
ON THE REPRESENTATION THEORY

FOR CYLINDRIC ALGEBRAS

DONALD MONK

The main purpose of this paper is to give some new sufficient con-
ditions for the representability of infinite dimensional cylindric algebras.
We also discuss certain problems and results in the representation theory
reported on by Henkin and Tarski in [5].

In general we adopt the notation of [5]. § 1 contains some ad-
ditional notation, the statement of a representation theorem of Henkin
and Tarski frequently used in this paper, and an embedding theorem
which throws some light on that representation result. § 2 is devoted
mainly to some simple proofs for known results about the general alge-
braic theory of representable cylindric algebras. Then in § 3 we turn
to representation theory proper. The first result of this section gives
a sufficient condition for representability in terms of isomorphic reducts
of an algebra (this result was independently obtained by Alfred Tarski).
Then follows the definition of a new class of cylindric algebras, diagonal
cylindric algebras. The main theorem of this paper is that every diago-
nal cylindric algebra is representable; this result represents a consider-
able improvement of some previously known representation theorems.
Several interesting corollaries are derived from this result.

1. Introduction, We use the notation of [5] with the following
additions. For abbreviational purposes we use standard logical notation:
-* (implies), V (there exists), and A (for all). The identity map on a
set A is denoted by δ^. The function / restricted to the subset A of
its domain is denoted by / f A. If R is a binary relation and A is a
set, then B*(A) = {y | V*eX*3/> 6 12}. If 21 - <A, + , , - , cκf dκk\κ<Λ is
a CAa, then 2I0 = <A, + , , — > is the Boolean part of 21. Directed
systems are understood in the sense of [7] p. 65.

We need some notions of general algebra, adapted from [9]. Let K
be a class of similar algebras; say all algebras of K are indexed by a
nonempty set Nκ, so that if 21 e K then 21 = <A, 0^}ieNκ, the 0{ being
operations on A. We let HK = the class of all homomorphic images of
algebras of K, PK = the class of all Cartesian products of systems of
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algebras of K, and SK = the class of all subalgebras of algebras of K.
If J S Nκ and 21 e K, we let %3 = <A, 0 , > i e j ; and we let Kj = {&, | 21 e K}.

To fit cylindric algebras into this scheme of universal algebra, let
us make the following agreement. For each ordinal α, let Ma —
{0,1, 2, <0, /t>, <0, ic, λ>}K i λ < Λ. If 21 = <A, + , - , - , cκ, d κ λ χ . λ < β is a CAΛ,
we let O 0 = + , Oχ = , O2 = —, 0<0ιK> = cκ, and 0<0>/c>λ> = dκλ for all
ic, λ < α; finally we let 21* = <A, O ^ e * „. We let CAZ = {21* | 21 e CAα}.
Thus CAl is a class of similar algebras in the above sense. When no
confusion results we shall identify CAΛ with CAZ.

In several of the proofs below we use a method of construction
whose general form is as follows. We are given a class K of similar
algebras, a directed system ® = ζD, ^)>, and, for each d e D, an element
2Id of tf. We let Λ - {</, <?> |/, flr e naej,Ad and VdenAeeD(d ^e-^fe =
ge)}. Clearly R is a congruence relation on I L e i ^ ; J? is called the
eventually equal congruence of 21 and S. 1 In case K = CA* for some
#> { / K / > 0 ^ e ^ } is called the eventually zero ideal of 21 αm£ ©. In
case J S JVA- and SB is a subalgebra of 3tdJ for each d e J9, we may define
natural isomorphisms g and / of 39 into I L e z ^ j and [ΠdeΛ/-B]j r e~
spectively. For each δ e δ and d e JD let g(b)d = b. For each b e B let
/(^) =

 [QΦ)]- If ^ — CΆ* and J = {0, 1, 2}, ^ and / are called the natu-
ral Boolean isomorphisms of S3 into ΐ[dejMd and Πdez)2IΛ/i2 respectively.

The essential steps in the proofs of the representation theorems here
presented use the following theorem of Henkin and Tarski (see [5] Theo-
rem 2.15).

THEOREM A. A CAa 21 is representable if and only if for each
ic < ω 21 can be neatly embedded in some CAΛ+IC.

There now exist purely algebraic proofs of this theorem. Theorem
A is to be contrasted with the following theorem:

THEOREM 1. If 8 ^ a ^ ω, then every CAa is embeddable in some
CAz, i.e., is a subalgebra of the a-reduct of some CAδ.

2

Proof. I t suffices to take the case 8 = a + 1. For each β < α> we
define τ ( β ) with domain a + 1 by:

Ίc if ic < β ,

1 ιc + 1 if β g ic < ω ,

ic if ω g ic < a ,

,/9 if Λ: = a ,
1 ΠdezΛ/ϋί is a reduced product in the sense of Frayne, Scott, and Tarski (Notices

Amer. Math. Soc, 5 (1958) 673). In fact, let J= {X\X^ D and VaeDΛeeo (d g e->e $ X)}.
Then J is an ideal in the field of all subsets of D, and R is the congruence relation on
ΠaezΛ determined by J.

2 This theorem, due to the author, is stated in [5].
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for all K < a + 1. Thus 7{β) is one-to-one. Let 31 be a given CAa, and
let 33β be the a + 1, γ(β)-reduct of St. Let J b e the eventually zero ideal
of 33 and <ω, ^ > . Let (£ = Πβ<ω33β//, and let g, f be the natural Boolean
isomorphisms of 21 into ΐlβ>j&β and K respectively. If 0 ^ K < β < ω
or 0 g ; / 3 < ω ^ Λ ; < α : , then yf = Λ:, and so, with α e A , (c^(α))β =
c?Pg(ά)β = c^β)α = c^α = g(cκά)β; similarly for diagonal elements. It fol-

lows that / is a cylindric isomorphism of 21 into the α:-reduct of E, as
required.3

Since for each a ^ ω there are non-representable CAa's, Theorems
A and 1 indicate the significance of the notion of neat embedding.

2. Universal algebra and cylindric algebra. In [5], Henkin and
Tarski state several universal algebraic properties of representable cy-
lindric algebras, indicating that their proofs use in an essential way some
metamathematical results. Thus after proving that RCAa is a universal
class, they infer that

(i) a cylindric algebra is representable if and only if every finitely
generated subalgebra of it is representable, and

(ii) a cylindric algebra is representable if and only if every finite
reduct of it is representable.

Further, after proving that RCAΛ is equational they infer that RCAa

is closed under the taking of homomorphic images. For all these
algebraic results they raise the question concerning the existence of simple
algebraic (as opposed to metamathematical) proofs.

With the essential help of Theorem A, which, as mentioned above,
has algebraic proofs, we shall give algebraic proofs of the above results.
In addition, we obtain a new proof of the equational character of RCAX.

THEOREM 2. A homomorphic image of an RCAΛ is an RCAΛ.
A

Proof. Suppose 21 is an RCA^ and / is a cylindric ideal in 21; we
want to show that 21// is an RCAa. Let 33 be a CAa+κ such that 21 is
neatly embedded in S3 (by Theorem A), where tc < ω. Let J be the
ideal in S3 generated by /. Clearly J = {b \ b e B and yaei(b ^ α)}, and
so J Π A = I. It follows that the natural Boolean homomorphism of
21// into 33/ J is a cylindric isomorphism of 21/J onto an algebra neatly
embedded in 33/J, and by Theorem A our theorem follows.

It is easy to see that RCAΛ is closed under direct products and
subalgebras. Hence by Birkhoff's theorem (Theorem 2.1 of [9]), RCAa

is equational. Thus in particular, RCAa is a universal class, and the
above characterizations (i) and (ii) of RCAa follow. Recently the author

3 Theorem 1 can also be easily proved metamathematically. In fact, it was such a
proof that first occurred to the author.

4 [5], Theorem 2.20,



1450 DONALD MONK

obtained simple algebraic proofs of these two characterizations. Alfred
Tarski, upon being informed of these proofs, recalled that in 1955
Saunders MacLane outlined to him a proof of a universal algebraic theo-
rem from which (i) follows; the author's proof of (i) was a specialization
of MacLane's proof. Since MacLane's proof has never appeared in
print, we shall take this opportunity to present it here. Subsequent to
the above work, the author obtained a corresponding algebraic proof of
a generalization of (ii).

Of the two corollaries below, the first is a strict specialization of
the universal algebraic case, while for the second corollary we apply an
additional argument.

THEOREM 3. Let K be a class of similar algebras such that HK —
K, PK = K, and SK = K. Then for every algebra 21, WeK if (and
only if) every finitely generated subalgebra of 21 is in K.

Proof. The necessity of the condition is obvious. Now suppose that
every finitely generated subalgebra of 31 is in K. Let / = [F \ F is a
finite subset of A], and for each Fel let 33^ be the subalgebra of 21
generated by F. Let R be the eventually equal congruence of 33 and
</, 2>, and let (£ = Urei^rlR- By hypothesis, (£ e K. Define g with
domain A and range included in Y[FeiBF by:

(any element of BF if a 0 BF ,
9(a)F = .

[a if a e BF ,

for all ae A and Fel. It is easy to see that the function /, defined
by f(a) = [g(a)] for all ae A, is an isomorphism of 21 into K. Hence
%eK.

From Theorems 2 and 3 we obtain:

COROLLARY. 21 e RCAΛ if (and only if) every finitely generated
subalgebra of 21 is representable.5

THEOREM 4. Let K be a class of similar algebras such that HK =
K, PK = K, and SK = K. Then 21 e K if (and only if) for every finite
subset F of Nκ we have 21^ e SKF.

Proof. The necessity is obvious. Now suppose that the above con-
dition holds. For each finite subset F of Nκ choose 95(i?>) e K such that
% S 33^. Choose i0 e Nκ. Let I = {F\ F is a finite subset of Nκ and
ί0 e F}. Let R be the eventually equal congruence of S3 and <Γ, Ξ2>,
and let (£ = T[Fei%5{F)IR Let g and / be the natural isomorphisms of

5 [5], Theorem 2.13 (i).
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aί{ίo, into ΐlFe&i(<!} and (£{io} respectively. We claim that / is an iso-
morphism of 51 into (£. For, if i e Nκ, say with Of binary, and if
a,beA, we have for {i} Q Fe I:

[g(Of(a, b))]F = Of (a, b)

= Or (a, b)

= OfF (α, 6)

= O?F)([g(a)]F, [g(b)]F)

), g(b))]F .

Thus /(Of (α, b)) = O,(/(α), /(&)). We deduce that 21 e K by the hypothe-
sis of the theorem.

Again, we have a corollary for cylindric algebras. As mentined
previously, this corollary is not quite as immediate as the corollary to
Theorem 3; we need the following lemma in order to derive the corollary
easily.

LEMMA 1. Let K be a class of similar algebras such that PK — K
and SK = K. Suppose that 21 is an algebra such that for all x,y e A
with x Φ y there is a homomorphism f of 21 onto an algebra S3 e K
such that f(x) Φ f(y). Then 2ί e K.

In case additionally K = CAa it is enough to assume that for all
xe A with x Φ 0 there is a homomorphism fof% into an algebra 35 e K
such that f(x) Φ 0.

The proof of this lemma is simple; it is essentially due to Birkhoff

([1]).
The proof of necessity in the following corollary gives a simple

proof of Theorem 2.12 of [5].

COROLLARY. 2ί e RCAΛ if and only if every finite reduct of 21 is
representable.6

Proof. Necessity. Suppose 21 e RCAΛJ i.e., 21 is isomorphic to a
sub-direct product of CSAΛ's. Now a reduct of a product of CAΛ's is
equal to the product of the corresponding reducts. Hence we may as-
sume that 21 is a CSAΛ, say with base U. Suppose tc < ω and θ eaκ is
one-to-one; let S3 be the K, #-reduct of 21. Suppose b e B and b Φ 0;
choose feb. For each g e Uκ we define g* e TJΛ by:

gθ~iλ if λ e range θ ,

/ λ otherwise.

6 [5], Theorems 2.12, 2.13 (ii).
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Define F(x) = {g e Uκ | g* e x) for each H G B . It is easy to verify that
F is a homomorphism of 33 onto a CSAK such that JF(&) ^ 0. Since b
is arbitrary, we deduce from Lemma 1 that 93 e RCAK.

Sufficiency. We now assume that every finite reduct of 2ί is repre-
sentable. Let a finite subset F of Ma be called regular if there is a
finite subset G of a such that F = {0, 1, 2, <0, /r>, <0, IC, X)}κ>λ€Q. Now
it is known, and easy to see, that an RCAa can be neatly embedded in
an RCAβ for each β ^ a; if we apply this argument here we see that,
by our assumption, 2ί| £ 33^* for some 33(i?r) e iϋCA*, for each regular
finite subset F oΐ Ma. If ί 7 is any finite subset of Ma9 then there is a
regular finite subset G such that F g G , and so 21 £ = ( 2 1 ^ s (33^)5fc)F e
[(RCA*)Θ]F = CBCA*),. Hence by Theorem 4, 21* e ΛCA*, i.e., 2ί e i2CAα.

We conclude this section with the following theorem.

THEOREM 2\ Let a and K be ordinals. Let K be the class of all
CAΛ's which can be neatly embedded in a CAa+κ. Then K is an equa-
tional class.

Proof. Clearly K is closed under direct products and subalgebras.
The proof of Theorem 2 may be applied to show that K is closed under
homomorphisms. Our theorem is now a consequence of Birkhoff's theorem.

From this theorem we can derive two corollaries similar to the aΐove
stated corollaries. This can be done metamathematically, in the obvious
way, or mathematically as follows. For the first corollary we can again
use Theorem 3, while for the second we can use a direct argument
similar to the proof of Theorem 4. (We do not know of any way of
using Theorem 4 or something like it to derive the second corollary.)

3. Some representation theorems* Now we shall prove several new
sufficient conditions for the representability of cylindric algebras. The
following simple lemma will be found useful in the proofs of the main
results.

LEMMA 2. Let a, β, and y be ordinals^ and suppose that τ e βa+y

is one-to-one. Suppose 2ί is a CAΛ1 33 is a CAβ, T e BΛ, and the follow-
ing conditions hold:

( i ) T is a Boolean homomorphism of 2X into 33,
(ii) cfκoT - Tocf for all tc < a,
(iii) T(dl) = d?κ,τλ for all ιc,X<a.

Then T is a cylindric homomorphism of 21 into the a-reduct of some
CAΛ+ . If in addition the following condition holds:

(iv) cfκoT = T for a^tc<a + y,
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then T is a cylindric homomorphism of 2ί into an algebra neatly
embedded in some CAa+ .

Proof. Let (£ be the a + 7, τ-reduct of 33, and let © be the
α-reduct of (£. Then T is a cylindric homomorphism of 21 into 2), for
Tocf = cfκoT (by (ii)) - cfoΓ = cfoT for each A; < a, and Γ(d?λ) -
d«,rλ = dfκ = cZ® for all /r, λ < α:. If in addition (iv) holds, then for
a^κ<a + ywe have cfoT = cfκoT = T.

As a consequence of Theorem A and Lemma 2 we have the follow-
ing representation theorem, which was independently obtained by Alfred
Tarski.

THEOREM 5. Assume that % is a CAΛ, σ is a one-to-one element of
a* such that a ~ range (σ) is infinite, and 33 is the a, σ-reduct of 31.
Suppose T is an isomorphism of 21 into 33 such that cfT(x) — T(x)
whenever x e A and tc ea ~ range (σ). Then 21 is representable.

Proof Let τ be a one-to-one element of aa+<a such that r \ a — o.
Then for all tc < a we have cψκoT = cfκoT = cfoT = Tocf. Moreover,
for all K, X < a we have T(dfλ) = d® = dψKtTλ. Finally, if a g K < a + a>,
then c E ° Γ = T7. Hence by Lemma 2 21 can be neatly embedded in a
CAΛ+ω, and our theorem follows from Theorem A.

We should mention that recently Tarski obtained a stronger version
of Theorem 5, in which the condition "a — range (σ) is infinite" is
replaced by the condition "a ~ range (σ) Φ 0".

Theorem 5 leads to an interesting insight into the relationship be-
tween cylindric and polyadic algebras, of a different kind from the
insight obtained from the relationships established in [2]. A polyadic
algebra with equality is, roughly speaking, a cylindric algebra with two
additional structures: infinite cylindrification, and substitution (see [3]).
If we eliminate only the infinite cylindrification, we arrive at a notion
of a substitution on a cylindric algebra. A substitution on a CAΛ 21 is
a function S e {AAy* which satisfies certain natural conditions (due to
Halmos). As a corollary of Theorem 5 we easily see that if SI is a CAΛ

with a substitution and if a ^ ω, then A is representable. Now from
[6] it is known that every infinite dimensional polyadic algebra is re-
presentable, while there are infinite dimensional polyadic equality alge-
bras which are not representable (with equality corresponding to the
functional equality). Here by representable we mean as in cylindric
algebras—isomorphic to a subdirect product of Ovalued functional poly-
adic algebras. Our corollary shows that by eliminating infinite cylindri-
fication we recapture representation.

It is natural to ask if the corollary can be strengthened by re-
placing "substitution" by "finite substitution"—a concept defined like
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that of substitution, but in which S applies only to those τea" for
which there is a finite subset F of a such that τ \ a ~ F = 8a»F. The
answer is no: for each a }> ω there exists a CAΛ with a finite substitu-
tion which is not representable. The construction of such algebras de-
pends on the results of [8], which in turn depend upon unpublished work
of Henkin and Tarski.

We now define a class of cylindric algebras which includes both the
class of simple infinite dimensional cylindric algebras and the class of
dimensionally complemented cylindric algebras. A CAΛ Sϊ is called a
diagonal cylindric algebra (GCAΛ) provided that for every non-zero a e A
and every finite subset F of a there are distinct K, λ e a ~ F such that
a*dκλ Φ 0. The importance of this concept derives from the following
theorem:

THEOREM 6. Every diagonal cylindric algebra is representableJ

Proof. Let 5ί be a GCAa. We want to apply Lemma 1, with K
replaced by the class of all CAa's which can be neatly embedded in
CAΛ+1'8. Hence suppose that ae A and a Φ 0. Since 51 e GCAa we can
define functions μ, v with domain ω inductively by letting μκ and vκ be
distinct members of a ~ {μλ, vλ \ X < tc} such that a dμ<Vιc Φ 0.

Now we prepare to apply Lemma 2. It is easy to see that there
is a unique τ e a*+1 such that the following conditions hold:

(1) τ is one-to-one,

(2) τ is the identity on a — {μκ, vκ \ K < ω},

(3) τμκ = vκ for each tc < ω,

(4) τvκ — μκ+1 for each tc < ω,

(5) τa = μ0.

For each fc < ω, let S5K = 51. Let I be the eventually zero ideal of SB
and (ω, ^ > , and let (£ = 2tω/J. For each x e A and K < α>, define

where S°z = cθ(dθp x) for all θ, p < a and x e A. Let T(x) = [f(χ)~\ for
all u; 6 A. The following statements may now be verified:

(6) T is a Boolean homomorphism of 51 into C,

(7) cfλoT = ΓocF for all λ < or,

7 After reading a preliminary draft of this paper, Henkin obtained a generalization of
this theorem, which may be stated as follows. If for every nonzero xβA and for every finite
Γ g α there is a ξea~Γ and an endomorphism Tof Sίo such that c^oΓ = Γ, cκoT = Γαc* for
each * 6 Γ, and T(x)^0, then 2ί is representable.
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(8) T(d%) = dfKτ, for all λ, μ < a,

(9) cfΛoT= T.

In verifying (7), one can make use of the following easily verified
arithmetic law:

(10) Sp

θcpS
θ

πx = cθS
p

θS
θ

πx for all x e A and all distinct p, θ, π < a.

We can now apply Lemma 2, and infer that T is a cylindric homo-
morphism of 21 into an algebra neatly embedded in a CAa+1. Suppose
T(a) — 0. Choose k < ω such that f(a)κ = 0. Applying successively
Syv

0°, Sζ}, •••, S^_x we infer that S%a = 0, and so a-dμ^κ - 0, which is
a contradiction. Since a is arbitrary, from Lemma 1 we conclude that
21 can be neatly embedded in some CAa+1 ®. Let g be an isomorphism
of 21 onto an algebra neatly embedded in 3).

Let N be maximal among ideals P such that g * ( 4 ) f ] P = {0} (by
Zorn's lemma). Let @ = ®/iV, and let pr be the natural homomorphism
of ® onto ©. Clearly pro# is an isomorphism of 21 onto an algebra
neatly embedded in ©. Suppose x e D, F is a finite subset of a, and
[#] ^ [—dκλ] for all distinct k,Xe a ~ F. Suppose that xφN. Then
iVu {x} generates an ideal P such that P(Ί #*(A) =£ {0}. Choose ye A
such that g(y) Φ 0 and ί/(τ/) e P. Then there are ιc0. , ATV_! e α + 1 and
n e N such that g(y) ̂  ^ + cKo c,,^^. Let F = F U K, ., fcv_J.
Then [̂ (2/)] g [—cίKλ] for all distinct tc, Xea ~ Ff; but this contradicts
the fact that 21 is a diagonal cylindric algebra.

It follows that 6f is a G(L4α+1. Hence all the preceding proof can
be applied inductively to give, in virtue of Theorem A, the desired
result.

We now proceed to derive some consequences of Theorem 6.

THEOREM 7. Every simple infinite dimensional algebra is a diago-
nal cylindric algebra, and so is representable.

Proof. Suppose 21 is a simple CAΛ, a ^ ω, ae A, a ψ 0, and Fis a
finite subset of a. There are λ e ω ~ 1 and μeaλ such that eμo c μ λ i α =
1. Choose K, v distinct in a ~ {F\J {μ0, , /^-J) . If a-dκv = 0, then,
applying cμQ c μ λ i , we see that dκv = 0; hence 0 = 1, contradicting the
simplicity of 21.

From Theorem 7 we can infer the following negative theorem which
limits the possible extensions of Theorem 1.

THEOREM 8. If 1 < a < ω, then it is not the case that every CA<»
can be embedded (in the sense of Theorem 1) in a CAω.

Proof. Assume the contrary. Henkin and Tarski have constructed
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a non-representable CAΛ 21, in unpublished work. Clearly we may as-
sume that 21 is simple. Let 93 be a CAω such that 21 is a subalgebra
of the α-reduct of 23. Let / be a maximal ideal in 93, and let (£ = 33//.
By Theorem 7, (£ is representable. Since 21 is simple, An/—{0}, and
so the natural homomorphism of 21 into (£ is an isomorphism. It follows
that 21 is representable; but this is a contradiction.

A CAa 21 is weakly dίmensionally complemented, 21 e WDCA* if
a ~ Δx is infinite for every x e A.

THEOREM 9. Every weakly dimensionally complemented cylindric
algebra is a diagonal cylindric algebra, and so is representable.6

Proof. Suppose 2ί is a WDCAa, ae A, a Φ 0, and F is a finite
subset of a. Choose K, X distinct in a ~ F such that cκcλa = α. If
α dκλ = 0, then a = 0, contradiction.

THEOREM 10. Let a be an infinite ordinal, and let 21 be a CAa.
Suppose there is a finite subset F of a2 ~ δΛ such that Π<κ,λ>ej — dκλ =
0. Then 21 is a diagonal cylindric algebra, and so is representable.9

Proof. Suppose a e A, a φ 0, and G is a finite subset of a. Choose
fc e ω ~ 1 and μeaκ such that μ maps K one-to-one onto the field of F,
i.e., onto {λ | V v < β«λ, i/> e F or (y, λ> e F)}. Also choose v e aκ such that
v is one-to-one and range v Q a ~ G ~ (field of F). Let

H - {<vμr% vμ-'xy \ <jc, λ> e F} .

Applying Sζg Sΐ*i} to Π^^ei . - dκλ, we see that U{K,KeH ~ dκK = 0.
Moreover, ί ί is a finite subset of a2 ~ Sa such that (field of H) Π G — 0.
Since α ̂  0, choose (jc, λ> e i ί such that a-dκk Φ 0. Thus 21 is a diagonal
cylindric algebra.

In conclusion, we would like to make a few remarks about the
general theory of diagonal cylindric algebras. In the first place, GCA^
is properly included in RCAa; the cylindric set algebra formed from all
subsets of ωω forms an example of an element of J?CAα — GCAa; in this
algebra the element {δω} is included in the complement of every non-
unity diagonal element. Clearly GCAa is closed under direct products
and subalgebras. But from Theorem 2.19 of [5] it follows that GCAΛ

is not equational, and so is not closed under homomorphisms. For,

8 This is a solution of a problem of Henkin and Tarski, who showed that S2ί is represen-
table if a — {Δx U Δy) is infinite for all x, y 6 A.

9 Actually a somewhat stronger theorem holds. In fact, instead of assuming that F is
finite, it suffices to assume that a ~ Field {F) is infinite. Then, in general, the product
mentioned in Theorem 10 may be an infinite product.
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LCAa s GCAΛ c RCAa, and by the quoted theorem RCAa is the smallest

equational class including LCAa.
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