to f) are determined
by 5.1 as {KXr} if K is not of characteristic 2 and {KXr + KX_r} if K
is of characteristic 2. In the latter case, if X = kXr + Of_r, then ad X
is nilpotent only if either k or I is 0, as one sees by choosing a root s
of Σ such that r + s is also a root and then computing (ad XfXs =
klXs. Thus in all cases £) determines {KXr} (and {-KXJ) and there exist
a bijective mapping r —*r' and scalars cr such that Xr, = crXr. Since
XsXr is a nonzero element of Ij if and only if s = — r, one has (— r ) ' =
— r', and if r, s and r + s are in 2\ then XrXs is a nonzero element
of KXr+s by (1) of 2.6, which implies that r' + s' is in Σf and (r + s)' =
r' + s'. Next Hr, — crC-rHr by 2.4. Now one can find a root s such
that s(ijΓrO = s{Hr) φ 0: if K is of characteristic 2, choose for s any
root not orthogonal to r, and if K is not of characteristic 2, choose
s = r. Thus crc_r = 1, Hr> = Hr, and 5.2 is proved.

5.3. Under the assumptions of 5.2 if G" is the group defined
relative to Sf in the same way that Gf is defined relative to S then

G" = σ.

Proof. If either r Φ — s or K is not of characteristic 2, then
xrr(k)Xs = (expadfc-X^Hcr1-^') = (exp ad kcrXr)Xs = xr{kcr)Xs, while if K
is of characteristic 2, then

xr,(k)X-r = ^
- X_r + (kcr)Hr + (fccr)

2Xr - xr(kcr)X-r ,
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by 5.2. Hence xr,(k) = xr(kcr) and G" = Gr.
Let us now turn to the proof of 4.1. Clearly it is enough to prove

that ΪJi is conjugate to ί) under Gf. For then by symmetry \ is also
conjugate to ί) and then to \. Let S1 be a standard set of generators
corresponding to \. Assume first that K is algebraically closed (so that
Gf = G by 3.1) and let G1 be the group defined relative to Sλ in the
same way that G is defined relative to S. By a familiar argument of
Harish-Chandra (see [16, Exp. 15] or [13]), there exist y in G and yτ

in Gx such that yί) = yj)λ. Set x = y^y. Then xf) = \, and by 3.2 and
5.3, Gt = xGx~x, whence G1 = yλGxy^ — yGy~λ = G and x is in G. Now
assume that K is not algebraically closed. Let K be its algebraic clo-
sure and let g, etc., be the objects corresponding to g, etc., when K
is replaced by K. As has just been shown, there is y in G such that
yϊ) = §lβ By 5.2 the elements of yS are multiples of those of Slβ One
can normalize y by multiplication by an element of ξ> so that yX αis
in Si for each fundamental root α, and then by 5.2, yX-a and 3/iία are
also in Sx. Since g is generated over K by the elements Hai and g is
generated by the elements Xa9 X_α, it follows that yί) — \ and ?/g = 8
Since y is in G and # induces an automorphism of g, a result of Ono
[10] implies that y is is G. By 3.1 one can write y = xh with x in Gr

and Λ in §>. Thus $ϊ) = #M) = y§ = ί)lf and 4.1 is completely proved.

By combining 3.2, 4.1 and 5.3 we get:

5.4. The group Gr is independent of the standard set of generators
used to define it.

Finally, let use observe that the word standard may be omitted
from 4.1 if K is algebraically closed and not of characteristic 2, 3 or 5
because then every Cartan subalgebra is standard (see [1, thesis; 12; 2]).

6* Proofs of 4 2 to 4.8. If x is an automorphism of g, then xf) is
a standard Cartan subalgebra of g. Hence by 4.1 there is j in G' such
that j^xί) = ί). Then 5.2 implies that there is a permutation r—>r' on
Σ such that (1') if r, s and r + s are in Σ, then (r + s)' = r' + sr and
(—r)' = — r', and (2') yλxXr = crXr, and crc_r = 1 for each r in Σ. By
(1'), 0' is a fundamental set of roots since Φ is. Hence [16, p. 16-05]
there is w in W, the Weyl group, such that wΦ = 0'. Then replacing
i by i = jft)(w) we see that the refinement (P' = Φ is achieved. We can
now choose Λ, in § so that hXa, = cαXα, for each a in <P, whence
h-1i~1xXa = Xa, and then h-H^xX-a = X_α̂ , because cαc_α = 1. Thus by
2.3 and 2.4 and the fact that h'H^x is an automorphism ca^ = cab for
a and b in 0. That is, h~ιiΛx is a graph automorphism, and 4.2 is
proved.
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From the definitions, it is easily checked that hG'h'1 = (?', gG'g*1 =
Gr and ffφflΓ1 = ξ> if fe is in φ and # is a graph automorphism. Thus
4.2 implies 4.3.

As a restatement of part of 3.1, 4.4 is true.
Next assume that the graph automorphism g is in G. Let u and

U, respectively, be the subalgebra of Q and subgroup of Gf generated by
those Xr and xr(k) for which r is positive. Then by [2, Th. 2] there
are u, u" in U, h in ξ> and w in W such that # = uhω(w)u", whence
ω(w)n — h~λu~λgu"~λyχ gΞ u. This implies that w maps positive roots onto
positive roots, whence w = 1. Then the equation

cr Φ 0, in conjunction with the definition of graph automorphism, implies
that g — 1, that 4.5 is true.

Let P and P r be the additive groups generated by the weights and
by the roots relative to Σ. By a basic theorem for free modules, there
exist bases {δj and \b[) of P and Pr and a set of positive integers {fi}
such that δ — / ^ for each i. Then from the definitions £>/£>' is isomor-
phic to the direct product of the groups iΓ*/ίΓ*/i. Now since Φ is a
basis for Pr and {a'\ a e 0, (2α', δ)/(6, δ) = δα&, δ e }̂ is a basis for P, the
numbers /* can be found by reducing the matrix (cαb)(α, beΦ) to dia-
gonal form. In this way 4.6 is proved.

Finally, an examination of the various root systems yields 4.7, and
then 4.6 and 4.7 imply 4.8.

7. The other algebras* Continuing with the previous notation, but
dropping the assumption in the second sentence of § 4, we define G" to
be the group generated by the automorphisms of type xr(k) constructed
relative to all standard sets of generators for which ί) is the correspond-
ing Cartan subalgebra. By 5.3, G" = G' for the algebras treated there,
but this is not the case for the algebras yet to be considered.

7.1. // \ and ί)2 are standard Cartan subalgebras of g, there is
x in G" such that xί)λ = ϊj2.

7.2. In the respective cases that Σ is of type A2, D± or Dn (n Φ 4)
and K is of characteristic 3, 2 or 2, the group G" is isomorphic to
the group Gr of type G2, F4 or Cn.

7.3. In the first two cases above A = G" and in the third A/G"
is isomorphic to K*/K**.

The proofs of these results require suitable analogues of 5.1 and 5.2:
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7.4. In the respective cases of 7.2, the nonzero root spaces of g
relative to ^ have dimensions 3, 8 or 4.

7.5. IfS and S" are standard sets of generators both of which
have § as the corresponding Cartan subalgebra, then there is x in G"
such that S and S' = xS" satisfy the properties (1) and (2) of 5.2.

The ideas in the proofs of these results are the same for all three
types of algebras. However, the details are somewhat different. Hence
we shall restrict ourselves to a discussion of the algebra of type A2 over
a field of characteristic 3.

Now the roots of a system of type G2 may be so labelled that the
set of short ones is Σ — {±α, ± 6 , ±(α + b)} and the set of long ones is
A = {±(α - 6), ±(α + 26), ±(2α + b)} (see any of [1, p. 93; 3, p. 141; 16,
p. 14-06]). As has already been mentioned, the construction of 2.6 does
not yield a simple algebra if a root system of type G2 is combined with
a field K of characteristic 3: the set S = {Xr, Hr\r e Σ} spans an ideal
which is easily seen to be a classical Lie algebra of type A2 with S as
a standard set of generators. Let g denote the ideal and m the full
algebra. First we observe that an automorphism of m which is the
identity on g is the identity on m because the adjoint action of m on
g is faithful by 2.3 and 2.5. Thus the automorphisms of m may be
considered to act on g (the unique minimal ideal) without any ambiguity.
Now cah = cba = — 1 = 2 = caa = cbb. Hence a = 6, and then — a — b —
— a — b = α. Thus a corresponds to a root space R+ spanned by those
Xr for which r is in Σ+ — {a, 6, — a — 6}; a similar statement for — a
establishes 7.4. Now each r in A can be written uniquely r — t — s
with t and s in Σ+. Hence if u denotes the third element of Σ+, xr(k)
maps X8f Xu Xu onto Xs ± kXtJ Xtf Xu, respectively. Here s, t, u run
through the permutations of Σ+ as r runs through J . Hence the group
generated by {xr(k) \ r e A, k e K) induces in R+ the three-dimensional
unimodular group. Now if S" = {Yq, JQ, q e Σ1} is a second standard set
of generators of g corresponding to the same Cartan subalgebra f) as S,
then the root spaces, as determined by f), are three dimensional and Σ'
is of type A2, whence its roots can be labelled so that R+ is spanned by
Fαr, Yj,, and Γlα,_6,. Thus by what has just been said there is x in (?'", the
group of type G' for tn such that, if we set x Γ r = I r and xJr = Hr for
each r in 21', then Xa,, Xh>, X-a>-w are scalar multiples of Xa9 XhJ X-a-b,
respectively. But then also Xa,+b> = ± Xa>Xj>> is a scalar multiple of
X<A = ± Xa+b9 with similar statements for X-a and X_δ, whence the
properties Hr, = ί/"r and crc_r = 1 are proved as before. Now consider
the identity [2, p. 63, 1.7]

xr+3s(k)x_s(l)xr+3s(k)-1 = £_ s (l)£ r + 2 s ( ± k)xr+s( ± k)xr( ± k
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which is valid if s and r + s are in Σy r is in A and k is in K. By
3.2 the left side is in G" as are the first three terms on the right.
Thus the product of the last two is also, and replacing k by — k, we
conclude that xr(k) is in G". Thus G'" C G", completing the proof of
7.5. We see by 3.2 that G" is generated by elements of the form xxr{k)x~x

y

with r in Σ and x in G'". Hence G" £ G"', whence G" = G'" and 7.2
is proved. The deduction of 7.1 and 7.3 now proceeds as before and
details are left to the reader.

8 Classification theorem. By 4.1, 5.2, 7.1 and 7.5, if two classical
Lie algebras are isomorphic, then they can be identified so that specified
standard sets of generators satisfy conditions (1) and (2) of 5.2, whence
the root systems are of the same type. Hence (see [13]).

8.1. Two classical Lie algebras are isomorphic if and only if they
have the same type.

9. Extensions* If g is obtained from an algebra g by extension of
the base field, then any automorphism of g has a unique extension to
g, whence the automorphisms of g may be described as the restrictions
tog of those automorphisms of g which fix g. Thus if g turns out to
be a direct sum of classical Lie algebras, the results above enable us to
determine the automorphisms of g. For example, using well-known
identifications [11], we infer from 4.2 to 4.8 for g of type Bn or Dn that
each automorphism of the Lie algebra of those linear transformations of
a vector space of dimension not 8 over an algebraically closed field of
characteristic not 2 which are skew relative to a noli singular symmetric
bilinear form is induced by an orthogonal transformation of the under-
lying space, and we then easily deduce if the field is not necessarily
algebraically closed that every automorphism is induced by a similitude.

A procedure often used to construct a Lie algebra g is to start
with g, a direct sum of classical Lie algebras, to then prescribe a group
F of semiautomorphisms of g, and finally to define g as the set of fixed
points of F. Let us assume that F is so chosen that g can be regarded
as a field extension of g. Then the device stated above is applicable in
the following easily proved form: the automorphisms of g are the restric-
tions to g of those automorphisms of g which commute with the elements
of F. Examples here are the analogues over general fields of the real
forms of Cartan [1, p. 399], and the algebras which can be constructed
from those classical ones which admit graph automorphisms by naturally
defined semiautomorphisms. For these latter algebras one can thus obtain
explicit statements such as 4.2 to 4.5 with the role of G' taken by the
simple groups considered in [17].
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