
ON ESSENTIAL ABSOLUTE CONTINUITY

ROBERT J. THOMPSON

Throughout this paper D will denote a bounded domain in Euclidean
w-space Rn, and T will be a bounded, continuous, single-valued transfor-
mation from D into Rn. For such transformations, concepts of essential
bounded variation and essential absolute continuity have been defined
and studied by Rado and Reichelderfer ([3], IV. 4). In this paper a
characterization of essential absolute continuity will be given. The
characterization suggests a definition of uniform essential absolute con-
tinuity and some of the consequences of this definition will be investigated.

1. For every point x in Rn a multiplicity function K(x, T, D) is
defined ([3], II. 3.2). T is said to be essentially of bounded variation
(briefly eBV) in D provided K{x, T, D) is Lebesgue summable in R71

([3], IV. 4.1, Definition 1). Let X , = X . (Γ, D) denote the set of
points x in Rn for which K{x, T, D) is infinite. Thus if Γis eBV in D,
then .SfX, — 0 (if A is a subset of Rn, then ^A denotes its exterior
Lebesgue measure). Since K(x, T, D) is a lower semicontinuous function
of x ([3], II. 3.2, Remark 10), X , is a Borel set and, by Theorem 1
of [31, IV. 1.1, the set T1 X , is also a Borel set.

2 If x is a point in Rn and C is a component of T~ιx which is
closed relative to Rn, then C is termed a maximal model continuum (x,
T,D) ([3], II. 3.1, Definition 1). Denote by <£ = <£(2\ D) the class com-
posed of all sets C for which TC is a point in Rn and C is a maximal
model continuum for {TC, T, D). Let © = <ϊ(Γ, D) be the subset of ®
consisting of those elements C each of which is an essential maximal
model continuum (briefly e.m.m.c.) for {TC, T, D) ([3], II. 3.3, Defini-
tion 1); the set E = E(T, D) = U C, C e © ([3], II. 3.6). Let (£f =
Gf̂ Γ, /?) be the subset of 6f consisting of those elements C each of which
is an essentially isolated e.m.m.c. (briefly e.i. e.m.m.c.) for {TC, T, D)
([3], II. 3.3, Definition 2); the set E, = E,{T, D) = U C, C e ^ ([3], II.
3.6.). Finally, let @f = @f(Γ, D) be the subset of ©4 consisting of those
elements of @{ which consist of single points; the set Ef = E^T, Z>) =
UC, Cee? ([3], II. 3.6). The sets E, E, and E? are Borel sets ([3],
II. 3.6, Theorem 1).

If T is eBV in Z>, then a necessary and sufficient condition that T
be essentially absolutely continuous (briefly eAC) in D ([3], IV. 4.2) is
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that T satisfies the condition (N) on the set E{T, D) ([3], IV. 4.2,
Theorem 3) i.e., if S C E and ^fS = 0, then £fTS = 0.

DEFINITION 1. T will be said to satisfy the (ε, δ) condition on a
subset A of D if for every ε > 0 there exists a δ > 0 such that if
SEA and jSfS < δ, then ^fTS<ε. Clearly if Γ satisfies the (ε, δ)
condition on each of a finite number of subsets of />, then Γ satisfies
the (ε, δ) condition on any subset of their union. Also, if A is a Borel
subset of D, then T satisfies the (ε, δ) condition on A if and only if
for every ε > 0 there is a δ > 0 such that if S is a Borel subset of A
and ^fS < δ, then ^TS < ε.

THEOREM 1. Suppose T is eBV in D. Then a necessary and suf-
ficient condition that T be eAC in D is that T satisfies the (ε, δ)
condition on the set E(T, D).

Proof. Since T is assumed to be eBV in D it suffices to prove
that a necessary and sufficient condition that T satisfies the condition
(N) on the set E is that T satisfies the (ε, δ) condition on E. Since
the proof of the sufficiency is immediate, we proceed to a proof of the
necessity. If T satisfies the condition (N) on E, then, by Lemma 4 of
[31, IV. 4.2, £?T(E - Ef) = 0 and so T clearly satisfies the (ε, δ) con-
dition on E — Ef. Since T is eBV in D, ^X^ = 0 and so T satisfies
the (ε, δ) condition on T^X*. Since E is a subset of the union of the
sets E - EΊ

P, T-'Xoo and E? - Γ ' X , in view of the remarks following
Definition 1 it remains only to be shown that T satisfies the (ε, δ) con-
dition on E,p — T^Xoo whenever T satisfies the condition (N) on E.
Assume then that T does not satisfy the (ε, δ) condition on Ef — Γ~LX>o.
The proof will be completed by showing that T does not satisfy the
condition (N) on E. Since Ef and T^X^ are Borel sets, their difference
is a Borel set. Thus the assumption that T fails to satisfy the (ε, δ)
condition on Ef — T^X^ implies, in view of the remarks following
Definition 1, that there is an ε0 > 0 such that for every positive integer
k there is a Borel set Sk S Ef — Γ^X, such that ^Sk < 1/2* and
SSTSk ^ ε0. Let S* - lim sup Sk (= Γl"=i U**»S*)- S* is a subset of
Ef - TιX^ and so

(1) S*E£7.

For every positive integer n, S* 5 \Jk^n Sk and so J^fS* <ί 1/2*"1. Hence

(2)

Let A: be a positive integer and suppose x e TSk. Since Sk E Ei —
T^Xoo, K{x} T, D) < 00 and there is a point u in £7f such that Tu — xf
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Since K(x, T, D) < oo there are at most a finite number of e.m.m.c.s.
for (x, T, D) ([3], II. 3.3, Definition 1 and II. 3.4, Theorem 3). But
for every point u in E? such that Tu = x the set consisting of the point
u is an e.m.m.c. for (x, T, D). Thus there are at most a finite number
of points u in Ef — T~λXoo for which Tu = x. Thus it has been shown
that

(3) For every integer k, if x is in TSk then (Ef - T^XJ) f| T~ιx is
a finite set.
Since (J S* 5 Ef — ΓΛXΌ. it is easy to show that (3) implies that lim
sup TSk — Γ(lim sup S>Λ) and so

(4) .2*(Kmsup Γ&) = ^ Γ S * .

By Theorem 4 of [3], IV. 1. 1, the sets TSk are measurable. Since T
is a bounded transformation, £f(\jTSk) is finite. Thus ([5], p. 17)

(5) jS^ίlim sup TSk) ^ lim sup

But £?TSk ^ e0 > 0 for all & and so

(6) lim sup ^TSk > 0

By (4), (5) and (6),

(7) j ^ Γ S * > 0

Now (1), (2) and (7) imply that T does not satisfy condition (N) on E.

3. DEFINITION 2. For every positive integer j let D3 be a bounded
domain in Rn and let Γy be a bounded, continuous, single-valued trans-
formation from Dj into Rn. The transformations JΓ, will be termed
uniformly essentially absolutely continuous (briefly UEAC) provided:

(i) For each j , T3 eBV in D3 and
(ii) Given any ε > 0, there is a δ > 0, depending only on ε, such

that for all j the following is true: if S is a subset of E(Tjf Dj) and
SfS < δ, then ^TjS < ε.
Note that if the transformations To are UEAC, then, by Theorem 1,
for each j , T3 is eAC in D3.

Each point u in D is contained in a unique component of T~LTu
denoted by Cu. A subset U of D is termed a T set if u e U implies
CUEU ([4], 1).

THEOREM 2. Lei D be a bounded domain in Euclidean n-space Bn

and let T be a bounded, continuous, single-valued transformation from
D into Rn. For every positive integer j let D3 be a bounded domain
in Rn and let T{ be a bounded, continuous, single-valued transformation
from D3 into Rn,
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If
( i ) The mappings T3 are UEAC
(ii) The mappings T3 converge to T uniformly on compact subsets

of D ([3], II. 3. 2, Remark 9) and
(iii) A is a T set contained in E(T, D) and ^A — 0,

then ^TA = 0.

Proof Let ε > 0 be given and let δ be the corresponding positive
number in (ii) of Definition 2. Since A is a subset of the open set D
and £fA — 0, there is an open set O, containing A and contained in D,
such that £fθ < 8. Let x e TA. Since A C E(T, D), there is a set
C, e.m.m.c. for (x, T, D), such that C meets A. C C A since A is a
Γ set and so C g O . By Definition 1 in [3], II. 3.3 there is a set J9,
which contains C and whose closure J3ΓD is contained in 0, such that
D is an indicator domain for (x, T, D) ([3], II. 3.2). By definition
<βΓDED,x is not in T&D (where &Ώ denotes the boundary of D)
and the topological index μ(x, T, D) ([3], II. 2) is not zero. Since T&D
is compact, the ecart of x from T& D, e(x, T&D), is positive ([3],
1.1.4, Exercise 3). Since 3ΓD C D, by (ii) there is a positive integer
j x such that, for j > j x , JίTΏ C />; and ^(Γ, T, , JTZ)) the deviation of
Tj from T on J Γ J D ([3], I. 1.5, Definition 5) is less than φ , T^D).
Clearly jθ(Γ, Tj9 &D) g />(T, Γ,, 3ΓD). Thus, for i > j x , JTDEDf] B3

and ^(Γ, Tj9 &Ώ) < e(x, T^D). By Theorem 6 of [3], II. 2.3, μ(x, T3, D)
is defined and equals μ(x, T, D). Thus D is an indicator domain for
(x, Tj, Dj) and, by Lemma 4 of [3], II. 3.3, there is a set Cj9 e.m.m.c.
for (x9 Th Dj), such that C3- C D. Now C3 C 0 n ^ ( Γ y , Dy) and Γ.C,- = x.
Thus a; 6 ^ [ 0 Π E(Tjf D3)] for all j > 3* and hence x e Urn inf Γ^O Π
E(Tjy Dj)]. Since cc was any point in TA, it has been shown that TA
C Km inf ^ [ O Π E(T3, D3)] and so

(1) ^TA ^ j^Wm inf T3[O n ^ ( Γ , , Z>y)].

Since #(7^, J9y) is a Borel set, O n E(T3, D3) is also a Borel set and so
T3[O Π JS'ίT',., D3)] is Lebesgue measurable. Thus ([5], p. 17)

(2) jδf lim inf ϊ7,- [0 n ^(T7,, />,)] ^ lim inf ^fT3 [O n

Now

(3) ^f[O n ^(ϊ 7 ,, Dy)] ^ £f 0 < δ.

By the choice of 8, (3) implies that £fTd[0n E(Tjf D3)] < e and hence

(4) lim inf seT3 [0 n E{T3, D3)] g ε.

By (1), (2) and (4)
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(5)

Since (5) has been proved for an arbitrary ε > 0, it follows that £fTA = 0.

4. Theorem 2 suggests the question: under the hypotheses of
Theorem 2 does T satisfy the condition (N) on E(T, /))? Note that T
does satisfy the condition (N) on E?(T, D). In the remainder of the
paper some results pertinent to this question will be presented.

Reichelderfer introduced the concept of the T magnification ([4], 6).
It will be useful to have the definition repeated here.

Let ®* = ®*(T, D) be the class composed of all domains Dior each
of which j%ΓD is contained in D and there exists an open oriented %-cube
Q in Rn such that D is a component of T~ιQ. If C is a maximal model
continuum for (x, T, D) for some point x in Rn, for every positive number
ε define

d(C, £?T, ε) - l.u.b. ^ΎΌ\^Ό, C ^ D e <&*, δTD ^ ε

and

d(C, £fT, ε) = g.l.b. .Sf ΓD/jSf A C E D e ®*

(If A is a subset of Rn, δA denotes the diameter of A).

d(C, £?T) = lim d(C, jSf Γ, ε)

and

d(C, SfT) - lim d(C, &T, ε).

If d(C, ̂ ^Γ) and d(C, JZfT) are finite and equal, their common value
is denoted by M(C, T) and is termed the T magnification at C.

Lemma 1. Lei p be a positive number and let A be a T set with
the following properties:

(i) If u e A, then there is a set C e &i(T, D) such that u e C and
d{C, SfT) > p.

(ii) If C e &i{T, D) and C C A, then for every domain G in R%

which contains TC and has a sufficiently small diameter it is true
that T~ΎG possesses exactly one component D which meets A. Note that
D must contain C and (provided only that the diameter of G is suf-
ficiently small) be a m.i.d. T ([4], 4 and 5, Lemma 2).

Then seA ^ \\p

Proof, Let η be any positive number. The proof will be completed
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by showing that £?A ^ 1/p^fTA + η.
Let x e TA (the inequality is trivial if A is empty) and let u e A

such the Tu = x. By (i) there is a set C e (^(T, /)) such that w € C
and d(C, jδfT) > p. Thus there is an ε > 0 such that d(C, SfT, ε) > p
and so

(1) If C C 2) e ®* and δ Γ ΰ ^ ε, then ^fTD/^D > p

Since A is a T set, C g i and, by (ii), there exists a positive number
r such that for every domain G in Rn which contains TC{~ x) and for
which SG ^ r it is true that T~λG possesses exactly one component
which meets A and, moreover, this component is a m.i.d. T containing
C. For every positive integer i let Q{ be the open oriented w-cube
with center at x and diameter equal to the smaller of ε, r and 1/i.
Then T~lQi possesses exactly one component Ό{ which meets A and A
is a m.i.d. T containing C. By the Lemma in [4], 4, TD{ = Q̂  and

C -D. By definition, A e ®* and so, with the aid of (1),
< 1/p £?TDi. Thus

(2) For every point x in TΆ there is associated a sequence of open
oriented w-cubes Q{ with centers at x and a corresponding sequence of
domains A such that, for all ΐ, δζ^ ^ 1/i, ώ^A, < 1/p ^'Qi, A is a
component of T""1©,- and the only component of T~xQi which meets A,

Let D be the class of all w-cubes associated with points of TA in this
manner. £fTA is finite since T is bounded, and by a theorem of
Rademacher ([2], p. 190) there is a Q*, countable subclass of £}, such
that

(3) TA e U Q*,Q* G Q*

and

(4) i^Q* ^ ^fTA +Ύ]p.

(Rademacher's theorem is stated in terms of a covering made up of
open ^-spheres, but the corresponding theorem for a covering of open
w-cubes is readily obtained from it). Let Q* be an element of Q*. By
(2) there is a corresponding domain Z>*, D* a component T^Q* such
that £?D* < 1/p^fQ* and _D* is the only component of T~'Q* which
meets A. In this way exactly one domain D* is associated with each
Q* 6 £}*. The class of domains D* is countable and

(5) JJS^D* ^ llpΣ&Q*.

Let % e A. Then T^ e TA and by (3) there is a Q* e G* such that
Tu e Q*, Since the corresponding D* is the only component of T~XQ*
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which meets A it must contain u. Thus A g U D* and

(6)

By (4), (5) and (6), ^fA ^ 1/p £fTA + η. Since η is any positive
number, the conclusion of the lemma is established.

LEMMA 2. Let $Q be a subclass of @ΐ(Γ, D) such that i/Ceξ> then
d{C, £?T) > 0. Put H= U C, C e ξ>. If £fTH= 0, ίΛew _S^# = 0.

Proof. If i ϊ is not empty (the equality is trivial otherwise) then
@i(Γ, D) is not empty and hence, by the Lemma in [4], 14, the set E{

can be expressed as the union of a countably infinite sequence of T sets
Uk with the following property:

(1) If C e&i and Uk Ξ> C, then for every domain G in Rn which
contains TC and has a sufficiently small diameter it is true that T~ιG
possesses exactly one component D which meets Uk.

For every positive integer n let φΛ be the subclass of § consisting of
those elements C for which d(C, SfT) > 1/n. Put Hn = UC, C e φ n

and let ifΛft = iZ, Π t/*. Then H= \jHn and, for each w, fl"n = ufl,*.
The proof will be completed by showing that ^fHnk = 0 for arbitrary
n and fe. Since Hn and ί/̂  are T sets,

(2) iίπfc is a T set.

Clearly

(3) If ueHnk, then there is a set CeOr* such that ueC and

By (1) and the definition of Hnk,

(4) If Ce&i and C ϋϊ Hnk, then for every domain G in iϋ" which
contains TC and has a sufficiently small diameter it is true that T~ιG
possesses exactly one component D which meets Hnk.

(2), (3), (4) and Lemma 1 imply that £fHnk ^ n£?THnk. Since THnk E TH
and ^?TH=0, ^fTHnk = 0 and consequently £fHnk = 0. Since n and
fc are arbitrary, it follows that ^fH = 0.

5 THEOREM 3. Let D he a hounded domain in Euclidean n-space
Rn and let T be a hounded, continuous, single-valued transformation
from D into Rn. For every positive integer j let Dj be a bounded
domain in Rn and let Td be a bounded, countinuous, single-valued
transformation from Dd into Rn. Let 93 be the subclass of gt(Γ, D)
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consisting of those elements C for each of which C M(C, T) exists and
is positive and C contains more than a single point. Put B = U C,
C e S3. If

( i ) The mappings Tό are UEAC.
(ii) The mappings T3 converge to T uniformly on compact subsets

D and
(iii) T is eBV in D

then the following statements are equivalent:
(iv) T satisfies the condition (N) on B>
(iv)' ^fTB=0 and
(iv)" £fB = 0

and (i), (ii) and (iii) together with (iv) or (iv)' or (iv)" imply that T is
eAC in D.

Proof. First it will be shown that (i), (ii), (iii) and (iv) imply that
T is eAC in D. By the Theorem in [4], 16, there exist T sets V and
F" contained in D such that ^ F ' = 0, £?TV" = 0 and if Ce^T, D)
and C does not meet V U F", then M(C, T) exists and is positive. In
view of (iii), in order to conclude that T is eAC in D it is sufficient to
prove that T satisfies the condition (N) on E = E(T, D). Clearly it is
sufficient to show that T satisfies the condition (N) on each of the
following sets whose union is E: S2 = E — Eiy S2 = Eff S3 = (E{ —
Ef) n F\ S4 - (#, - #?) ΓΊ V" and S5 - (E{ - Ef) - (F ' U F"). Since
Γ is eBV in Z>, £fTS1 = 0 (this is proved in the first step in the proof
of the theorem in [4], 18) and so T satisfies the condition (N) on Sλ.
Any subset of S2 is a T set contained in E and it follows by Theorem
2 that Γ satisfies the condition (N) on S2. Again by Theorem 2,
Jδf TS3 = 0 and so Γ satisfies the condition (AT) on S3. ^ ^ TS4 g ^ Γ F ' ' = 0
and so ϊ7 satisfies the condition (N) on S4. S5 is a subset of B and so
(iv) implies that T satisfies condition (N) on S5.

If (i), (ii), (iii) and (iv) are satisfied, then it has just been shown
that T satisfies the condition (N) on E(T, D). Hence, by Lemma 4 of
[3], IV. 4.2, £?T{E- Et) = 0. Since B is a subset of E-Ef, (iv)'
must be satisfied. On the other hand, (iv)' clearly implies (iv). Thus
if (i), (ii) and (iii) are satisfied, (iv) and (iv)' are equivalent.

By Lemma 2, £?B = 0 if SfTB = 0. On the other hand, since £
is a Γ set contained in E{T, D), (i) and (ii) imply, by Theorem 2, that
&TB = 0 if j^JB = 0. Hence if (i) and (ii) are satisfied, then (iv)' and
(iv)" are equivalent.

6. It is reasonable to inquire whether (i), (ii) and (iii) in Theorem
3 are sufficient to conclude that T is eAC in D. After all, each of the
sets C in 33 is a non-point continuum for which the T magnification is
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positive and yet whose image under T is a single point in Rn. Might
not (i), (ii) and (iii) imply, say, (iv)' (or equivalently (iv) or (iv)")?
Since the class S3 is clearly countable when T is a transformation into
R\ TB is then a countable set. Thus (iv)' is always satisfied when T
is a transformation into R1. However, the author has constructed an
example in R2 for which (i), (ii) and (iii) are satisfied and for which the
limit transformation is not eAC ([6]). In the example the limit trans-
formation T is modeled on an example by Cesari ([1], IV. 13.1, Example
A). The transformation that Cesari defined provides an example of a
plane mapping that is eBV but not eAC. The example in [6] is some-
what more complicated by the need for (i) and (ii) to be satisfied.
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