THE INVARIANCE OF SYMMETRIC FUNCTIONS OF SINGULAR VALUES

MARVIN MARCUS AND HENRYK MINC

Let $M_{m,n}$ denote the vector space of all $m \times n$ matrices over the complex numbers. A general problem that has been considered in many forms is the following: suppose \mathfrak{A} is a subset (usually subspace) of $M_{m,n}$ and let f be a scalar valued function defined on \mathfrak{A} . Determine the structure of the set \mathfrak{A}_f of all linear transformations T that satisfy

(1)
$$f(T(A)) = f(A) \text{ for all } A \in \mathfrak{A}.$$

The most interesting choices for f are the classical invariants such as rank [3,4,7] determinant [1,2,3,5,10] and more general symmetric functions of the characteristic roots [6,8]. In case $\mathfrak A$ is the set of n-square real skew-symmetric matrices (m=n) and f(A) is the Hilbert norm of A then Morita [9] proved the following interesting result: $\mathfrak A_f$ consists of transformations T of the form

$$T(A)=U'AU$$
 for $n \neq 4$, $T(A)=U'AU$ or $T(A)=U'A^+U$ for $n=4$

where U is a fixed real orthogonal matrix and A^+ is the matrix obtained from A by interchanging its (1, 4) and (2, 3) elements.

Recall that the Hilbert norm of A is just the largest singular value of A (i.e., the largest characteristic root of the nonnegative Hermitian square root of A^*A).

In the present paper we determine \mathfrak{A}_f when \mathfrak{A} is all of $M_{m,n}$ and f is some particular elementary symmetric function of the squares of the singular values. We first introduce a bit of notation to make this statement precise. If $A \in M_{n,n}$ then $\lambda(A) = (\lambda_1(A), \dots, \lambda_n(A))$ will denote the n-tuple of characteristic roots of A in some order. The rth elementary symmetric function of the numbers $\lambda(A)$ will be denoted by $E_r[\lambda(A)]$; this is, of course, the same as the sum of all r-square principal subdeterminants of A. We also denote by $\rho(A)$ the rank of A.

THEOREM. A linear transformation T of the space $M_{m,n}$ leaves invariant the rth elementary symmetric function of the squares of the singular values of each $A \in M_{m,n}$, for some fixed r, $1 < r \le n$, if and only if there exist unitary matrices U and V in $M_{m,m}$ and $M_{n,n}$ respectively such that

Received January 16, 1961. The work of the first author was supported in part by the the Office of Naval Research.

(2)
$$T(A) = UAV \text{ if } m \neq n \text{ and }$$

(3)
$$T(A) = UAV \text{ or } T(A) = UA'V \text{ if } m = n.$$

The sufficiency of (2) and (3) is clear and we prove the necessity in a sequence of lemmas some of which may be of interest in themselves. Assume without loss of generality that $m \ge n$.

LEMMA 1. Let A, $B \in M_{m,n}$ and let $\varphi_B(x) = E_r[\lambda((xA + B)^* (xA + B))]$ where x is a real indeterminate. Then

(4)
$$\deg \varphi_{B}(x) \leq 2 \text{ for all } B \in M_{m,n}$$

if and only if

$$\rho(A) \le 1.$$

Proof. We first remark that $\varphi_B(x)$ is actually a polynomial in x since it is the sum of all $\binom{n}{r}$ r-square principal subdeterminants of $(xA+B)^*$ (xA+B). The matrix A can be written, by a slight extension of the polar factorization theorem to rectangular matrices, in the form A=UH where H is n-square hermitian positive semi-definite and $U\in M_{m,n}$ satisfies $U^*U=I_n$, the n-square identity matrix. Then

$$\varphi_{B}(x) = E_{r}[\lambda((xUH + B)^{*} (xUH + B))]$$

= $E_{r}[\lambda((xH + U^{*}B)^{*} (xH + U^{*}B))]$.

Now let $H = V^*DV$ where V is unitary and D is diagonal. Then

$$\varphi_{B}(x) = E_{r}[\lambda(V^{*}(xD + VU^{*}BV^{*})^{*}VV^{*}(xD + VU^{*}BV^{*})V)]
= E_{r}[\lambda((xD + B_{1})^{*}(xD + B_{1}))]$$

where $B_1 = VU^*BV^*$. Now suppose $\rho(A) = \rho(D) = 1$. Then D has exactly one nonzero entry which we may clearly assume to be in the (1,1) position. It follows that $(xD+B_1)^*(xD+B_1)$ has a quadratic polynomial in x in the (1,1) position, first degree polynomials in the other first row and first column positions and constants elsewhere. Therefore, every principal subdeterminant of this matrix is a polynomial in x of degree at most 2.

On the other hand, if (4) holds then in particular for B=0

$$\varphi_0(x) = E_r[\lambda(x^2D^*D)]$$

and deg $\varphi_0(x) \leq 2$; this implies that the diagonal matrix D^*D can have at most one nonzero entry. But then $1 \geq \rho(D^*D) = \rho(D) = \rho(A)$.

LEMMA 2. Let $f(t_1, \dots, t_n)$ be a monotone strictly increasing function of each t_j for $t_j > 0$. If T is a linear map of $M_{m,n}$ into itself satisfying

$$f(\lambda(A^*A)) = f(\lambda((T(A))^*T(A))), \quad A \in M_{m,n}$$

then T is nonsingular.

Proof. Suppose T(A) = 0. Then

$$f(\lambda(X^*X)) = f(\lambda((T(X))^*T(X)))$$

= $f(\lambda((T(A+X))^*T(A+X)))$
= $f(\lambda((A+X)^*(A+X)))$.

Let A = UH where $U^*U = I_n$ and H is nonnegative Hermitian. Then taking $H = V^*DV$ where D is diagonal and V is unitary we find as in Lemma 1 that

$$f(\lambda(X^*X)) = f(\lambda((D + Y)^*(D + Y))),$$

 $Y = VU^*XV^*$. Now as X runs over $M_{m,n}$ Y runs over $M_{n,n}$ and moreover

$$\lambda(X^*X) = \lambda(V^*Y^*VU^*UV^*YV) = \lambda(Y^*Y).$$

Hence

(6)
$$f(\lambda(Y^*Y)) = f(\lambda((D+Y)^*(D+Y)))$$

for all $Y \in M_{n,n}$. Let Y be a real diagonal matrix with diagonal elements y_1, \dots, y_n . Then if D has diagonal elements d_1, \dots, d_n we conclude from (6) that

$$f(y_1^2, \dots, y_n^2) = f(d_1^2 + y_1^2, \dots, d_n^2 + y_n^2)$$
.

Thus D = 0, A = 0 and T is nonsingular.

We remark at this point that the elementary symmetric functions satisfy the conditions of Lemma 2 and hence the T of the theorem is nonsingular.

LEMMA 3. If $\rho(A) = 1$ then $\rho(T(A)) = 1$.

Proof. If $\rho(A) = 1$ then, by Lemma 1, deg $\varphi_B(x) \leq 2$. Now

$$\varphi_{B}(x) = E_{r}[\lambda((xA + B)^{*}(xA + B))]
= E_{r}[\lambda((T(xA + B))^{*}T(xA + B))]
= E_{r}[\lambda((xT(A) + T(B))^{*}(xT(A) + T(B)))].$$

By Lemma 2 T is nonsingular so T(B) ranges over $M_{m,n}$ as B does. Hence, by Lemma 1, $\rho(T(A)) \leq 1$. But $T(A) \neq 0$ since $\rho(A) = 1$. Thus $\rho(T(A)) = 1$.

At this point we invoke [7: p. 1219] that tells us that a linear transformation on $M_{m,n}$ which preserves rank 1 has the desired form:

$$T(A) = UAV$$
 for all $A \in M_{m,n}$

 \mathbf{or}

$$T(A) = UA'V$$
 for all $A \in M_{m,n}$,

where U and V are nonsingular m-square and n-square matrices respectively and the second eventuality occurs only if m = n. The proof of the theorem will be complete if we show

LEMMA 4. U and V may be chosen to be unitary.

Proof. We show this when T has the form (2); if T has the form (3) the argument is essentially the same. Let V = HP and U = QK where H and K are positive definite Hermitian and P and Q are unitary. Then

$$E_{r}[\lambda(A^{*}A)] = E_{r}[\lambda((UAV)^{*}(UAV))]$$

$$= E_{r}[\lambda(V^{*}A^{*}U^{*}UAV)]$$

$$= E_{r}[\lambda(P^{*}HA^{*}K^{2}AHP)]$$

$$= E_{r}[\lambda(HA^{*}K^{2}AH)]$$

$$= E_{r}[\lambda(H^{2}A^{*}K^{2}A)]$$

for all A. Let $H=XDX^*$, $K=YGY^*$, X and Y unitary, D and G diagonal matrices with main diagonals d_1, \dots, d_n and g_1, \dots, g_n respectively. Then

$$egin{aligned} E_{ au}[\lambda(A^*A)] &= E_{ au}[\lambda(XD^2X^*A^*YG^2Y^*A)] \ &= E_{ au}[\lambda(D^2B^*G^2B)] \end{aligned}$$

where $B = Y^*AX$. Now

$$\lambda(A^*A) = \lambda(XB^*Y^*YBX^*) = \lambda(B^*B)$$

and hence

$$E_r[\lambda(B^*B)] = E_r[\lambda(D^2B^*G^2B)]$$

for all B. Choose B as follows:

$$B = \left[egin{array}{cccc} 0 & 1 & & & & \\ & \ddots & & & & \\ & \ddots & & & & \\ 1 & 0 & & & & \\ & 0 & & 0 & \end{array}
ight]$$

in which the upper left block is the indicated r-square permutation matrix. Then clearly $E_r[\lambda(B^*B)]=1$ and

Thus

$$1=E_r[\lambda(B^*B)]=\prod\limits_{j=1}^r d_j^2g_j^2$$
 .

Now set $D^2 = RD_{\sigma}^2R$ where R is an n-square permutation matrix and D_{σ}^2 is a diagonal matrix obtained from D^2 by a permutation σ of the diagonal elements of D^2 . Then

$$egin{aligned} \lambda(D^2B^*G^2B) &= \lambda(RD_{\sigma}^2R^*B^*G^2B) \ &= \lambda(D_{\sigma}^2(BR)^*G^2(BR)) \ &= \lambda(D_{\sigma}^2C^*G^2C) \; , \end{aligned}$$

where C = BR, and

$$\lambda(B^*B) = \lambda(R^*B^*BR) = \lambda(C^*C).$$

Therefore

$$E_r[\lambda(C^*C)] = E_r[\lambda(D_\sigma^2C^*G^2C)]$$

for all C. It follows that

$$\prod\limits_{i=1}^r d_{\sigma(i)}^2 g_i^2 = 1$$

for any permutation σ of 1, \cdots , n. From this we conclude that

$$d_{\scriptscriptstyle 1}^{\scriptscriptstyle 2}=\cdots=d_{\scriptscriptstyle n}^{\scriptscriptstyle 2}=d_{\scriptscriptstyle n}^{\scriptscriptstyle 2}$$

and similarly

$$g_1^2=\cdots=g_n^2=g^2$$
 .

Then G = gI, D = dI and U = gQ, V = dP, i.e. U, V are scalar multiples of unitary matrices. Now,

$$egin{aligned} E_r[\lambda(A^*A)] &= E_r[\lambda((UA\,V)^*(UA\,V))] \ &= E_r[\lambda(|g|^2V^*A^*A\,V)] \ &= E_r[\lambda(|gd|^2\,A^*A)] \ &= |gd|^{2r}E_r[\lambda(A^*A)] \;. \end{aligned}$$

Hence $|gd|^{2r} = 1$ and we can choose U and V to be gdQ and P which are unitary. This completes the proof.

We remark that in case r=1 T does not necessarily have the form indicated in (2) and (3). For

$$E_{1}[\lambda(A^{st}A)] = tr(A^{st}A) = \sum\limits_{(i,j)=(1,1)}^{(m,n)} |a_{ij}|^{2}$$
 ,

and if T is merely a unitary operator on $M_{m,n}$

$$E_1[\lambda((T(A))^*T(A))] = E_1[\lambda(A^*A)]$$
.

For example T can be the operator that interchanges the (1, 2) and (2, 1) elements of every $A \in M_{m,n}$ (assume m, n > 2) and this cannot be accomplished by any pre- and post-multipliplication as in (2) or (3).

REFERENCES

- 1. J. Dieudonné, Sur une généralization du groupe orthogonal à quatre variables, Archiv.
- d. Math., 1 (1948), 282-287.
- 2. G. Frobenius, Über die Darstellung der endlichen Gruppen durch lineare Substitutionen, Sitzungsberichte der Berliner Akademie, pp. 994-1015.
- 3. L. K. Hua, Geometries of matrices. I. Generalizations of von Staudt's theorem; Trans. Amer. Math. Soc., 57 (1945), 441-481.
- 4. H. G. Jacob, Coherence invariant mappings on Kronecker products, Amer. J. Math., 77 (1955), 177-189.
- 5. S. Kantor, Theorie der Äquivalenz von linearen ∞ Scharen bilinearer Formen, Sitzungsberichte der Münchener Akademie, (1897), 367-381.
- 6. M. Marcus and R. Westwick, Linear map on skew-symmetric matrices: the invariance of elementary symmetric functions, Pacific J. Math., 10 (1960), 917-924.
- 7. M. Marcus and B. N. Moyls, Transformations on tensor product spaces, Pacific J. Math., 9 (1959). 1215-1221.
- 8. M. Marcus and R. Purves, Linear transformations on algebras of matrices: the invariance of the elementary symmetric functions, Canadian J. Math., 11 (1959), 383-396.
- 9. K. Morita, Schwarz's lemma in a homogeneous space of higher dimensions, Japan J. of Math., 19 (1944), 45-56.
- 10. I. Schur, Einige Bemerkungen zur Determinantentheorie, Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, 25 (1925), 454-463.
- U. S. NATIONAL BUREAU OF STANDARDS, WASHINGTON, D. C.

THE UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA