EXTENSIONS OF SHEAVES OF ASSOCIATIVE ALGEBRAS BY NONTRIVIAL KERNELS

JOHN W. GRAY

Introduction. Let X be a topological space, Λ a sheaf of associative algebras over X and A a sheaf of two-sided Λ -modules considered as a sheaf of algebras with trivial multiplication. It was shown in [1] that the group $F(\Lambda, A)$ of equivalence classes of algebra extensions of Λ with A as kernel occurs naturally in an exact sequence

$$\cdots \to H^1(X, A) \to F(\Lambda, A) \to \operatorname{Ext}^2(\Lambda, A) \to H^2(X, A) \to \cdots$$

where $H^*(X, A)$ denotes the Cech cohomology of X with coefficients in A. In this paper the same question will be discussed for the case in which A has a non-trivial multiplication. It will be shown that under appropriate hypothese F(A, A) occurs in a similar exact sequence, except that in the other terms of the sequence, A must be replaced by the "bicenter" K_A of A. A precise statement of the main result of this paper is given in Theorem 2. The methods used here are an adaptation of those used by S. MacLane in [2].

1. The extension problem. Let R be a sheaf of rings on a topological space X. If C and D are sheaves of R-modules, then $Hom_R(C, D)$ will denote the sheaf of germs of R-homomorphisms of C into D and $Ext_R^n(C, D)$ will denote the *n*th derived functor of $Hom_R(C, D)$. If A is a sheaf of associative R-algebras, then, as usual, A^* will denote the opposite of R-algebras and $A^e = A\bigotimes_R A^*$ will denote the enveloping sheaf of A. A is a sheaf of A^e -modules, the operation of A^e on A being given by the formula $(\lambda \otimes \mu^*)(\gamma) = \lambda \gamma \mu$.

Now, let
$$M'_A = Hom_{A*}(A, A) \oplus Hom_A(A, A)$$

where \bigoplus denotes the direct sum. Then M'_A , being the direct sum of sheaves of rings, is itself a sheaf of rings and A can be considered as a sheaf of left and right M'_A -modules as follows: Let $\sigma = (\sigma_1, \sigma_2) \in M'_A$. Then the left action is given by $\sigma(a) = \sigma_1(a)$ and the right action by $(a)\sigma = \sigma_2(a)$. Let

$$M_A = \{ \sigma \in M'_A \mid a \ (\sigma b) = (a\sigma) \ b \ \text{for all} \ a, \ b \in A \} \ .$$

Received June 15, 1960. This work has been supported by Office of Naval Research contract number Nonr. 266(57).

Then M_A is a subsheaf of subrings of M'_A . M_A will be called the sheaf of germs of bimultiplications of A. Note that we cannot assert that A is a sheaf of M_{A}^{r} -modules since we do not know that $(\sigma a)\tau = \sigma(a\tau)$. If σ and τ satisfy this relation then they are called permutable bimultiplic-The natural ring homomorphisms $A \rightarrow Hom_{A*}(A, A)$ and $A \rightarrow$ ations. $Hom_A(A, A)$ given respectively by left and right multiplication induce a ring homomorphism $\mu: A \to M_A$ whose image is a sheaf of two-sided ideals. The kernel K_A of μ will be called the bicenter of A and the cokernel P_A of μ will be called the sheaf of germs of outer bimultiplications of A. P_A is a sheaf of rings and K_A is a sheaf of left and right P_A -modules. As above, K_A is not a sheaf of P_A^* -modules. Elements $\overline{\sigma}$ and $\overline{\tau}$ of P_A such that $(\overline{\sigma}a)\overline{\tau} = \overline{\sigma}(a\overline{\tau})$ for all $a \in K_A$ will be called permutable. Note that $\bar{\sigma}$ and $\bar{\tau}$ are permutable if and only if representative elements σ and τ in M_A are also permutable.

An extension of a sheaf Λ of *R*-algebras by a sheaf *A* of *R*-algebras is an exact sequence.

(1)
$$0 \to A \xrightarrow{i} \Gamma \xrightarrow{p} \Lambda \to 0$$

of sheaves of *R*-algebras and *R*-algebra homomorphisms. As in [1], we shall say that such a sequence is locally trivial if there exists a covering $\mathscr{U} = \{U_{\alpha}\}$ of *X* such that the restriction of the sequence to each U_{α} splits as an exact sequence of sheaves of *R*-modules. Hence if (1) is locally trivial then there exist *R*-module homomorphisms $j_{\alpha} : \varDelta \mid U_{\alpha} \longrightarrow$ $\Gamma \mid U_{\alpha}$ with $p \mid j_{\alpha} =$ identity. Furthermore, since *A* is a sheaf of two-sided ideals in Γ , the map $\mu: A \longrightarrow M_A$ extends to a map $\mu_{\Gamma}: \Gamma \longrightarrow M_A$. Thus, we may define the composition

$$heta_{lpha} = (\operatorname{coker} \mu) \circ \mu_{\scriptscriptstyle \Gamma} \circ j_{lpha} \colon \varLambda \mid U_{lpha} o P_{A} \mid U_{lpha} \;.$$

Since $(j_{\beta} - j_{\alpha}) : \Lambda \mid U_{\alpha\beta} \longrightarrow A \mid U_{\alpha\beta}$, we see that $\theta_{\beta} = \theta_{\alpha}$ on $U_{\alpha\beta} = U_{\alpha} \cap U_{\beta}$. Hence $\{\theta_{\alpha}\}$ determines an element $\theta \in \operatorname{Hom}_{R}(\Lambda, P_{A})$. We shall say that this θ is induced by the extension (1). Clearly θ is an algebra homomorphism whose image consists of permutable elements. Note that this implies that K_{A} is a sheaf of Λ^{e} -modules via the operation of P_{A} on K_{A} .

If $\theta \in \operatorname{Hom}_{R}(\Lambda, P_{\Lambda})$ is an algebra homomorphism whose image consists of permutable elements, then, with respect to the usual equivalence relation, we wish to classify the extensions which induce θ in the manner described above.

2. The complexes. From [1], we recall that a sheaf B of R-modules is said to be weakly R-projective if each stalk B_x is an R_x -projective module and it is said to be R-coherent if there exists a covering $\mathscr{U} = \{U_{\alpha}\}$ such that for each U_{α} there are integers p and q and R-homomorphisms so that the sequence

 $R^{p} \mid U_{a} \longrightarrow R^{q} \mid U_{a} \longrightarrow B \mid U_{a} \longrightarrow 0$

is exact. Also, as in [1], $C^*(X, B)$ will denote the direct limit over coverings \mathscr{U} indexed by X of the Cech cohomology complexes $C^*(\mathscr{U}, B)$. If $S_0(\Lambda) = R$ and $S_n(\Lambda)$, n > 0 denotes the *n*-fold tensor product of Λ with itself, then we define

$$L^{i,j}(B) = C^{i}(X, Hom_{R}(S_{j}(\Lambda), B))$$
.

PROPOSITION 1. If X is paracompact Hausdorff and if Λ is weakly *R*-projective and *R*-coherent, then, for each $n \ge 0$,

$$0 \longrightarrow L^{*,n}(K_{\scriptscriptstyle A}) \longrightarrow L^{*,n}(A) \xrightarrow{\mu *} L^{*,n}(M_{\scriptscriptstyle A}) \xrightarrow{\pi *} L^{*,n}(P_{\scriptscriptstyle A}) \longrightarrow 0$$

is an exact sequence of complexes, the mappings being those induced by the exact sequence of sheaves

$$0 \longrightarrow K_A \longrightarrow A \xrightarrow{\mu} M_A \xrightarrow{\pi} P_A \longrightarrow 0$$

Proof. In [1] it was shown that if Λ is weakly *R*-projective and *R*-coherent then so is $S_n(\Lambda)$ and hence the sheaves $Ext_R^i(S_n(\Lambda), B) = 0$ for i > 0, $n \ge 0$ and for all *B*. Hence, for each $n \ge 0$, there is an exact sequence of sheaves

$$0 \longrightarrow Hom_{\mathbb{R}}(S_{n}(\Lambda), K_{A}) \longrightarrow Hom_{\mathbb{R}}(S_{n}(\Lambda), A) \longrightarrow Hom_{\mathbb{R}}(S_{n}(\Lambda), M_{A})$$
$$\longrightarrow Hom_{\mathbb{R}}(S_{n}(\Lambda), P_{A}) \longrightarrow 0.$$

If X is paracompact Hausdorff then $C^*(X, -)$ is an exact functor and hence we get the indicated sequence of complexes.

We would like to consider each of the complexes $L^{i,j}(-)$ in the preceding proposition as a bicomplex in some manner which reflects a given structure of K_A as a sheaf of Λ^e -modules and which coincides with the usual structure of $Hom_R(S_n(\Lambda), -)$ as a complex. This is too much to ask, but such a structure on $L^{i,j}(\Lambda)$ can be approximated as follows: Let $\theta \in \text{Hom}(\Lambda, P_A)$ be an algebra homomorphism whose image consists of permutable elements. If θ is regarded as an element of $L^{0,1}(P_A)$, then by exactness there is an element $\sigma \in L^{0,1}(M_A)$ such that $\pi_*(\sigma) = \theta$. Let σ be represented by cocycle $\{\sigma_{\alpha}\}$ on some sufficiently fine covering \mathscr{U} . Given this date, we can define a "coboundary" operator δ_{σ} on $L^{m,n}(\Lambda)$ by the following formula. Let $k \in L^{m,n}(\Lambda)$ be represented by a cochain $\{k_{\alpha_1,\ldots,\alpha_m}\}$ on \mathscr{U} . Then

$$egin{aligned} &\delta_{\sigma}k_{lpha_0,\ldots,lpha_m}(\lambda_{1,\ldots,\lambda_{n+1}}) &= \sigma_{lpha_0}(\lambda_{1})k_{lpha_0,\ldots,lpha_m}(\lambda_{2,\ldots,\lambda_{n+1}}) \ &+ \sum\limits_{i=1}^n (-1)^i k_{lpha_0,\ldots,lpha_m}(\lambda_{1,\ldots,\lambda_i}\lambda_{i+1,\ldots,\lambda_{n+1}}) \ &+ (-1)^{n+1}k_{lpha_0,\ldots,lpha_m}(\lambda_{1,\ldots,\lambda_n})\sigma_{lpha_0}(\lambda_{n+1}) \ . \end{aligned}$$

We shall see that the restriction of δ_{σ} to $L^{i,j}(K_A)$ is in fact a good coboundary operator.

In order to investigate the properties of δ_{σ} and the relations between δ_{σ} and the Cech coboundary operator $\hat{\delta}$, we must introduce some more notation.

(2.1) To avoid constantly writing variables we make the following convention: If r is a function of p variables and s is a function of q variables, both with values in an algebra, then $r \cdot s$ is the function of p + q variables defined by

$$r \cdot s(\lambda_{1,\ldots},\lambda_{p+q}) = r(\lambda_{1,\ldots},\lambda_{p}) \cdot s(\lambda_{p+1,\ldots},\lambda_{p+q})$$
.

(2.2) m will denote ambiguously the multiplication in all of the algebras which appear here.

(2.3) Since θ is an algebra homomorphism, $\pi_*(\sigma_{\alpha} \cdot \sigma_{\alpha} - \sigma_{\alpha} \circ m) = 0$ Hence there exists an $f \in L^{0.2}(A)$ which is represented by a cochain $\{f_{\alpha}\}$ on \mathscr{U} such that

$$\mu_*f_{\alpha}=\sigma_{\alpha}\cdot\sigma_{\alpha}-\sigma_{\alpha}\circ m.$$

(2.4) Since $\pi_*(\hat{\delta}\sigma) = \hat{\delta} \pi_*(\sigma) = 0$, there exists an $h \in L^{1,1}(A)$ which is represented by a cochain $\{h_{\alpha\beta}\}$ on \mathscr{U} such that

$$\mu_* h_{\alpha\beta} = (\widehat{\delta}\sigma)_{\alpha\beta}$$
 .

(2.5) If $\sigma' \in L^{0,1}(M_A)$ also satisfies $\pi_*(\sigma') = \theta$, then $\pi_*(\sigma' - \sigma) = 0$ and hence there exists a $\bar{\sigma} \in L^{0,1}(A)$ which is represented by a cochain $\{\bar{\sigma}_{\alpha}\}$ on \mathscr{U} such that

$$\mu_*\,\bar{\sigma}_{\alpha}=\bar{\sigma}'_{\alpha}-\bar{\sigma}_{\alpha}$$

Using these notations the following result in easily checked:

PROPOSITION 2. If $k \in L^{m.n}(A)$ is represented by $\{k_{\alpha_0,\ldots,\alpha_m}\}$ on \mathscr{U} , then

- (2.6) $\delta_{\sigma}\delta_{\sigma}k_{\alpha_0,\ldots,\alpha_m} = f_{\alpha_0} \cdot k_{\alpha_0,\ldots,\alpha_m} k_{\alpha_0,\ldots,\alpha_m} \cdot f_{\alpha_0}$
- (2.7) $\delta_{\sigma}(\widehat{\delta} k)_{\alpha_0,\ldots,\alpha_{m+1}} = (\widehat{\delta} \delta_{\sigma} k)_{\alpha_0,\ldots,\alpha_{m+1}} h_{\alpha_0,\alpha_1} k_{\alpha_1,\ldots,\alpha_{m+1}} (-1)^{n+1} k_{\alpha_1,\ldots,\alpha_{m+1}} h_{\alpha_0,\alpha_1}$
- $(2.8) \quad \delta_{\sigma'} k_{\alpha_0,\ldots,\alpha_m} = \delta_{\sigma} k_{\alpha_0,\ldots,\alpha_m} + \bar{\sigma}_{\alpha_0} k_{\alpha_0,\ldots,\alpha_m} + (-1)^{n+1} k_{\alpha_0,\ldots,\alpha_m} \bar{\sigma}_{\alpha_0} .$

COROLLARY. $L^{i,j}(K_A)$ is a bicomplex with respect to the pair of differential operators $\hat{\delta}, \delta_{\sigma}$. The total differential operator is given by

$$\delta = (-1)^{j_{+1}} \widehat{\delta} + \delta_{\sigma} \; .$$

This differential operator depends only on θ .

Finally, we shall need to know something about the behavior of δ on products of low dimensional cochains, where Cech cochains are multiplied by multiplying the values (suitably restricted when necessary) on corresponding elements of the nerve of a covering according to the convention of 2.1. It is easy to verify the following statements by explicit calculation.

PROPOSITION 3. If $r \in L^{0,p}(A)$ and $s \in L^{0,q}(A)$ are represented on \mathscr{U} by $\{r_{\alpha}\}$ and $\{s_{\alpha}\}$ respectively, then $\widehat{\delta}(r \cdot s) \in L^{1,p+q}(A)$ and

(2.9)
$$\hat{\delta}(r \cdot s)_{\alpha\beta} = (\hat{\delta}r)_{\alpha\beta} \cdot s_{\alpha} + r_{\alpha} \cdot (\hat{\delta}s)_{\alpha\beta} + (\hat{\delta}r)_{\alpha\beta} \cdot (\delta s)_{\alpha\beta}$$
.

If $t \in L^{1,p}(A)$ and $u \in L^{1,q}(A)$ are represented on \mathscr{U} by $\{t_{\alpha\beta}\}$ and $\{u_{\alpha\beta}\}$ respectively then $\hat{\delta}(t \cdot u) \in L^{2,p+q}(A)$ and

(2.10)
$$(\hat{\delta}(t \cdot u))_{\alpha\beta\gamma} = (\hat{\delta}t)_{\alpha\beta\gamma} \cdot u_{\alpha\gamma} + t_{\alpha\gamma} \cdot (\hat{\delta}u)_{\alpha\beta\gamma} + (\hat{\delta}t)_{\alpha\beta\gamma} \cdot (\hat{\delta}u)_{\alpha\beta\gamma} - t_{\alpha\beta} \cdot u_{\beta\gamma} - t_{\beta\gamma} \cdot u_{\alpha\beta}$$
.

Finally, if $r \in L^{m,p}(A)$ and $s \in L^{m,q}(A)$ then δ_{σ} satisfies the good coboundary formula.

(2.11)
$$\delta_{\sigma}(r \cdot s) = (\delta_{\sigma} r) \cdot s + (-1)^p r \cdot \delta_{\sigma} s$$
.

3. The obstruction. We shall regard the complex $L^{i,j}(K_A)$ as being filtered by the second degree and we define $F^p(L) = \sum_{j \ge p} L^{i,j}(K_A)$. In analogy with the proceedings of [1], the classical results for extensions of algebras suggest that each algebra homomorphism $\theta \in \text{Hom}(\Lambda, P_A)$ whose range consists of permutable elements determines an "obstruction" in $H^s(F^1(L))$; this obstruction being zero if and only if there exists an extension which induces θ in the manner described in § 1. A representative cocycle for such a cohomology class would be an element of $L^{2,1}(K_A) \oplus L^{1,2}(K_A) \oplus L^{0,3}(K_A)$.

Let
$$\sigma \in L^{0,1}(A)$$
 satisfy $\pi_* \sigma = \theta$ and let

 $f \in L^{0,2}(A)$ and $h \in L^{1,1}(A)$ be defined as in 2.3 and 2.4. Then the components of a representative cocycle of the "obstruction" to θ are defined as follows:

(i) Since $\mu_*(\widehat{\delta}h) = \widehat{\delta}\mu_*h = 0$, there exists an element $a \in L^{2,1}(K_A)$ which is represented by a cochain $\{a_{\alpha\beta\gamma}\}$ on $\mathscr U$ such that

$$a_{lphaeta\gamma} = (\delta h)_{lphaeta\gamma}$$

(ii) A standard elementary calculation shows that $\mu_*(\delta_{\sigma} f) = 0$.

Hence there exists an element $c \in L^{0,3}(K_A)$ which is represented by a cochain $\{c_{\alpha}\}$ on \mathscr{U} such that $c_{\alpha} = \delta_{\sigma} f_{\alpha}$.

(iii) An equally elementary calculation shows that $\mu_*[\widehat{\delta}f - \delta_{\sigma}h - h \cdot h] = 0$. Hence there exists an element $b \in L^{1,2}(K_A)$ which is represented by a cochain $\{b_{\alpha\beta}\}$ on \mathscr{U} such that

$$b_{lphaeta} = -(\widehat{\delta}f)_{lphaeta} + \delta_{\sigma}h_{lphaeta} + h_{lphaeta}m{\cdot}h_{lphaeta}$$

THEOREM 1. Let $s = a \oplus b \oplus c$. Then s is a cocycle of $F^{1}(L)$ whose cohomology class depends only on θ .

DEFINITION. The cohomology class of s will be denoted by $Ob(\theta)$ and will be called the obstruction to θ .

THEOREM 2. Let X be paracompact Hausdorff and let Λ be weakly R-projective and R-coherent. Then $Ob(\theta) = 0$ if and only if there is an extension of Λ by A which induces θ . If $OB(\theta) = 0$, then the set $F_{\theta}(\Lambda, A)$ of equivalence classes of extensions which induce θ is in oneto-one correspondence with the set of elements of the group $H^{2}(F^{1}K)$, and hence the following two sequences are exact.

$$(1) \quad 0 \longrightarrow H^{1}[\operatorname{Hom}_{R}(S_{*}(\Lambda), K_{A})] \longrightarrow \operatorname{Ext}_{A^{e}}^{1}(\Lambda, K_{A}) \longrightarrow H^{1}(X, K_{A}) \longrightarrow F_{\theta}(\Lambda, A) \longrightarrow \operatorname{Ext}_{A^{e}}^{2}(\Lambda, K_{A}) \longrightarrow H^{2}(X, K_{A}) \longrightarrow$$

$$(2) \quad 0 \longrightarrow H^{2}[\operatorname{Hom}_{R}(S_{*}(\Lambda), K_{A})] \longrightarrow F_{\theta}(\Lambda, A) \longrightarrow$$

$$H^{1}(X, \operatorname{Hom}_{R}(\Lambda, K_{A})) \longrightarrow$$

Proof of Theorem 1. It is clear that $\hat{\delta}a = \hat{\delta}\hat{\delta}h = 0$, and, by 2.6, that $\delta_{\sigma}c = \delta_{\sigma}\delta_{\sigma}f = 0$. Thus, to prove that s is a cocycle we must show that $\hat{\delta}b = \delta_{\sigma}a$ and that $\hat{\delta}c = -\delta_{\sigma}b$. To derive the first expression, we have by definition that

$$(\widehat{\delta}b)_{lphaeta\gamma} = -(\widehat{\delta}\widehat{\delta}f)_{lphaeta\gamma} + (\widehat{\delta}\delta_{\sigma}h)_{lphaeta\gamma} + \widehat{\delta}(h \cdot h)_{lphaeta\gamma}$$

The first term is zero and the second and third terms can be expanded by 2.7 and 2.10 respectively. After obvious cancellations, this yields

$$(\hat{\delta}b)_{lphaeta\gamma} = \delta_{\sigma}(\hat{\delta}h)_{lphaeta\gamma} + (\hat{\delta}h)_{lphaeta\gamma} \cdot h_{lpha\gamma} + h_{lpha\gamma} \cdot (\hat{\delta}h)_{lphaeta\gamma} + (\hat{\delta}h)_{lphaeta\gamma} \cdot (\hat{\delta}h)_{lphaeta\gamma}$$

Since $\hat{\delta}h = a \in L^{2,1}(K_A)$, on a sufficiently fine covering multiplication by $(\hat{\delta}h)_{\alpha\beta\gamma}$ is zero and hence $\hat{\delta}b = \delta_{\sigma}a$. Similarly, since $c = \delta_{\sigma}f$, $\hat{\delta}c$ can be expanded by the equation, 2.7, for commuting $\hat{\delta}$ and δ_{σ} . The resulting expression can be simplified by using equations 2.6 and 2.11 and the definition of b in (ii). This yields easily that

$$(\delta c)_{lphaeta} = \delta_{\sigma}[(\delta f)_{lphaeta} - \delta_{\sigma}h_{lphaeta} - h_{lphaeta}\cdot h_{lphaeta}] = -\delta_{\sigma}b_{lphaeta} \ .$$

Thus s is a cocycle.

The definition of s depends on the choices of b, h, and f. We shall show that changing any of these changes s by a coboundary and that any cocycle cohomologous to s can be obtained by such a choice.

Suppose that h' satisfies $\mu_*h' = \delta\sigma$ and f' satisfies $\mu_*f' = \sigma \cdot \sigma - \sigma \circ m$. Then $h' - h = \bar{h} \in L^{1,1}(K_A)$ and $f' - f = \bar{f} \in L^{0,2}(K_A)$. If s' denotes the cocycle corresponding to σ , h' and f', then it is easy to see that

$$s'-s=(\widehat{\delta}+\delta_{\sigma})ar{h}+(-\widehat{\delta}+\delta_{\sigma})ar{f}=\delta(ar{h}+ar{f})\ .$$

Conversely, if $\bar{h} \oplus \bar{f}$ is any 2-cochain of $F^{1}(L)$, then $h + \bar{h}$ and $f + \bar{f}$ are admissable liftings of $\hat{\delta}_{\sigma}$ and $\sigma \cdot \sigma - \sigma \circ m$ respectively and this change alters s by $\delta(\bar{h} \oplus \bar{f})$. Hence, in this manner we obtain all cocycles cohomologous to s.

It remains to show that if $\pi_*\sigma' = \theta$, then h' and f' can be chosen so that the corresponding cocycle s' = a' + b' + c' = s. Since $\pi_*(\sigma' \cdot -\sigma) = 0$, there is a $\bar{\sigma} \in L^{0,1}(A)$ such that $\mu_*\bar{\sigma} = \sigma' - \sigma$. Let $h' = h + \delta\bar{\sigma}$ and $f' = f + \delta_\sigma\bar{\sigma} + \bar{\sigma}\cdot\bar{\sigma}$. Then it is immediate that h' and f' are liftings of $\delta\sigma'$ and $\sigma'\cdot\sigma' - \sigma'\cdot m$ respectively and that $a' = \delta h' = a$. The difference $\delta_{\sigma'}f' - \delta_{\sigma}f$ can be expressed by 2.8. Using 2.6 and 2.11, it is easily seen that this difference is zero and hence c' = c. The only difficult point is to show that b' = b. By definition

$$b' = -\widehat{\delta}f' + \delta_{\sigma'}h' + h' \cdot h'$$

Using the definitions of f' and h' and rearranging terms, we arrive at the equality

$$egin{aligned} b_{lphaeta}&=[\delta_{\sigma}\widehat{\delta}ar{\sigma}_{lphaeta}-\widehat{\delta}\delta_{\sigma}ar{\sigma}_{lphaeta}]+[ar{\sigma}_{lpha}\cdot h_{lphaeta}+h_{lphaeta}\cdotar{\sigma}_{lpha}+\widehat{\delta}ar{\sigma}_{\sigmaeta}\cdot h_{lphaeta}+\deltaar{\sigma}_{lphaeta}\cdotar{\sigma}_{lphaeta}+\widehat{\delta}ar{\sigma}_{lphaeta}+\widehat{\delta}ar{\sigma}_{lphaeta}+\widehat{\delta}ar{\sigma}_{lphaeta}-\widehat{\delta}(ar{\sigma}\cdotar{\sigma})_{lphaeta}]\ +&[ar{\sigma}_{lpha}\cdot\widehat{\delta}ar{\sigma}_{lphaeta}+\widehat{\delta}ar{\sigma}_{lphaeta}\cdotar{\delta}ar{\sigma}_{lphaeta}-\widehat{\delta}(ar{\sigma}\cdotar{\sigma})_{lphaeta}]\ . \end{aligned}$$

The third bracket is zero by the formula 2.9 for the Cech coboundary of a product and the first bracket equals $-h_{\alpha\beta}\cdot\bar{\sigma}_{\beta}-\bar{\sigma}_{\beta}\cdot h_{\alpha\beta}$ by the rule 2.7 for interchanging $\hat{\delta}_{\sigma}$ and δ . Hence the sum of the first two brackets is zero and therefore b' = b.

Proof of Theorem 2. Suppose $0 \longrightarrow A \xrightarrow{i} \Gamma \xrightarrow{p} A \longrightarrow 0$ is an extension. By Proposition 3.1 of [1], the hypotheses imply that any such extension is locally trivial considered as an extension of sheaves of R-modules. Hence there exists a covering $\mathscr{U} = \{U_{\alpha}\}$ which carries R-module homomorphisms $j_{\alpha} \cdot A \mid U_{\alpha} \longrightarrow \Gamma \mid U_{\alpha}$ with $p \cdot j_{\alpha} = \text{identity}$. If $\sigma_{\alpha} : A \mid U_{\alpha} \longrightarrow M_{A} \mid U_{\alpha}$ is defined by $[\sigma_{\alpha}(\lambda)](\alpha) = j_{\alpha}(\lambda) \cdot \alpha$ and $(\alpha)[\sigma_{\alpha}(\lambda)] = a \cdot j_{\alpha}(\lambda)$ then $\{\sigma_{\alpha}\}$ determines an element $\sigma \in L^{0, 1}(M_{A})$ which is a lifting of the homomorphism θ induced as in §1 by the given extension. If we define $h_{\alpha\beta} = j_{\beta} - j_{\alpha}$ and $f_{\alpha} = j_{\alpha} j_{\alpha} - j_{\alpha} \circ m$, then the corresponding elements $h \in L^{1, 1}(A)$ and $f \in L^{0, 2}(A)$ satisfy $\mu_* h = \delta \sigma$ and $\mu_* f = \sigma \cdot \sigma$

 $\sigma \circ m$. Elementary calculations show that for this choice of h and f we get that $s = a \bigoplus b \bigoplus c = 0$ and hence $Ob(\theta) = 0$.

Conversely, if $Ob(\theta) = 0$, then on some sufficiently fine covering \mathscr{U} , we may choose $\{f_{\alpha}\} \in \hat{C}^{0}(\mathscr{U}, Hom_{\mathbb{R}}(S_{2}(\Lambda), A))$ and $\{h_{\alpha\beta}\} \in \hat{C}^{1}(U, Hom_{\mathbb{R}}(\Lambda, A))$ so that $\delta_{\sigma}f_{\alpha} = 0$, $(\hat{\delta}h)_{\alpha\beta\gamma} = 0$ and $(\hat{\delta}f)_{\alpha\beta} = \delta_{\sigma}h_{\alpha\beta} + h_{\alpha\beta}\cdot h_{\alpha\beta}$. As in [1], we define Γ to be the sheaf which is the quotient of $\bigcup_{\alpha}(A \oplus \Lambda) | U_{\alpha}$ by the relation

 $(a + h_{\alpha\beta}(\lambda), \lambda)_{\alpha} \sim (a, \lambda)_{\beta}$ for $(a, \lambda) \in A \bigoplus A \mid U_{\alpha\beta}$.

Multiplication in Γ is given by the formula

$$(a, \lambda)_{a} \cdot (a', \lambda')_{a} = (aa' + \sigma_{a}(\lambda)a' + a\sigma_{a}(\lambda) + f_{a}(\lambda, \lambda'), \lambda\lambda')_{a}$$
.

It is easy to show that this multiplication is associative since $\delta_{\sigma}f = 0$ and that it agrees with the equivalence relation since $\hat{\delta}f = \delta_{\sigma}h + h \cdot h$.

It follows then, exactly as in MacLane [2] that the set of equivalence classes of extensions which realize a given θ with $Ob(\theta) = 0$ is in one-toone correspondence with the set of elements of the group $H^2(F^1(L))$. The exact sequences are derived exactly as in [1] from the exact sequences of complexes

and

$$0 \longrightarrow F^{1}L \longrightarrow F^{0}L \longrightarrow E_{0}^{*,0} \longrightarrow 0$$
$$0 \longrightarrow F^{2}L \longrightarrow F^{1}L \longrightarrow E_{0}^{*,1} \longrightarrow 0$$

4. Examples. (1) If $K_A = 0$ then all obstructions are zero and all terms involving K_A in the exact sequence containing $F_{\theta}(\Lambda, A)$ are zero. Hence there is a unique extension of Λ by A which induces a given $\theta \in \operatorname{Hom}_R(\Lambda, P_A)$. As in MacLane [2], this extension can be described as the "graph" of θ ; i.e., the pull-back of the pair of maps θ : $\Lambda \longrightarrow P_A, \pi: M_A \longrightarrow P_A$.

(2) If $K_A = A$, then the map $\mu: A \longrightarrow M_A$ is the zero map and hence $M_A = P_A$. Consequently, if $\theta \in \operatorname{Hom}_R(\Lambda, P_A)$ is given, then σ may be chosen equal to θ and so $\delta\sigma$ and $\sigma \cdot \sigma - \sigma \circ m$ are both zero. Therefore, any cocycle $f \bigoplus h \in L^{0,2}(A) \bigoplus L^{1,1}(A)$ is a lifting of these two terms. It follows that $Ob(\theta) = 0$ and that $F_{\theta}(\Lambda, A) = H^2(F^1L)$. Thus the results of [1] are a special case of the results of this paper.

(3) We wish to discuss more thoroughly a remark in § 3.3 of [1]. Let X be paracompact Hausdorff and let Λ be a weakly R-projective and R-coherent sheaf of R-algebras. Suppose that A is a sheaf of R-algebras and that

$$0 \longrightarrow A \longrightarrow \varGamma \longrightarrow 0$$

is an exact sequence of *R*-modules. Let $\mathscr{U} = \{U_{\alpha}\}$ be a sufficiently fine covering of X and let $\{j_{\alpha}\} \in \hat{C}^{0}(\mathscr{U}, Hom_{R}(\Lambda, \Gamma))$ determine the locally

trivial structure of Γ and let $h_{\alpha\beta} = (\hat{\delta} j)_{\alpha\beta}$. An algebra homomorphism $\theta \in \operatorname{Hom}_{\mathbb{R}}(\Lambda, P_{A})$ whose image consists of permutable elements will be called compatible with the locally trivial structure of Γ if there exists a lifting $\sigma \in L^{0,1}(M_{A})$ of θ which is represented by a cochain $\{\sigma_{\alpha}\}$ on \mathscr{U} such that $\mu_{*}h = \hat{\delta}\sigma$. Furthermore, an element $f \in L^{0,2}(A)$ will be called a multiplication compatible with θ and h if $\mu_{*}f = \sigma \cdot \sigma - \sigma \circ m$, $\hat{\delta}f = \delta_{\sigma}h + h \cdot h$ and $\delta_{\sigma}f = 0$. The set of equivalence classes with respect to the usual equivalence relation of such multiplications will be denoted by $F_{\theta,h}(\Lambda, A)$. We wish to calculate $F_{\theta,h}(\Lambda, A)$.

Proceeding as in § 2, let $f \in L^{0,2}(A)$ be a cochain such that $\mu_* f = \sigma \cdot \sigma - \sigma \circ m$. Corresponding to $f \oplus h$ there is an obstruction cocycle $s(h) = c \oplus b \oplus 0$. The only relevant changes of s(h) are given by varying f by an element $\overline{f} \in L^{0,2}(K_A)$. Such a change alters s by a coboundary in F^2L . Hence we obtain the result:

THEOREM. Corresponding to θ and h, there is an obstruction cohomology class $Ob(\theta, h) \in H^3(F^2L)$ which is zero if and only if there exists a multiplication compatible with θ and h. If $Ob(\theta, h) = 0$ then $F_{\theta,h}(\Lambda, A)$ is in one-to-one correspondence with the elements of the group $H^2[Hom_R(S_*(\Lambda), K_A)]$.

BIBLIOGRAPHY

1. J. W. Gray, Extensions of Sheaves of Algebras, Ill. J. of Math., 5 (1961), 159-174.

2. Saunders MacLane, Extensions and obstructions for rings, Ill. J. of Math., 2 (1958), 316-345.

COLUMBIA UNIVERSITY