EXTENSIONS OF SHEAVES OF ASSOCIATIVE ALGEBRAS BY NONTRIVIAL KERNELS

John W. Gray

Introduction. Let X be a topological space, Λ a sheaf of associative algebras over X and A a sheaf of two-sided Λ-modules considered as a sheaf of algebras with trivial multiplication. It was shown in [1] that the group $F(\Lambda, A)$ of equivalence classes of algebra extensions of Λ with A as kernel occurs naturally in an exact sequence

$$
\cdots \rightarrow H^{1}(X, A) \rightarrow F(A, A) \rightarrow \operatorname{Ext}^{2}(A, A) \rightarrow H^{2}(X, A) \rightarrow \cdots
$$

where $H^{*}(X, A)$ denotes the Cech cohomology of X with coefficients in A. In this paper the same question will be discussed for the case in which A has a non-trivial multiplication. It will be shown that under appropriate hypothese $F(A, A)$ occurs in a similar exact sequence, except that in the other terms of the sequence, A must be replaced by the "bicenter" K_{A} of A. A precise statement of the main result of this paper is given in Theorem 2. The methods used here are an adaptation of those used by S. MacLane in [2].

1. The extension problem. Let R be a sheaf of rings on a topological space X. If C and D are sheaves of R-modules, then H_{R} (C, D) will denote the sheaf of germs of R-homomorphisms of C into D and $\operatorname{Ext}_{R}^{n}(C, D)$ will denote the nth derived functor of $\operatorname{Hom}_{R}(C, D)$. If A is a sheaf of associative R-algebras, then, as usual, A^{*} will denote the opposite of R-algebras and $A^{e}=A \boldsymbol{\otimes}_{R} A^{*}$ will denote the enveloping sheaf of A. A is a sheaf of A^{e}-modules, the operation of A^{e} on A being given by the formula $\left(\lambda \otimes \mu^{*}\right)(\gamma)=\lambda \gamma \mu$.

$$
\text { Now, let } M_{A}^{\prime}=\operatorname{Hom}_{A *}(A, A) \oplus \operatorname{Hom}_{A}(A, A)
$$

where \oplus denotes the direct sum. Then M_{A}^{\prime}, being the direct sum of sheaves of rings, is itself a sheaf of rings and A can be considered as a sheaf of left and right M_{A}^{\prime}-modules as follows: Let $\sigma=\left(\sigma_{1}, \sigma_{2}\right) \in M_{A}^{\prime}$. Then the left action is given by $\sigma(\alpha)=\sigma_{1}(\alpha)$ and the right action by (a) $\sigma=\sigma_{2}(\alpha)$. Let

$$
M_{A}=\left\{\sigma \in M_{A}^{\prime} \mid a(\sigma b)=(a \sigma) b \text { for all } a, b \in A\right\}
$$

[^0]Then M_{A} is a subsheaf of subrings of $M_{A}^{\prime} . \quad M_{A}$ will be called the sheaf of germs of bimultiplications of A. Note that we cannot assert that A is a sheaf of M_{A}^{ρ}-modules since we do not know that $(\sigma a) \tau=\sigma(a \tau)$. If σ and τ satisfy this relation then they are called permutable bimultiplications. The natural ring homomorphisms $A \rightarrow \operatorname{Hom}_{A *}(A, A)$ and $A \rightarrow$ $\operatorname{Hom}_{A}(A, A)$ given respectively by left and right multiplication induce a ring homomorphism $\mu: A \rightarrow M_{A}$ whose image is a sheaf of two-sided ideals. The kernel K_{A} of μ will be called the bicenter of A and the cokernel P_{A} of μ will be called the sheaf of germs of outer bimultiplications of $A . \quad P_{A}$ is a sheaf of rings and K_{A} is a sheaf of left and right P_{A}-modules. As above, K_{A} is not a sheaf of P_{A}-modules. Elements $\bar{\sigma}$ and $\bar{\tau}$ of P_{A} such that $(\bar{\sigma} \alpha) \bar{\tau}=\bar{\sigma}(\alpha \bar{\tau})$ for all $a \in K_{A}$ will be called permutable. Note that $\bar{\sigma}$ and $\bar{\tau}$ are permutable if and only if representative elements σ and τ in M_{A} are also permutable.

An extension of a sheaf Λ of R-algebras by a sheaf A of R-algebras is an exact sequence.

$$
\begin{equation*}
0 \rightarrow A \xrightarrow{i} \Gamma \xrightarrow{p} \Lambda \rightarrow 0 \tag{1}
\end{equation*}
$$

of sheaves of R-algebras and R-algebra homomorphisms. As in [1], we shall say that such a sequence is locally trivial if there exists a covering $\mathscr{U}=\left\{U_{\alpha}\right\}$ of X such that the restriction of the sequence to each U_{α} splits as an exact sequence of sheaves of R-modules. Hence if (1) is locally trivial then there exist R-module homomorphisms $j_{\alpha}: \Lambda \mid U_{\alpha} \longrightarrow$ $\Gamma \mid U_{\alpha}$ with $p j_{\alpha}=$ identity. Furthermore, since A is a sheaf of two-sided ideals in Γ, the map $\mu: A \longrightarrow M_{A}$ extends to a map $\mu_{\Gamma}: \Gamma \longrightarrow M_{\Delta}$. Thus, we may define the composition

$$
\theta_{\alpha}=(\operatorname{coker} \mu) \circ \mu_{\Gamma} \circ j_{\alpha}: \Lambda\left|U_{\alpha} \rightarrow P_{A}\right| U_{\alpha} .
$$

Since $\left(j_{\beta}-j_{\alpha}\right): \Lambda\left|U_{\alpha \beta} \longrightarrow A\right| U_{\alpha \beta}$, we see that $\theta_{\beta}=\theta_{\alpha}$ on $U_{\alpha \beta}=U_{\alpha} \cap U_{\beta}$. Hence $\left\{\theta_{\alpha}\right\}$ determines an element $\theta \in \operatorname{Hom}_{R}\left(\Lambda, P_{A}\right)$. We shall say that this θ is induced by the extension (1). Clearly θ is an algebra homomorphism whose image consists of permutable elements. Note that this implies that K_{A} is a sheaf of Λ^{e}-modules via the operation of P_{A} on K_{A}.

If $\theta \in \operatorname{Hom}_{R}\left(\Lambda, P_{A}\right)$ is an algebra homomorphism whose image consists of permutable elements, then, with respect to the usual equivalence relation, we wish to classify the extensions which induce θ in the manner described above.
2. The complexes. From [1], we recall that a sheaf B of R modules is said to be weakly R-projective if each stalk B_{x} is an R_{x} projective module and it is said to be R-coherent if there exists a covering $\mathscr{U}=\left\{U_{\alpha}\right\}$ such that for each U_{α} there are integers p and q and R-homomorphisms so that the sequence

$$
R^{p}\left|U_{\alpha} \longrightarrow R^{q}\right| U_{\alpha} \longrightarrow B \mid U_{\alpha} \longrightarrow 0
$$

is exact. Also, as in [1], $C^{*}(X, B)$ will denote the direct limit over coverings \mathscr{U} indexed by X of the Cech cohomology complexes $C^{*}(\mathscr{U}, B)$. If $S_{0}(\Lambda)=R$ and $S_{n}(\Lambda), n>0$ denotes the n-fold tensor product of Λ with itself, then we define

$$
L^{i, j}(B)=C^{i}\left(X, \operatorname{Hom}_{R}\left(S_{j}(\Lambda), B\right)\right)
$$

Proposition 1. If X is paracompact Hausdorff and if Λ is weakly R-projective and R-coherent, then, for each $n \geqq 0$,

$$
0 \longrightarrow L^{*, n}\left(K_{A}\right) \longrightarrow L^{*, n}(A) \xrightarrow{\mu *} L^{*, n}\left(M_{A}\right) \xrightarrow{\pi^{*}} L^{*, n}\left(P_{A}\right) \longrightarrow 0
$$

is an exact sequence of complexes, the mappings being those induced by the exact sequence of sheaves

$$
0 \longrightarrow K_{A} \longrightarrow A \xrightarrow{\mu} M_{A} \xrightarrow{\pi} P_{A} \longrightarrow 0
$$

Proof. In [1] it was shown that if Λ is weakly R-projective and R-coherent then so is $S_{n}(\Lambda)$ and hence the sheaves $\operatorname{Ext}_{R}^{i}\left(S_{n}(\Lambda), B\right)=0$ for $i>0, n \geqq 0$ and for all B. Hence, for each $n \geqq 0$, there is an exact sequence of sheaves

$$
\begin{gathered}
0 \longrightarrow \operatorname{Hom}_{R}\left(S_{n}(\Lambda), K_{A}\right) \longrightarrow \operatorname{Hom}_{R}\left(S_{n}(A), A\right) \longrightarrow \operatorname{Hom}_{R}\left(S_{n}(A), M_{A}\right) \\
\longrightarrow \operatorname{Hom}_{R}\left(S_{n}(\Lambda), P_{A}\right) \longrightarrow 0 .
\end{gathered}
$$

If X is paracompact Hausdorff then $C^{*}(X,-)$ is an exact functor and hence we get the indicated sequence of complexes.

We would like to consider each of the complexes $L^{i, j}(-)$ in the preceding proposition as a bicomplex in some manner which reflects a given structure of K_{A} as a sheaf of Λ^{e}-modules and which coincides with the usual structure of $\operatorname{Hom}_{R}\left(S_{n}(\Lambda),-\right)$ as a complex. This is too much to ask, but such a structure on $L^{i, j}(A)$ can be approximated as follows: Let $\theta \in \operatorname{Hom}\left(\Lambda, P_{A}\right)$ be an algebra homomorphism whose image consists of permutable elements. If θ is regarded as an element of $L^{0,1}\left(P_{A}\right)$, then by exactness there is an element $\sigma \in L^{0,1}\left(M_{A}\right)$ such that $\pi_{*}(\sigma)=\theta$. Let σ be represented by cocycle $\left\{\sigma_{\alpha}\right\}$ on some sufficiently fine covering \mathscr{C}. Given this date, we can define a "coboundary" operator δ_{σ} on $L^{m n}(A)$ by the following formula. Let $k \in L^{m, n}(A)$ be represented by a cochain $\left\{k_{\alpha_{0}: \ldots, \alpha_{m}}\right\}$ on \mathbb{Z}. Then

$$
\begin{gathered}
\delta_{\sigma} k_{\alpha_{0}, \ldots, \alpha_{m}}\left(\lambda_{1}, \ldots, \lambda_{n+1}\right)=\sigma_{\alpha_{0}}\left(\lambda_{1}\right) k_{\alpha_{0}, \ldots, \alpha_{m}}\left(\lambda_{2, \ldots}, \lambda_{n+1}\right) \\
+\sum_{i=1}^{n}(-1)^{i} k_{\alpha_{0}, \ldots, \alpha_{m}}\left(\lambda_{1, \ldots,}, \lambda_{i} \lambda_{i+1}, \ldots, \lambda_{n+1}\right) \\
+(-1)^{n+1} k_{\alpha_{0}, \ldots, \alpha_{m}}\left(\lambda_{1, \ldots,}, \lambda_{n}\right) \sigma_{\alpha_{0}}\left(\lambda_{n+1}\right) .
\end{gathered}
$$

We shall see that the restriction of δ_{σ} to $L^{i, j}\left(K_{A}\right)$ is in fact a good coboundary operator.

In order to investigate the properties of δ_{σ} and the relations between δ_{σ} and the Cech coboundary operator $\hat{\delta}$, we must introduce some more notation.
(2.1) To avoid constantly writing variables we make the following convention: If r is a function of p variables and s is a function of q variables, both with values in an algebra, then $r \cdot s$ is the function of $p+q$ variables defined by

$$
r \cdot s\left(\lambda_{1, \ldots}, \lambda_{p+q}\right)=r\left(\lambda_{\left.1, \ldots, \lambda_{p}\right)}\right) \cdot s\left(\lambda_{p+1, \ldots, \lambda_{p+q}}\right) .
$$

(2.2) m will denote ambiguously the multiplication in all of the algebras which appear here.
(2.3) Since θ is an algebra homomorphism, $\pi_{*}\left(\sigma_{\alpha} \cdot \sigma_{\alpha}-\sigma_{\alpha} \circ m\right)=0$ Hence there exists an $f \in L^{0,2}(A)$ which is represented by a cochain $\left\{f_{\alpha}\right\}$ on \mathscr{U} such that

$$
\mu_{*} f_{\alpha}=\sigma_{\alpha} \cdot \sigma_{\alpha}-\sigma_{\alpha} \circ m
$$

(2.4) Since $\pi_{*}(\hat{\delta} \sigma)=\hat{\delta} \pi_{*}(\sigma)=0$, there exists an $h \in L^{1,1}(A)$ which is represented by a cochain $\left\{h_{\alpha \beta}\right\}$ on \mathscr{C} such that

$$
\mu_{*} h_{\alpha \beta}=(\hat{\delta} \sigma)_{\alpha \beta} .
$$

(2.5) If $\sigma^{\prime} \in L^{0.1}\left(M_{A}\right)$ also satisfies $\pi_{*}\left(\sigma^{\prime}\right)=\theta$, then $\pi_{*}\left(\sigma^{\prime}-\sigma\right)=0$ and hence there exists a $\bar{\sigma} \in L^{0.1}(A)$ which is represented by a cochain $\left\{\bar{\sigma}_{\alpha}\right\}$ on \mathscr{U} such that

$$
\mu_{*} \bar{\sigma}_{\alpha}=\bar{\sigma}_{\alpha}^{\prime}-\bar{\sigma}_{\alpha} .
$$

Using these notations the following result in easily checked:
Proposition 2. If $k \in L^{m, n}(A)$ is represented by $\left\{k_{\alpha_{0}, \ldots, \alpha_{m}}\right\}$ on \mathscr{U}, then

$$
\begin{gather*}
\delta_{\sigma} \delta_{\sigma} k_{\alpha_{0}, \ldots, \alpha_{m}}=f_{\alpha_{0}} \cdot k_{\alpha_{0}, \ldots, \alpha_{m}}-k_{\alpha_{0}, \ldots, \alpha_{m}} \cdot f_{\alpha_{0}} \tag{2.6}\\
\delta_{\sigma}(\hat{\delta} k)_{\alpha_{0}, \ldots, \alpha_{m+1}}=\left(\hat{\delta} \delta_{\sigma} k\right)_{\alpha_{0}, \ldots, \alpha_{m+1}}-h_{\alpha_{0}, \alpha_{1}} k_{\alpha_{1}, \ldots, \alpha_{m+1}} \\
-(-1)^{n+1} k_{\alpha_{1}, \ldots, \alpha_{m+1}} h_{\alpha_{0}, \alpha_{1}}
\end{gather*}
$$

$$
\begin{equation*}
\delta_{\sigma^{\prime}} k_{\alpha_{0}, \ldots, \alpha_{m}}=\delta_{\sigma} k_{\alpha_{0}, \ldots, \alpha_{m}}+\bar{\sigma}_{\alpha_{0}} k_{\alpha_{0}, \ldots, \alpha_{m}}+(-1)^{n+1} k_{\alpha_{0}, \ldots, \alpha_{m}} \bar{\sigma}_{\alpha_{0}} \tag{2.8}
\end{equation*}
$$

Corollary. $L^{i, j}\left(K_{A}\right)$ is a bicomplex with respect to the pair of differential operators $\hat{\delta}, \delta_{\sigma}$. The total differential operator is given by

$$
\delta=(-1)^{j+1} \widehat{\delta}+\delta_{\sigma}
$$

This differential operator depends only on θ.
Finally, we shall need to know something about the behavior of $\widehat{\delta}$ on products of low dimensional cochains, where Cech cochains are multiplied by multiplying the values (suitably restricted when necessary) on corresponding elements of the nerve of a covering according to the convention of 2.1. It is easy to verify the following statements by explicit calculation.

Proposition 3. If $r \in L^{0, p}(A)$ and $s \in L^{0, q}(A)$ are represented on \mathscr{U} by $\left\{r_{\alpha}\right\}$ and $\left\{s_{\alpha}\right\}$ respectively, then $\widehat{\delta}(r \cdot s) \in L^{1, p+q}(A)$ and

$$
\begin{equation*}
\hat{\delta}(r \cdot s)_{\alpha \beta}=(\hat{\delta} r)_{\alpha \beta} \cdot s_{\alpha}+r_{\alpha} \cdot(\hat{\delta} s)_{\alpha \beta}+(\hat{\delta} r)_{\alpha \beta} \cdot(\delta s)_{\alpha \beta} . \tag{2.9}
\end{equation*}
$$

If $t \in L^{1, p}(A)$ and $u \in L^{1, q}(A)$ are represented on \mathscr{U} by $\left\{t_{\alpha \beta}\right\}$ and $\left\{u_{\alpha \beta}\right\}$ respectively then $\widehat{\delta}(t \cdot u) \in L^{2, p+q}(A)$ and

$$
\begin{align*}
(\widehat{\delta}(t \cdot u))_{\alpha \beta \gamma}=(\hat{\delta} t)_{\alpha \beta \gamma} \cdot u_{\alpha \gamma} & +t_{\alpha \gamma} \cdot(\widehat{\delta} u)_{\alpha \beta \gamma}+\left(\hat{\delta} t_{\alpha \beta \gamma} \cdot(\hat{\delta} u)_{\alpha \beta \gamma}-t_{\alpha \beta} \cdot u_{\beta \gamma}\right. \tag{2.10}\\
& -t_{\beta \gamma} \cdot u_{\alpha \beta} .
\end{align*}
$$

Finally, if $r \in L^{m, p}(A)$ and $s \in L^{m, q}(A)$ then δ_{σ} satisfies the good coboundary formula.

$$
\begin{equation*}
\delta_{\sigma}(r \cdot s)=\left(\delta_{\sigma} r\right) \cdot s+(-1)^{p} r \cdot \delta_{\sigma} s . \tag{2.11}
\end{equation*}
$$

3. The obstruction. We shall regard the complex $L^{i, 5}\left(K_{A}\right)$ as being filtered by the second degree and we define $F^{p}(L)=\sum_{j \geq p} L^{t, j}\left(K_{A}\right)$. In analogy with the proceedings of [1], the classical results for extensions of algebras suggest that each algebra homomorphism $\theta \in \operatorname{Hom}(\Lambda$, P_{A}) whose range consists of permutable elements determines an "obstruction" in $H^{3}\left(F^{1}(L)\right)$; this obstruction being zero if and only if there exists an extension which induces θ in the manner described in §1. A representative cocycle for such a cohomology class would be an element of $L^{2,1}\left(K_{A}\right) \oplus L^{1,2}\left(K_{A}\right) \oplus L^{0,3}\left(K_{A}\right)$.

$$
\text { Let } \sigma \in L^{0,1}(A) \text { satisfy } \pi_{*} \sigma=\theta \text { and let }
$$

$f \in L^{0.2}(A)$ and $h \in L^{1,1}(A)$ be defined as in 2.3 and 2.4. Then the components of a representative cocycle of the "obstruction" to θ are defined as follows:
(i) Since $\mu_{*}(\hat{\delta} h)=\hat{\delta} \mu_{*} h=0$, there exists an element $a \in L^{2,1}\left(K_{4}\right)$ which is represented by a cochain $\left\{a_{\alpha \beta \gamma}\right\}$ on \mathscr{U} such that

$$
a_{\alpha \beta \gamma}=(\widehat{\delta} h)_{\alpha \beta \gamma}
$$

(ii) A standard elementary calculation shows that $\mu_{*}\left(\delta_{\sigma} f\right)=0$.

Hence there exists an element $c \in L^{03}\left(K_{A}\right)$ which is represented by a cochain $\left\{c_{\alpha}\right\}$ on \mathscr{U} such that $c_{\alpha}=\delta_{\sigma} f_{\alpha}$.
(iii) An equally elementary calculation shows that $\mu_{*}\left[\hat{\delta} f-\delta_{\sigma} h-\right.$ $h \cdot h]=0$. Hence there exists an element $b \in L^{1,2}\left(K_{A}\right)$ which is represented by a cochain $\left\{b_{\alpha \beta}\right\}$ on \mathscr{U} such that

$$
b_{\alpha \beta}=-(\widehat{\delta} f)_{\alpha \beta}+\delta_{\sigma} h_{\alpha \beta}+h_{\alpha \beta} \cdot h_{\alpha \beta}
$$

Theorem 1. Let' $s=a \oplus b \oplus c$. Then s is a cocycle of $F^{1}(L)$ whose cohomology class depends only on θ.

Definition. The cohomology class of s will be denoted by $\operatorname{Ob}(\theta)$ and will be called the obstruction to θ.

Theorem 2. Let X be paracompact Hausdorff and let Λ be weakly R-projective and R-coherent. Then $O b(\theta)=0$ if and only if there is an extension of Λ by A which induces θ. If $O B(\theta)=0$, then the set $F_{\theta}(\Lambda, A)$ of equivalence classes of extensions which induce θ is in one-to-one correspondence with the set of elements of the group $H^{2}\left(F^{1} K\right)$, and hence the following two sequences are exact.
(1) $0 \longrightarrow H^{1}\left[\operatorname{Hom}_{R}\left(S_{*}(A), K_{A}\right)\right] \longrightarrow \operatorname{Ext}_{A^{e}}^{1}\left(\Lambda, K_{A}\right) \longrightarrow H^{1}\left(X, K_{A}\right)$

$$
\begin{gathered}
\longrightarrow F_{\theta}(\Lambda, A) \xrightarrow{\longrightarrow} \operatorname{Ext}_{A^{e}}^{2}\left(\Lambda, K_{A}\right) \longrightarrow H^{2}(X, K \\
\text { (2) } 0 \longrightarrow H^{2}\left[\operatorname{Hom}_{R}\left(S_{*}(\Lambda), K_{A}\right)\right] \longrightarrow F_{\theta}(\Lambda, A) \longrightarrow \\
H^{1}\left(X, \operatorname{Hom}_{R}\left(\Lambda, K_{A}\right)\right) \longrightarrow
\end{gathered}
$$

Proof of Theorem 1. It is clear that $\hat{\delta} a=\widehat{\delta} \hat{\delta} h=0$, and, by 2.6, that $\delta_{\sigma} c=\delta_{\sigma} \delta_{\sigma} f=0$. Thus, to prove that s is a cocycle we must show that $\hat{\delta} b=\delta_{\sigma} a$ and that $\hat{\delta} c=-\delta_{\sigma} b$. To derive the first expression, we have by definition that

$$
(\hat{\delta} b)_{\alpha \beta \gamma}=-(\hat{\delta} \widehat{\delta} f)_{\alpha \beta \gamma}+\left(\hat{\delta} \delta_{\sigma} h\right)_{\alpha \beta \gamma}+\widehat{\delta}(h \cdot h)_{\alpha \beta \gamma}
$$

The first term is zero and the second and third terms can be expanded by 2.7 and 2.10 respectively. After obvious cancellations, this yields

$$
(\hat{\delta} b)_{\alpha \beta \gamma}=\delta_{\sigma}(\hat{\delta} h)_{\alpha \beta \gamma}+(\hat{\delta} h)_{\alpha \beta \gamma} \cdot h_{\alpha \gamma}+h_{\alpha \gamma} \cdot(\hat{\delta} h)_{\alpha \beta \gamma}+(\hat{\delta} h)_{\alpha \beta \gamma} \cdot(\hat{\delta} h)_{\alpha \beta \gamma}
$$

Since $\widehat{\delta} h=a \in L^{2,1}\left(K_{A}\right)$, on a sufficiently fine covering multiplication by $(\widehat{\delta} h)_{\alpha \beta \gamma}$ is zero and hence $\widehat{\delta} b=\delta_{\sigma} a$. Similarly, since $c=\delta_{\sigma} f$, $\widehat{\delta} c$ can be expanded by the equation, 2.7, for commuting $\hat{\delta}$ and δ_{σ}. The resulting expression can be simplified by using equations 2.6 and 2.11 and the definition of b in (ii). This yields easily that

$$
(\widehat{\delta} c)_{\alpha \beta}=\delta_{\sigma}\left[(\widehat{\delta} f)_{\alpha \beta}-\delta_{\sigma} h_{\alpha \beta}-h_{\alpha \beta} \cdot h_{\alpha \beta}\right]=-\delta_{\sigma} b_{\alpha \beta} .
$$

Thus s is a cocycle.

The definition of s depends on the choices of b, h, and f. We shall show that changing any of these changes s by a coboundary and that any cocycle cohomologous to s can be obtained by such a choice.

Suppose that h^{\prime} satisfies $\mu_{*} h^{\prime}=\hat{\delta} \sigma$ and f^{\prime} satisfies $\mu_{*} f^{\prime}=\sigma \cdot \sigma-\sigma \circ m$. Then $h^{\prime}-h=\bar{h} \in L^{1,1}\left(K_{A}\right)$ and $f^{\prime}-f=\bar{f} \in L^{0,2}\left(K_{A}\right)$. If s^{\prime} denotes the cocycle corresponding to σ, h^{\prime} and f^{\prime}, then it is easy to see that

$$
s^{\prime}-s=\left(\hat{\delta}+\delta_{\sigma}\right) \bar{h}+\left(-\widehat{\delta}+\delta_{\sigma}\right) \bar{f}=\delta(\bar{h}+\bar{f})
$$

Conversely, if $\bar{h} \oplus \bar{f}$ is any 2-cochain of $F^{1}(L)$, then $h+\bar{h}$ and $f+\bar{f}$ are admissable liftings of $\widehat{\delta}_{\sigma}$ and $\sigma \cdot \sigma-\sigma \circ m$ respectively and this change alters s by $\delta(\bar{h} \oplus \bar{f})$. Hence, in this manner we obtain all cocycles cohomologous to s.

It remains to show that if $\pi_{*} \sigma^{\prime}=\theta$, then h^{\prime} and f^{\prime} can be chosen so that the corresponding cocycle $s^{\prime}=a^{\prime}+b^{\prime}+c^{\prime}=s$. Since $\pi_{*}\left(\sigma^{\prime}\right.$. $-\sigma)=0$, there is a $\bar{\sigma} \in L^{0,1}(A)$ such that $\mu_{*} \bar{\sigma}=\sigma^{\prime}-\sigma$. Let $h^{\prime}=h+$ $\hat{\delta} \bar{\sigma}$ and $f^{\prime}=f+\delta_{\sigma} \bar{\sigma}+\bar{\sigma} \cdot \bar{\sigma}$. Then it is immediate that h^{\prime} and f^{\prime} are liftings of $\hat{\delta} \sigma^{\prime}$ and $\sigma^{\prime} \cdot \sigma^{\prime}-\sigma^{\prime} \cdot m$ respectively and that $a^{\prime}=\hat{\delta} h^{\prime}=a$. The difference $\delta_{\sigma^{\prime}} f^{\prime}-\delta_{\sigma} f$ can be expressed by 2.8. Using 2.6 and 2.11, it is easily seen that this difference is zero and hence $c^{\prime}=c$. The only difficult point is to show that $b^{\prime}=b$. By definition

$$
b^{\prime}=-\widehat{\delta} f^{\prime}+\delta_{\sigma}, h^{\prime}+h^{\prime} \cdot h^{\prime}
$$

Using the definitions of f^{\prime} and h^{\prime} and rearranging terms, we arrive at the equality

$$
\begin{aligned}
b_{\alpha \beta}^{\prime}-b_{\alpha \beta}= & {\left[\delta_{\sigma} \widehat{\delta} \bar{\sigma}_{\alpha \beta}-\hat{\delta} \delta_{\sigma} \bar{\sigma}_{\alpha \beta}\right]+\left[\bar{\sigma}_{\alpha} \cdot h_{\alpha \beta}+h_{\alpha \beta} \cdot \bar{\sigma}_{\alpha}+\hat{\delta} \bar{\sigma}_{\sigma \beta} \cdot h_{\alpha \beta}+h_{\alpha \beta} \cdot \hat{\delta} \bar{\sigma}_{\alpha \beta}\right] } \\
& +\left[\bar{\sigma}_{\alpha} \cdot \hat{\delta} \bar{\sigma}_{\alpha \beta}+\hat{\delta} \bar{\sigma}_{\alpha \beta} \cdot \bar{\sigma}_{\alpha}+\hat{\delta} \bar{\sigma}_{\alpha \beta} \cdot \hat{\delta} \bar{\sigma}_{\alpha \beta}-\hat{\delta}(\bar{\sigma} \cdot \bar{\sigma})_{\alpha \beta}\right]
\end{aligned}
$$

The third bracket is zero by the formula 2.9 for the Cech coboundary of a product and the first bracket equals $-h_{\alpha \beta} \cdot \bar{\sigma}_{\beta}-\bar{\sigma}_{\beta} \cdot h_{\alpha \beta}$ by the rule 2.7 for interchanging $\widehat{\delta}_{\sigma}$ and δ. Hence the sum of the first two brackets is zero and therefore $b^{\prime}=b$.

Proof of Theorem 2. Suppose $0 \longrightarrow A \xrightarrow{i} \Gamma \xrightarrow{p} A \longrightarrow 0$ is an extension. By Proposition 3.1 of [1], the hypotheses imply that any such extension is locally trivial considered as an extension of sheaves of R-modules. Hence there exists a covering $\mathscr{U}=\left\{U_{\alpha}\right\}$ which carries R module homomorphisms $j_{\alpha} \cdot \Lambda\left|U_{\alpha} \longrightarrow \Gamma\right| U_{\alpha}$ with $p \cdot j_{\alpha}=$ identity. If $\sigma_{\alpha}: \Lambda\left|U_{\alpha} \rightarrow M_{A}\right| U_{\alpha}$ is defined by $\left[\sigma_{\alpha}(\lambda)\right](\alpha)=j_{\alpha}(\lambda) \cdot a$ and $(\alpha)\left[\sigma_{\alpha}(\lambda)\right]=$ $a \cdot j_{\alpha}(\lambda)$ then $\left\{\sigma_{\alpha}\right\}$ determines an element $\sigma \in L^{0,1}\left(M_{A}\right)$ which is a lifting of the homomorphism θ induced as in $\S 1$ by the given extension. If we define $h_{\alpha \beta}=j_{\beta}-j_{\alpha}$ and $f_{\alpha}=j_{\alpha} j_{\alpha}-j_{\alpha} \circ m$, then the corresponding elements $h \in L^{1,1}(A)$ and $f \in L^{0, \widehat{2}}(A)$ satisfy $\mu_{*} h=\delta \sigma$ and $\mu_{*} f=\sigma \cdot \sigma$ -
$\sigma \circ m$. Elementary calculations show that for this choice of h and f we get that $s=a \oplus b \oplus c=0$ and hence $O b(\theta)=0$.

Conversely, if $O b(\theta)=0$, then on some sufficiently fine covering \mathscr{U}, we may choose $\left\{f_{\alpha}\right\} \in \widehat{C}^{0}\left(\mathscr{U}, \operatorname{Hom}_{R}\left(S_{2}(\Lambda), A\right)\right)$ and $\left\{h_{\alpha \beta}\right\} \in \widehat{C}^{1}\left(U, \operatorname{Hom}_{R}(\Lambda, A)\right)$ so that $\delta_{\sigma} f_{\alpha}=0$, $(\widehat{\delta} h)_{\alpha \beta \gamma}=0$ and $(\hat{\delta} f)_{\alpha \beta}=\delta_{\sigma} h_{\alpha \beta}+h_{\alpha \beta} \cdot h_{\alpha \beta}$. As in [1], we define Γ to be the sheaf which is the quotient of $\mathrm{U}_{\alpha}(A \oplus \Lambda) \mid U_{\alpha}$ by the relation

$$
\left(a+h_{\alpha \beta}(\lambda), \lambda\right)_{\alpha} \sim(a, \lambda)_{\beta} \text { for }(\alpha, \lambda) \in A \oplus \Lambda \mid U_{\alpha \beta} .
$$

Multiplication in Γ is given by the formula

$$
(a, \lambda)_{\alpha} \cdot\left(a^{\prime}, \lambda^{\prime}\right)_{\alpha}=\left(a a^{\prime}+\sigma_{\alpha}(\lambda) a^{\prime}+a \sigma_{\alpha}(\lambda)+f_{\alpha}\left(\lambda, \lambda^{\prime}\right), \lambda \lambda^{\prime}\right)_{\alpha} .
$$

It is easy to show that this multiplication is associative since $\delta_{\sigma} f=0$ and that it agrees with the equivalence relation since $\widehat{\delta} f=\delta_{\sigma} h+h \cdot h$.

It follows then, exactly as in MacLane [2] that the set of equivalence classes of extensions which realize a given θ with $O b(\theta)=0$ is in one-toone correspondence with the set of elements of the group $H^{2}\left(F^{1}(L)\right)$. The exact sequences are derived exactly as in [1] from the exact sequences of complexes
and

$$
\begin{aligned}
& 0 \longrightarrow F^{1} L \longrightarrow F^{0} L \longrightarrow E_{0}^{*, 0} \longrightarrow 0 \\
& 0 \longrightarrow F^{2} L \longrightarrow F^{1} L \longrightarrow E_{0}^{*, 1} \longrightarrow 0
\end{aligned}
$$

4. Examples. (1) If $K_{A}=0$ then all obstructions are zero and all terms involving K_{A} in the exact sequence containing $F_{\theta}(\Lambda, A)$ are zero. Hence there is a unique extension of Λ by A which induces a given $\theta \in \operatorname{Hom}_{R}\left(\Lambda, P_{A}\right)$. As in MacLane [2], this extension can be described as the "graph" of θ; i.e., the pull-back of the pair of maps θ : $\Lambda \longrightarrow P_{A}, \pi: M_{A} \longrightarrow P_{A}$.
(2) If $K_{A}=A$, then the map $\mu: A \longrightarrow M_{A}$ is the zero map and hence $M_{A}=P_{A}$. Consequently, if $\theta \in \operatorname{Hom}_{R}\left(\Lambda, P_{A}\right)$ is given, then σ may be chosen equal to θ and so $\delta \sigma$ and $\sigma \cdot \sigma-\sigma \circ m$ are both zero. Therefore, any cocycle $f \oplus h \in L^{0,2}(A) \oplus L^{1,1}(A)$ is a lifting of these two terms. It follows that $O b(\theta)=0$ and that $F_{\theta}(\Lambda, A)=H^{2}\left(F^{1} L\right)$. Thus the results of [1] are a special case of the results of this paper.
(3) We wish to discuss more thoroughly a remark in § 3.3 of [1]. Let X be paracompact Hausdorff and let Λ be a weakly R-projective and R-coherent sheaf of R-algebras. Suppose that A is a sheaf of R algebras and that

$$
0 \longrightarrow A \longrightarrow \Gamma \longrightarrow \Lambda \longrightarrow 0
$$

is an exact sequence of R-modules. Let $\mathscr{G}=\left\{U_{\alpha}\right\}$ be a sufficiently fine covering of X and let $\left\{j_{\alpha}\right\} \in \hat{C}^{0}\left(\mathscr{U}, \operatorname{Hom}_{R}(\Lambda, \Gamma)\right)$ determine the locally
trivial structure of Γ and let $h_{\alpha \beta}=(\widehat{\delta} j)_{\alpha \beta}$. An algebra homomorphism $\theta \in \operatorname{Hom}_{R}\left(\Lambda, P_{A}\right)$ whose image consists of permutable elements will be called compatible with the locally trivial structure of Γ if there exists a lifting $\sigma \in L^{0,1}\left(M_{A}\right)$ of θ which is represented by a cochain $\left\{\sigma_{\alpha}\right\}$ on \mathscr{U}^{\prime} such that $\mu_{*} h=\widehat{\delta} \sigma$. Furthermore, an element $f \in L^{0,2}(A)$ will be called a multiplication compatible with θ and h if $\mu_{*} f=\sigma \cdot \sigma-\sigma \circ m, \widehat{\delta} f=$ $\delta_{\sigma} h+h \cdot h$ and $\delta_{\sigma} f=0$. The set of equivalence classes with respect to the usual equivalence relation of such multiplications will be denoted by $F_{\theta, h}(\Lambda, A)$. We wish to calculate $F_{\theta, h}(A, A)$.

Proceeding as in §2, let $f \in L^{0,2}(A)$ be a cochain such that $\mu_{*} f=$ $\sigma \cdot \sigma-\sigma \circ m$. Corresponding to $f \oplus h$ there is an obstruction cocycle $s(h)=c \oplus b \oplus 0$. The only relevant changes of $s(h)$ are given by varying f by an element $\bar{f} \in L^{0,2}\left(K_{A}\right)$. Such a change alters s by a coboundary in $F^{2} L$. Hence we obtain the result:

Theorem. Corresponding to θ and h, there is an obstruction cohomology class $\operatorname{Ob}(\theta, h) \in H^{3}\left(F^{2} L\right)$ which is zero if and only if there exists a multiplication compatible with θ and h. If $\operatorname{Ob}(\theta, h)=0$ then $F_{\theta, h}(\Lambda, A)$ is in one-to-one correspondence with the elements of the group $H^{2}\left[\operatorname{Hom}_{R}\left(S_{*}(\Lambda), K_{A}\right)\right]$.

Bibliography

1. J. W. Gray, Extensions of Sheaves of Algebras, III. J. of Math., 5 (1961), 159-174.
2. Saunders MacLane, Extensions and obstructions for rings, Ill. J. of Math., 2 (1958), 316-345.

Columbia University

[^0]: Received June 15, 1960. This work has been supported by Office of Naval Research contract number Nonr. 266(57).

