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Introduction. In the case of plane regions of finite connectivity,
there exist (Bergman [2]) some kernel functions which possess reproducing
or orthogonal properties with respect to the space of analytic exact
differentials. Such Bergman kernels can be defined in a constructive
way, and are related to some derivatives of the Neumann funection for
the region. Starting with the Green’s function, one may construct the
corresponding Bergman kernels for the space of analytic differentials
in the region. .

On the other hand, by Hilbert space methods one may prove the
existence of corresponding kernels on arbitrary Riemann surfaces (Ahlfors
and Sario [1]) = these methods are of the nonconstructive type.

In this paper we shall construct actually such kernels for the space
of analytic differentials on an arbitrary Riemann surface W. We shall
first establish the relationship between the kernels and some principal
functions in the case of a compact bordered W. The principal functions
solve some well defined boundary value problems on W. By a canonical
exhaustion by regular regions (with compact bordered closures) the results
are extended to an open Riemann surface W.

Chapter I is preliminary in nature and contains important theorems
as well as definitions used in the sequel. It is a brief survey of the
theory of principal functions and of the theory of differentials on Riemann
surfaces (Ahlfors and Sario [1]).

In Chapter II, we introduce the concept of abstract reproducing and
orthogonal kernels (Bergman [2], Schiffer [5]). We prove a uniqueness
theorem for the reproducing kernel corresponding to a closed subspace
I, of I',, the space of analytic differentials on a Riemann surface W,
and for the related orthogonal kernels with a given analytic singularity.
We then determine some functionals which are extremalized by repro-
ducing and orthogonal kernels. In particular, the reproducing kernel
k(z, £)dz for I', minimizes the expression

[l adz|]* — 2Rea(t)

among all differentials adz € I, and the kernel iz, {)dz with singularity
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dz[(z — £)* orthogonal to the class I',, of analytic exact differentials
minimizes the functional

v

among all differentials of functions analytic on W except for the singu-
larity —(1/(z — ¢)).

Such extremal properties suggest some close relationship between
the kernels and the principal functions on W.

In Chapter III, the case of planar surfaces is investigated in details.
First we study I",,. It is shown that for a compact bordered surface
W, with principal analytic functions P, and P, corresponding to the
singularity 1/(z — ¢) the following relations hold:

i(—&i’-)dz = —fdz

dz 2
d(P,+P\, _ &
+ (—2 >dz — —hdz

where &,dz is the reproducing kernel for I',,, and hdz is the orthogonal
kernel corresponding to the singularity dz/(z — &)

The preceding properties are shown there to hold for arbitrary
planar Riemann surfaces.

Moreover, analogous properties for other kind of kernels enable us to
prove relations between the principal functions P;, corresponding to the
singularity 1/(z — ¢&)™, m > 1 and the principal functions P; corresponding
to the singularity 1/(z — ).

We then complete the study of the kernels for I",. We show the
relationship between Bergman kernels and principal functions in the
compact bordered case, and then construct directly reproducing and or-
thogonal kernels for the orthogonal complement I°,, of I,,.

In Chapter IV we extend the result of Chapter III to Riemann
surfaces of nonzero genus. In particular, starting from the harmonic
principal functions p, and p, for a nonplanar compact bordered W, we
construct reproducing and orthogonal kernels for I",,. For an open
Riemann surface W, the corresponding kernels are constructed, using
a canonical exhaustion of W by regular regions, with compact bordered
closures. To obtain the kernel for I',, it is then only necessary to get
kernels for I",,, the space of analytic Schottky differentials, which is
the orthogonal complement of I',,. We construct the kernels in the
compact bordered case by considering the double W of W and use the
theory of differentials on closed surfaces. By a limiting process (ca-
nonical exhaustion) we extend our results to an open Riemann surface W,
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Chapter I. PRELIMINARIES
1. Principal Functions.

1A. We summarize here the theory of principal functions on open
Riemann surfaces. For a more complete discussion we refer to [1]. Let
W be an open Riemann surface. At a finite number of points ¢; € W there
are given singularities of the form:

59 = Re 360z — £ + 0¥ log |2 — ¢

where the ¢ are real and subject to the condition >};¢“ = 0. Then
there exist functions harmonic on W except for the singularity s at
¢;. The “principal” functions are defined in the following way: if {Q,}
is a canonical exhaustion of W, then p, is the limit of such functions
on 2, which have vanishing normal derivatives on the boundary AB(2,)
of 2, and if &7 is a partition of the ideal boundary 8 of W, then (&),
is the limit of such functions on 2,, which are constant on each part
of B(R,) associated with <&” and whose conjugate periods along each part

is zero. The functions p, and (&), are unique save for an additive
constant.

1B. Let p be a function harmonic on W except for a finite number
of singularities s”. Near ¢;, p — s has the following expansion:

p—s? =0 +a’(z— )+ alz—Lf A+
We introduce the notation
C(p) = ZnRe{Z [¢Paf — i nb;{’a;f’]}
J n=1
and set C,, C, for C(p,), C(p,) respectively

Let Q2 be a regular subregion of W with boundary B8(2), containing
all ¢; in its inside. We set

By(p) = S pdp*

B(2)

and define Dy(p — >);s'”) as the Dirichlet integral of p — 3} s* over 2.
J

Now let

Mmﬁmgmw
Q B(2)

W
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and

Do) = s~ 57).

J

We have the following

THEOREM. The function (p, + 1.)/2 minimizes the functional B(p)
in the class of all functions p with singularities 3; s whose conjugate
periods vanish over all dividing cycles associated with the partition
P. (Here p, stands for P(p,)). Explicitly the formula:

B() = 3G~ ) + D(p — DL )

which is valid for such functions shows that the minimum s (C, — C))/4
and that the deviation from the minimum is measured by D(p—((p,+p.)/2)).

Let now ¢ =p,— »,. The harmonic function g satisfies the following
theorem:

THEOREM. For regular admissible functions the expression

D(u) + 4m(u(§,) — w(&,))

attains its minimum when 4 = q = p, — p,. Here p, and p, are the
principal functions corresponding to the simgularity logl|z — &| —
log|z —¢&,]. Similarly,

(n — 1)! 02" |a=¢

18 minimized by the function ¢ = p, — p, which corresponds to the singu-
larity Re(1/(z — &)").

In both cases the minimum 1is —D(q) and the deviation from the
mintmum s DU — q).

1C. We shall make use of the following result

THEOREM. Let Q and Q' be two regular subregions of a Riemann
surface W, such that Q D 2; let

Dia and Do ©=(0,1)

be the principal functions corresponding respectively to Q and Q'; let
Dy(pior — pio) 1 =1(0,1)

be the Dirichlet integral of D, — D;0 extended over 2, then
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lim Dg(p,;gl —_— p,,;g) = 0 7: - (0, 1) .
QoW

1D. Previous results may be specialized to the case of planar Riemann
surfaces. By definition, every cycle on a planar surface W is dividing.
For this reason it is natural to consider the canonical partition & for
the boundary B. Accordingly, the admissible functions, in the planar
case, have all conjugate periods equal to zero. This means that P =
» + 9p* is an analytic (single-valued) function. The functions p are
supposed to have a given singularity s and if p* is to be single valued,
we require that s has likewise a single-valued conjugate function s*.
We then shall not consider singularities with logarithmic terms. We
denote by P, and P, the analytic functions which correspond to the
principal functions p, and p,. They are determined up to additive complex
constants. If we denote by E the area of the complement of the range
of P and by a the coefficient in the expansion.

P=—1 tae—9+--,
2—¢

we have the following result:

THEOREM. The function (P, + P)/2 maximizes E in the class of
all normalized univalent mappings. In this case E = (7|2)[a(P,) — a(P))].

1E. Consider now the analytic function @ = P, — P,. The properties
of @ are summarized in the following theorem.

THEOREM. The function @ minimizes the expression D(U) —
4nRea(U) tn the class of all analytic functions U = u + wu* on W,
Moreover, a(Q) s nonnegative and 2ra(Q) = D(Q) = E where E denotes
the complementary area associated with the mapping P, + P,.

2. Differentials on Riemann surfaces.

2A. We shall suppose the reader acquainted with the definitions
and orthogonal decompositions of the Hilbert space I" of square integrable
differentials on an open Riemann surface. (See, for instance, [1] Chapter
V). We merely recall some results about some subspaces of I" and state
the theorems on singular differentials which we shall use below.

2B. Schottky differentials.

Let W be a bordered Riemann surface, and W its double. The
whole class of differentials on W which have a harmonic extension to
W can be shown to be identical with the direct sum I, W)-EI5(W).
Such differentials are called Schottky differentials.
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If now one considers, on an arbitrary open surface all differentials
which can be approximated in the sense of the norm by Schottky differ-
entials, i.e. by differentials in 77,,(2) 4 I'i(2) (2 being a regular subregion
of W), the corresponding subspace I', can be shown to be identical with
the closure of I',, 4+ I'}.

The consideration of Schottky differentials leads to the following
decomposition:

THEOREM. Omn any Riemann surface
Fh = ['s + Fa,e + -[:

where I',, is the space of exact analytic differentials, T,, the space of
exact antianalytic differentials.

2C. Analytic differentials.
If our attention is restricted to analytic differentials, writing 77,, =
I', N I'y we obtain the following decomposition:

['a:Pae_i_Pas'

In the case of a compact bordered W, the following result holds: An
analytic Schottky differential on W can be written as the sum of an
analytic differential which is real along the boundary and one which is
purely imaginary along the boundary.

On an open surface W, an analytic Schottky differential ¢ is by
definition a limit of analytic Schottky differentials w,,,. It follows that:

= lim ($10 + 9610)
2w

where ¢,, and ¢,, are real along B(2).
The following theorem states an important decomposition property
of analytic differentials:

THEOREM. Any analytic differential ¢, has a unique representation

in the form:
¢a. = ¢ase _l_ whm + ia);zkm
where ¢, 1s semi exact analytic and ,, is a harmonic measure.

If we call a differential of the form w,, + 1o}, an analytic measure
and I, the space of analytic measures we can write:

Iy =T+ T -
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2D. Singular differentials.

Consider a point p, on a Riemann surface W. We say that a differ-
ential 0, defines a singularity at p, if it is defined in a punctured neighbor-
hood of p,. We speak of an analytic singularity if 6, is an analytic
differential in a punctured neighborhood of 7p,.

A differential of the second kind is a differential whose singularities
are poles with vanishing residues. We can consider one pole at a time,
hence it is sufficient to study the case of a single pole

dz

where 2 is a local variable with range |[z| < 1 and ¢ the value of z at
P, The following theorem summarizes the study of such differentials.

THEOREM. With every singularity of the form (z—&)~™*dz, m =0,
one can associate two differentials

bm = hu(2, O)dz  analytic except for the given singularity
. = ka2, 0)dz  analytic.

The differentials ¢, and +, are conmected by

o 1 am
h,(z,8) = Md—z’—”hO(z’ £)
km(z’ g) - (9’)’1/ + 1)' dé’mkn(z’ C)

and h,, k, satisfy symmetry relations:

ho(z, &) = h&,2) s, kilz,8) = kS, 2)
The differentials ~, have the reproducing property:

21 (m)
mroe®

for all @ = adze I', while the ¢, satisfy («, ¢,,) = 0, provided that the
immer product s interpreted as a Cauchy limit.

(@, ) =

2E. Differentials and chains.
In the Laurent development

%L

bz — ) "dz

1

3
I

of a singular differential 6, b, is called the residue at . It can be shown
that in order that there exists a closed differential 4 with compact
support and given singularities, it is necessary that the sum of the
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residues be 0. The simplest case is represented by a singularity (1/(z—¢&,)—
1/(z — &,))dz where ¢; and &, are points in the same parametric disc 4
mapped on |[z]| < 1. Results of the study of such differentials are sum-
marized in the following theorem

THEOREM. To each finite chain ¢ one can assign two differentials
#(c) = h(z, c)dz

analytic except for simple poles with residues equal to the coefficients
i 8c and

¥ (c) = k(z, c)dz

analytic. Omne has:
hz, o) = | Iz, §)ag

Gz, ©) = | Itz 04
and (a, ) = —(a, ¢) = 277:.[ a for analytic a.

2F. Differentials and periods.
If ¢ is a finite cycle, #(c), ¥(c) are all regular. Results about this
case are stated below:

THEOREM. If ¢ is a finite cycle ¢(c) = —r(c) and the reproducing
differential o(c) corresponding to the cycle ¢ is o(c) = (1/m)Im¢(c). The
periods of o(c) are integers.

2G. One can strengthen Theorems 2D and 2E by requiring the
associated differentials to be semi-exact. In that case we denote them
by ngy “}mr SI;(C), ’\}(C). -

It can be shown that ¢ and + have the same reproducing properties
as ¢ and +, but only with respect to semi-exact analytic differentials.
Since ¢, and 7., ¢(c) and 7(c) are themselves semi exact, Theorems 2D,
2E remain valid with modified notations, except that the differentials «
must be assumed semi exact.

2H. Remark on integration by parts.
Let we I',df e I',. 1f 8W denotes the boundary of a bordered surface
a useful formula for integration by parts is:

Sw(df)w = Saﬁfa) — Swfda) .
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We plan to extend such a formula to differentials with singularities.
Let w be a closed differential with an analytic singularity at z = ¢. Let
h be an admissible local homeomorphism representing a neighborhood of &
onto the disk|z| < 1. Let |2]| < r <1 be a disk whose inverse image
under 2 will be called 4. We denote by a the boundary of 4. The
previous formula for integration by parts yields:

| @o=|_ fo.

ow—a

But now in 4, if we consider S (df)w as a Cauchy limit, the following
4
relation holds:

| @ = _fo

and by addition we get the formula

Sw(df)w - SavF fo.

Notice _that on W,8W — a bounds the 2-chain W — 4, which implies
that 6W and « are homologous on W. The last integral depends only
on the homology class of @W, hence can be transferred to «.

Chapter II. GENERAL DEFINITIONS AND FUNDAMENTAL
PROPERTIES OF REPRODUCING AND ORTHOGONAL KERNELS

We shall define here some particular kernels and derive some of
their characteristic extremal properties.

1. General Properties.

1A. DEFINITION. Let I', be a subspace of I',. A differential
ky(z, £)dz defined globally will be called a reproducing kernel for I", if

1. kyz,¢)dzel, .

2. for a(z)dze I, the inner product (a(z)dz, k(z, £)dz) = a(§).
More generally we shall consider m-kernels according to the following
definition:

DEFINITION. A globally defined differential k,(z, £)dz is an m-kernel
for I, < I', whenever:
1. k.(z,0)erl,
2. for a(z)dzel,, (a(z2)dz, k,(z,E)dz) = a™ () where a'"™(¢) =
d™a(z)
dzm o=t~
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1B. We introduce now some kernels with singularities. Given an
analytic singularity %(z, £)dz, one may consider differentials which are
elements of I", except for the singularity i(z, £)dz.

DEFINITION. A differential h,(z, ¢)dz is an orthogonal kernel for
', cr,, corresponding to the analytic singularity t(z, £)dz if the following
requirements are fulfilled.

1. n(2,¢) is an element of 7", except for the singularity (z, ¢)dz
2. for a(z)dz eI, (a(z2)dz, hy(z, )dz) = 0.

In particular we shall call #,(z, {)dz, the orthogonal kernel corresponding
to the singularity dz/(z — £)™** for m = 0.

1C. Now we can easily prove uniqueness theorems.

THEOREM. When there exists a reproducing kernel for I',, it s
unique.

Proof. Let kyz,¢)dz and Fki(z, £)dz be two different reproducing
kernels for I",. Then
0 = llko(z, £)dz — ki(z, {)dz |
= (ky(z, £)dz — ki(z, £)dz, k(z, £)dz)
— (k2 §)dz — ki(z, £)dz, ki(z, £)dz)
= k¢, O)dz — ki€, §)dz — k&, O)dz + kg, H)dz =0 .

Therefore ky(z, &)dz = ki(z, £)dz.
1D. An analogous argument proves the next statement.
THEOREM. When there exists an m-kernel for I, it is unique.

1E. Correspondingly the following uniqueness theorem holds for
hy(z, §)dz.

THEOREM. When there exists for I', an orthogonal kernel h,z, ¢)dz
with singularity t(z, £)dz, it is unique.

Proof. If h,dz and hidz are two different orthogonal kernels cor-
responding to the same singularity, h,dz — h/dz is regular and orthogonal
to I',. But hdz — hidzeI",. Therefore h,dz — hidz = 0, which proves
uniqueness.
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2. Extremal Properties.

2A. We shall prove some extremal properties which characterize
reproducing and orthogonal kernels.

THEOREM. Among all a(z)dzel',, such that a'™(§) =1, (k.(z, ¢)/
kMg, £)dz has mintmal norm.

Proof. By Schwarz’s inequality:
[(a(2)dz, kn(z, )d2) " = [ladz ]| kn(z, O)dz]]* .
But

(a(2)dz, k,(2, $)dz) = a'™(5) = 1
Nkndz|" = (ku(z, £)dz, ku(z, O)d2) = k3P, ) .

Therefore: |la(z)dz|]* = 1/ki™(¢, &) with equality only for a(z)dz =
Men(2,8)dz.  Due to the normalization, » = k{™(£,¢) and therefore
(ka(z, )k, £))dz has minimal norm among all a(z)dzel’, such that
a'(m)(é') =1.

2B. The following theorem introduces a functional which is ex-
tremalized by k,(z, &)dz.

THEOREM. Among all differentials a(z)dzel,, k,.(2,&) minimizes
the expression ||adz|® — 2Rea'™(¢). The minimum is —k{™(&, ) and
the deviation from the minimum ts measured by |adz — k,dz|?.

Proof. Let a(z)dz be an element of I',, k,(z, £)dz be the m kernel
for I",. Then:

la(z)dz — k. (2, )dz| = [[adz| + [ k.dz]" — (a(z)dz, k.(2, §)dz)
— (k,(2, £)dz, a(z)dz) .

The last equation can be rewritten as:
[|a(z)dz|* — 2Re(a(z)dz, k, (2, $)dz) = ||adz — k,dz|]* — ||k, dz|]* .
But Re(a(z)dz, k,(2, £)dz) = Rea™((). Therefore:
lla(z)dz|* — 2Rea'™(§) = ||adz — k,dz|* — || k,dz|]?

which establishes the extremal property. The minimum is
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—kadz|] = —(kn(2, £)d2, ku(2, )d2) = —k;"(, ) .

2C. An important extremal property can be proved for the kernel
h,(z, £)dz orthogonal to the class I',,, among the class of differentials
of functions analytic on W except for the singularity —1/(m + 1)(z — &)™,
m = 0. Let us call I"{? such a class. Clearly A,(z, {)dz is the differ-
ential of such a function H,(z,¢). In other words h,(z, £)dze '™,

Let W be now a compact bordered Riemann Surface. Define a
surface W’ obtained by deleting from W the inverse image 4 of the
disk |[z| < r < 1, where |2] < 1 is the image of 4. We shall suppose
that ¢ lies in 4.

If « denotes the boundary of 4, and B the boundary of W we shall
write for f analytic on W':

_ il
B(f) =L | 7iF

_5 0 a7
Aty =4\ si

Applying Green’s formula to W’ we get
llaf |I* = 2(B(f) — A(f))

We are now ready to prove the following theorem.

THEOREM. The kernel h,(z,{)dz orthogonal to the class I",, mini-
mizes the functional B(a) among all differentials da = a'(z)dz in I'3P.

Proof. We first consider the compact bordered case. Let W' be
the surface obtained by the method mentioned above from a compact
bordered W. Let h,dz = dH, be the orthogonal kernel for the class
I',., corresponding to the singularity dz/(z —¢)"** m = 0. For each
da = &'(z)dz we have:

lla'dz — h,dzll%. = ||a'dz|ly + [|had2 ][5 — 2Re(a’dz, h,d2)y. .
But

lla'dz [} = 2(B(a) — A(a))
| hudz| i = 2B(H,) — A(H,)) .
Therefore:
l|la'dz — hndz]|y
= ||a'dz ||} — ||hndz||y — 2Re(a'dz — h,dz, hyd2)s.
= 2[B(a) — A(a)] — 2[B(H,) — A(H,)] — 2Re(a’dz — h,dz, h,dz),. .
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But as » — 0, A(a) — 0 and A(H,) — 0 as Cauchy limits. Moreover,
by orthogonality ((¢’ — h,)dz, h,dz);7 = 0. Therefore:

l|la'dz — h,dz|F = 2B(a) — 2B(H,,) — 2Re(a'dz — h,dz, h,d2)#
= 2B(a) — 2B(H,,)

by the orthogonal property of h,dz over I",,. Hence
B(a) = B(H,) + _;_ la'de — hodzll

which proves the theorem.

To extend the extremal property to open Riemann surfaces W, we
exhaust W by canonical regions 2.

For "> Q, H,, is a competing function hence:

Bu(H,o) = Bo(Hyo) + —;— |dH, 0 — dH,o|f3

and clearly B,(H,,) = By{H,,). Therefore
Bo(H,0) = Bo(H,0)

which shows that B,(H,,) is nondecreasing. If there exists a function
P on W, analytic except for the singularity —1/(m + 1)(z — {)™** and
such that lim,., By(P) < oo, then the functional B.(H,,) has a finite
limit when @ — W. Consequently (1/2)||dH,, — dH,,|? = Do(H,o —
H,,), where D, is the Dirichlet integral extended over £, has limit zero
when 2 — W. It follows in the customary way that there exists then
in 77 an orthogonal kernel dH, = lim,_, dH,,.

In the case of a planar surface P, or P, can play the part of such
a function P.

2D. We shall now consider particular types of kernels corresponding
to the set of chains on a Riemann surface.

Let first &, and &, be two points on a Riemann surface, and ¢ a
path joining &, to ¢, We say that k(z, c)dz is a reproducing kernel
attached to the path ¢ for the class /', whenever:

1. k(z,c)dzel,
2. for any a(z)dzel,, (a(z)dz, k(z, c)dz) = S adz .

The uniqueness proof is analogous to the proof of Theorem 1C. We
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shall prove an extremal property for k(z, c)dz.

THEOREM. The kernel k(z,c)dz attached to the path ¢, which 1s
reproducing for the class I', minimizes the functional

la(z)dz |l — 2ReS adz

over the class I,.

Proof. Let a(z)dz be an element of I",. Then:
lla(z)dz — k(z, c)dz|[*
= |la(z)dz|]* + || k(z, c)dz||* — 2Re(a(z)dz, k(z, c)dz)
= lla(e)dz|} + ||k(z, )dz|] — 2Reg adz .

Therefore ||a(z)dz|* — 2Re§ adz = ||a(z)dz — k(z, c)dz||* — || k(z, ¢)||* which
proves the theorem. Notice that ||k(z, ¢)|* = Sk(z, c)dz, which shows
that Sk(z, c)dz is real.

2E. Let us now suppose that ¢, and &, are located in the same
parametric disk. Consider the functions analytic on W cut along ¢,

except for the singularity s =log (z — £,)/(z — &,). The singularity for
their differentials is dz[1/(z — &) — 1/(z — &.)].

Assume that among these there exists a differential dH, which has
the following property: for any adze I',,, (adz, dH,) = S adz.
The differential dH, has an important extremal property.

THEOREM. The differential dH, minimizes the functional
B(a) — Re S a'dz — ds

among the class I',,(c) of differentials of functions a analytic on W
cut along c, except for the simgularity

s:]ogz_:g.
2 — &,

~ Proof. Let us first consider a compact bordered Riemann surface
W. Let a be a path around ¢, bounding a region 4. Let W'= W — 4.
For any da = a'(z) € I",.(c) one can write:
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la'(2)dz — dH, [
= [|a'(z)dz[y — [|dH,|f};, — 2Re(a’(2)dz — dH,, dH.)y

Using the same method as in the proof of Theorem 2C this equality
can be transformed into

||a'(z)dz — dH,||5% = 2B(a) — 2B(H,) — 2Re(a’(?)dz — dH,, dH,);
— 2B(a) — 2B(H,) — 2Re§ca’(z)dz _ dH,
or
B(a) — Resca'dz — ds = B(H,) — RegcdHc —ds

+ 3lla'(z)dz — dH, |5
which completes the proof.
To extend the property to open Riemann surfaces, we may use the

method outlined in the proof of Theorem 2C. For canonical regions 2,
the functional

By(a) — Reg a'dz — ds

is easily seen to be nondecreasing when £ increases. If there exists
on W cut along ¢ a function analytic except for the singularity s, then
the functional has a finite limit and H,, has a limit H, when 2 tends
to W. By linearity one can extend the property to any finite chain.

Chapter III. PLANAR RIEMANN SURFACES

We shall now restrict our attention to planar Riemann surfaces W.
We shall establish the connection between the principal functions for
W and the reproducing and orthogonal kernels, with our main interest
devoted to the class I,,.

1. Reproducing and Orthogonal Kernels For I7,,.
1A. In the case I', = I',,, we shall prove the following theorem:

THEOREM. Let W be a planar Riemann surface. If P, and P,
denote the amnalytic principal functions on W corresponding to the
singularity 1)z — &) and if (kfz, £)/27)dz and (hyz, £)/2n)dz are re-
spectively the reproducing and orthogonal (singularity (1/27)(z — ¢))
kernels for I',, on W, then

_(l_Pl_PodZZ

dz 2 - ko(z ’ g)dz
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%#&h = —hyz, ¢)dz .

1B. First Proof. (By extremal property) Let a(z)dz be an element
of I',,., Theorem 2B shows that
- |

2

[la(z)dz||* — 2Rea(t) = .la(z)dz _ k(2,0 dz (=, 8 4z
2r or

or

[|4ra(z)dz||* — 8w Re(4ma(l))
= |[4ra(z)dz — 2k(z, )dz |} — ||2k(z, £)dz ] .

If we put 4ra(z)dz = b(2)dz, we get:
||b(2)dz||* — 8w Reb(¢) = ||b(z)dz — 2Kz, {)dz|[* — ||2k(z, £)dz]* .

But the analytic function P, — P, = @ corresponding to the singularity
1/(z — ¢) minimize the expression

D(U) — 4nReCfiU

74

= DU —Q) - D@

2=

among all analytic functions on W, In terms of the differential dU,
the expression becomes:

1 au
= ||dU|]* — 4rRe==
5 |aU|P — 4w Re—r

2=

1 —dolp — L 2
=5 14U —dQIF — Z-lidQl|
or

|4l — xRe2T| = |l dU — dQ|* — l|aQlF

z |z

which shows that (dQ/dz)dz minimizes the same functional as 2k(z, {)dz
over I',,. Therefore

%(_@dz — k(2 O)dz .

An analogous proof will show,

diz Pl ;_ PO dz = —EO(z’ é‘)dz .

1C. Second Proof. (By canonical exhaustion)
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Let W be a planar compact bordered Riemann surface, with border
B. We shall first prove a lemma on the boundary behavior of the differ-
entials of P,— P, and P, + P..

LEmmA. Along B

APy —P) g, AP+ P) 4,
dz dz ’

Proof.
1 dP, _ 9p _ ;0P
2 dz dux oy

1dh _op_ ;0m
2 dz 0x oy -

For a special choice of the local variable dz = dx along A and then by
definition

o _
0y
o _
ox

Therefore the equality in the lemma corresponds to

(% 4 i%)m - (% _ 7;6_191_>dx )
ox oy ox ox

We may llotice that the proof actually shows that for any compact
bordered W

0P, . apx) _ (apo - apl)
20— g8 )dz = (222 + 9222 )d2z  along 8.
< 0z 0z 0z + 0z g6

We shall now show directly that

_1d@B-P),
27 dz 2

is the reproducing kernel for I",, on W. Let da = a'(z)dz be an element
of I',,, then

’ i(Pl_Po) ___18 ’ _fl_(Pl—Po) T
(a ()dz, N dz) = wa(z) dszZdz .
But we know that

o= o - o
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If w is closed, then

S_wdf: Sﬁa)f.

w

Therefore:

(¢@iz LB Ldgz) - L] ()d(Plg Pz

_ 1 a (P + P)
o S e

by the property proved in the lemma. Let a be the boundary of a
circle of radius r about z = ¢,  being small enough for « to lie in the
same parametric disk as z = ¢; then:

1 aP+P)y, 1 d (P, + P)
1 Sﬂa(z)dz 2 dz 7 Swa(z)dz 2 dz .

In a neighborhood of z = ¢, (P, + P,)/2 may be expressed as:

p+P_ 1
2 z—¢

where [(z, £) is analytic in z. Therefore

1 d P+ P 1 a(z) dl(z &)
75 a(z) ) dz -S (z-—z;)zd + = S oa(z) —2=2Ldz .

+ Uz, §)

The second integral tends to zero as » tends to zero, for the integrand
is analytic at {. The first one has the value —2rma’(¢). We conclude
that

) 1 d(P,—P) oy
<a (2)dz, — o= 3 dz> a'()

which proves the reproducing property.

The same method can be used to prove that (—1/27)(d/dz)((P,+ P,)/
2)dz is the orthogonal kernel for 7°,,, corresponding to the singularity
dz|2r(z — ¢)*. For d'(z)dzel,,, we compute the following inner product:

’ _‘i(Pl‘I'Po) :_l ’ i(P1+P0) Az
<a (z)dz, P dz> : Swa (2) 2 dzdz

= —-—S a(z) d(P ;P")dz
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_ S (z)d(P . P4,

_ __S a(z)d(P - P)g,

The last integral tends to zero when 7 tends to zero for the integrand
is analytic at z = ¢. Therefore

' 1 d(P +P) _
(a (2)dz, — Srds 2 dz> =0.

1D. To extend the property to open Rieman surfaces W, we shall
consider a canonical exhaustion of W by regular regions 2

Let da = a'(2)dz be an exact analytic differential on W; we denote
by

P;, i = (0,1) the analytic principal functions for the region 2 and by

P; 4 =(0,1) the analytic principal functions correspondlng to the
surface W. For each 2 W, we proved that:

r _ 1 d(Pm_PoQ) — a’
(a (2)dz, or dz 2 dz>9 @@

We now consider:

' _ 1 d(P —P) o
(a (?)dz, o da dz) a'(§)

2
— 4 1 d(P Pu)d . 4 __L_i(Pm_Poa)
(a (2)dz, — o s 5 z> <a (2)dz, o T 5 dz)g
— (a'(z)dz, _ _1_1 [(Pl - Pm) _ (Po — Poa)] dz>
21 dz 2
, _ 1 d@l—-P
T <a @iz = g 2 % >W»g
Therefore:
, _ 1 d(P, - P) N
‘(a (2)dz, o da 5 dz> —a (é‘)i

= |(werte, — L L= P — (B Pl

+ l(a’(z)dz, — 21 ;z(P 5 PO)dz)

w2

By Schwarz’s inequality:
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(e~ 5o B e),

= [[a'(2)dz [y —o|| —

1 d(P,—P) PO) ”
or dz 2 w—2

both norms in the right hand side tend to zero when £ — W because
a'(z)dz has finite norm and

|-L 2= Py,

2rdz 2 “wo—V2DW 9[ —po]

4r

and p, — p, has finite Dirichlet integral.
As to the first expression in the right hand side of the inequality:

(ws, — L LU= Pa) = (B Poll )

< [la'(@)dz]]q || —

___]._i[(P, _ Pm) - (Po _ Poo)]dz
27 dz 2 2

lla'(2)dz||, has a finite limit when 2 — W and

“__l_i[(Pl—Pm)—(P0

or da > — Pl dz“n = 2D5’2%[(p1 — D) — (Do — Doo)] -

Moreover by the triangle inequality
#( = 1, —= p) = 00— P
1
< Duzf _* _ e _+ _
= DY (477: (p, pm)) + D <477.' (P, pon)) .
But Theorem 1F, Ch. I shows that
lim Do(p; — pie) =0 1=0,1.
Q-w
We conclude that

, 1 d@E—r) o
(a, (2)dz, — or I 5 dz> =a'¢) .

The same pattern of proof applies to show that

' 1l a@+ Py -
(a, (2)dz, P dz)w 0

which proves that (—1/27)(d/dz)((P, + P,)/2)dz is the kernel orthogonal
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to I',, corresponding to the singularity 1/27(z — ¢).
By the uniqueness property we have proved that:

dP,—P)y, _ _
7 5 dz = —k(z, ¢)dz

_ﬁi_(P1+Po)d = —h d
dz 2 2 o2, O)dz .

1E. We now investigate the relationship between the principal
functions corresponding to the singularity (1/(z — &)™) m > 0 and the
kernels k,(z, £)dz and h,(z, £)dz (singularity (1/(z —¢)™*%) m >0). In the
statement of the next theorem we call P,, and P, the analytic principal
functions corresponding to the singularity 1/(z—&)™*.

THEOREM.

mrids 3 2 (2, £)dz

1 d(P1m+P0m)d .__h d
m + 1dz 2 ¢ o2, £)d2.

Proof. We shall prove that both sides in the first equation mini-
mize the same functional over the class I',,. We know by Theorem
2B, Ch. II that

2r

minimizes
[|la(z)dz || — 2Rea'™(¢) over I,
and by Theorem 1E, Ch. I that
Qn = Py — P,
minimizes

47'cR amtu

D) - R

a=¢

The last expression can be written as:

avie =2 e (G L
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Therefore (m!/27)(dQ./dz)dz minimizes the same expression as ((m + 1)!/
21 (z, £)dz over I',,. Then

1 i(le_
m + 1dz 2

Pon) dz = —k,(z, ¢)dz .
To prove the second equality, one can show by the method outlined in
the second proof of Theorem 1A that

1 d(Py+Pu)g,
m + 1dz 2

is the orthogonal kernel for I',, corresponding to the singularity
dz/(z — &)™, m > 0; then by the uniqueness theorem it follows that:

1 i(le_i_PD
m -+ 1dz 2

"‘)dz = —h,(2, &)dz .

1F. We now may use our knowledge about %,(z, £)dz and h,(z, £)dz
to obtain new results about the functions P,, and P,,.

THEOREM. Between the derivatives of P, and P;, 1 =0,1, the fol-
lowing relations hold.

m

1 d

d _ d

(P + P) = 225 (P 4 P)
d 55— 1 dd” —5
Sl =P =— 2 P
E P = Po) =y (B P

moreover:
d%(Pl + P) s symmetric in z and &

C-;-l-(P1 — P,) s conjugate symmetric in z and .
2

Proof. From the relations

1 ar

E ’ = ——__"‘_'~ ’
(2, §) Y dgmka(z &)
>~ 1 dm s
h‘m ’ = "—_‘——‘_’_'h ’ y
(2,0 m F Dlde o2, ©)
it follows that
1 d—5— 1 d d™ 75—
LP,—P)=—r ZE P
m + 1d2( om) (m + 1)! d'z‘dg""( o
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or
d 75— 1 d d™ 75—
ZP, —P,)=—"2 (P — .
dz( 1m om) pou dzd;m( y — )
Similarly
d 1 d
E;(le+P0m) _mw(Pl_l_PO)

and one gets the first set of relations in the theorem. To get the second
set, we recall that:

EO(Z, ?) = ﬁo(é‘, z)
lzo(z, f) = Ea(é’y z) .
It follows that

d%(Pl + P,) is symmetric in z and ¢
and

é‘L(P1 — P)) is conjugate symmetric in z and ¢ .
2

1G. To complete our study, we shall consider the case of the singu-
larity (1/(z — &) — 1)(z — &,))dz, where &, and ¢, lie in the same parametric
disk.

Let P, and P,; be the principal functions corresponding to the singu-
larity log (z — ¢)/(z — &). P, and P, are analytic on W cut along a
path ¢ joining &, to £,. We shall prove the following results:

1H. THEOREM. The derivatives of P, P, and the kernels k(z,c)dz,
h(z, ¢)dz are connected by the relations:

%(1:’01_;1'ic.0>dz — Tz, ¢)dz
%(@)dz = Iz, c)dz .

Proof. (k(z, ¢)/2m)dz is known to minimize the functional
lla'(2)dz[* + 2Re(a(S,) — a(£y))

among all da = &'(z)dz in [,,.
But P,, — P, = @, minimizes

D(U) + 4wRe(U(&,) — U(&,)) over the class of analytic
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functions U on W.
The last expression can be written as:

%[Hd Ul — 8xRe(U(&) — U(&)] .

By comparison of the two functionals it follows that

diz(ﬂl—z&>dz = k(z, c)dz .

To get the second relation mentioned in the theorem, one can either
follow the method outlined in Theorem 1C, Ch III, second proof, where
« is now a path around the cut ¢ in some parametric disk containing
¢, and ¢, or notice that h(z, c)dz and (d/dz)((P, + P,)/2)dz minimize the
functional:

B{a) — Reg a'dz — ds

over the class I,.(c) of differential of functions a, analytic on W cut
along ¢, expect for the singularity s = log ((z — &)/(z — &,)).

1I. We prove next a theorem establishing a relation between the
derivatives of P, and P,, and the principal functions P, and P,.

THEOREM. Let P, and P, be the principal functions on W cut
along ¢ corresponding to the singularity log (z — &)/(z — &.)). If we
denote by Pz, &), P(z, &) the principal functions on W corresponding
to the simgularity 1/(z — &) with P, = p, + ipy, P, = p, + 1p; then

d—%Pﬂ = D& 2) — DiEws 2) + D3 (Eny 2) — DEE 2))
d%Pco = (D2 2) — PHG, 2) + DolEnr 2) — DolEsy 2) -

Proof. We recall the equalities:
(e, o) = | Flz, 00T
iz, 0) = | Bz, )it
and the symmetry relations:

I’E'O(zy g) = EO(?; 2) Eo(z’ é‘) = Eo(?y z) .

Therefore:
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d _(d _ 7=
2P, — P = | LIP 6 - Pie 01

(1 N

= | 5 1P€, 2 — P, 2de

= Py(s, 2) — Pi(&2) — P&, 2) + P&, ?)
d _(d
&Py + P = | LI 6) + Pe, 00148

_( 2

= | 1P 2) + P,

= P&, 2) — P&, 2) + P2 2) — P&y, 2)

by addition and subtraction we obtain

éd_ic_l = pl(:m z) - p1(§19 z) + ":p:(:m z) - ?:p;s(él’ z)
dTPzC_O‘ = ?:p;"(é‘m z) - ”:p;k(é’l’ z) —+ po(gz, z) - po(z:ly z) .

2. Reproducing and Orthogonal Kernels for 77,.

2A. We shall now again restrict ourselves to the compact bordered
case, and investigate the relationship between the principal functions
and Green’s and Neumann functions [Schiffer [5], Bergman [2]).

Let W be a planar compact bordered Riemann surface with & contours
Byt =1k, We recall the definition of the Green’s function g(z, &)

for W.

DEFINITION. The Green’s function ¢(z, &) for W is defined in the
following way:

(a) g(z,¢) is harmonic on W except at 2z =¢
(b) 9z, &) + loglz —¢| is harmonic at z =¢
© 90 =0 on B=UR .

The function g¢(z, &) possesses a harmonic conjugate g*(z, &) and one
may construct the function

Gz, 0) = g + 19"

G is harmonic in ¢, analytic in z; it has a logarithmic pole with coef-
ficient 1 at ¢ and is determined up to an additive constant. It is not
single valued.
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2B. We introduce the harmonic measure of a boundary component

Bi.

DEFINITION. The harmonic measure of the boundary component S;
with respect to W is the harmonic function w,(z) taking the following
boundary values:

w() =0 onpB; j#i
w(z) =1 on ;.

The period of G(z, ¢) along B; is easily seen to be 2miw(¢).
We may associate to the harmonic measure an analytic function:

wi(2) = w;(z) + 1wf(2) .
The period of w,(z) around B; will be denoted by —27iP;;. It is easy
to show that:
1. Pij = Pji°
2. The k x k matrix (P,;;) is positive semi-definite.
3. The (k — 1) x (k — 1) matrix (P;;);s..x_, is positive definite.
2C. Let us now introduce the function

F(z,¢) = exp(—G(z, £))

F(z, &) is not in general single-valued. To get a single valued function
we shall add to G(z, &) an appropriate linear combination of functions
wy(?); to do so, we solve the system:

S Puuse) = 00) (i=1-k—1)

in the form
WlE) = S I0E) With (s = (P -
The function w(z, ) = guj(g‘)wj(z) is analytic in 2z and has period
—27:7:2 Poug) = —2miw ¢) along G, .
Therefore
log £(z, §) = —[G(z, £) + % wOw(@)]

has period zero along B;,7=1.--k — 1. Its period along B, is 2mi.
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Therefore
16, 0) = exo{ 16 ) + & S M w1}

is single valued on W. It has a simple zero at z = ¢, and from the
known boundary behavior of g(z, &) and w,(z),

0 on B,
—ui(¢) on B, 1 < k.

It follows, by differentiation with respect to ¢ (¢ =& + 47) that
Re(0]08) log f(z, £) = M(E) on B;, where MN(¢) is a constant and that
V(z, &) = —(0/0§) log f(z, £) has a constant real part on each 8;. Moreover,
it has at z = ¢ a simple pole with residue 1. Except for an additive
constant, it coincides then with the principal function P,. In the same
way 9z, ¢£) = —(1/2)@/on) log f(z,¢) has a constant imaginary part on
each B;. At z = ¢ it has a single pole with residue 1. Except for an
additive constant it coincides then with the principal function P,.

log 1z, )] = Relloz 72, ) = |

2D. We now define the Neumann function N(z, ¢) by the following
properties:

(a) N(z, &) is harmonic for z¢ W except at the point z = ¢

(b) N(z,¢) + log|z — ¢| is harmonic at z = ¢

(¢) (@/on)N(z, &) = (2r/L) for ze S where L is the total length of 8
N is defined up to an additive constant depending on ¢. To fix N com-
pletely we require that:

@ SBNdz ~0.

Between the derivatives of N and ¢ the following relations hold:

PNGE) _ Fet) , LS,
oor owor 4 Tuwi@wiE)
62N(z, é‘) — _629(2«', g) _ _]-_ T a2\ ()

e b S RO o

=1 j=1

We now fix our attention on the function

m(z, §) = —log |f(z, )| = —3log f(z, &) — 4 log f(z, ¢)

which is harmonic in 2z and constant on each 8;. It has a logarithmic
pole with coefficient —1.
It is a consequence of the definition that

m §) = 9, 0) + 5 5 M &) .

Therefore:
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ON _ Fm
0208 020
N _ om
020  020C

2E. We §hall consider reproducing and orthogonal kernels for the
space I', on W. In terms of the inner product we used for I",, the
expressions for the Bergman Kernel corresponding to 7', are

7 — ___la2g(z! é‘)
K(z, Q)dz - ——6252 dz

_ _109(k,9
L(z, &)dz R dz .

From the properties of the Green’s function it can easily be derived
that for a(z)dzel,

(a(z)dz, K(z, {)dz) = a(¢)
(a(z)dz, L(z, £)dz) = 0

K(z,0)dz is then the reproducing kernel for I',, L(z, ¢)dz is then the
orthogonal kernel for I", corresponding to the singularity dz/2m(z — ¢)°.
It is known that

and for zepB, teW
L(z,&)dz = —K(z, O)dz .

2E. For I',, one defines in a similar way

Fydz — LNz, 8)
Ko(zv C)dz - T 8205
_ _1?N@0)
Lz, $)dz = = oudt

which, from the properties of the Neumann functions can be shown to
be the corresponding reproducing and orthogonal kernels.
We recall that we had, up to additive constants,
P=—2log f(z, ¢)
0&
Po = —-1.—‘6—‘1ng(21 é‘) .
107

Therefore
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P+P _ _ 0
g = aZlogf(z,é)
P—-—P _ _0
o = azlogf(z,f)-

If we now take the derivatives with respect to z

757

%(ﬂ—g—a = —a—g,glogf(z Pz = 6’;“;:0 dz
= %dz = —xLz, )dz
a% <£1—;_P0 dz = “mlogf (2, )dz = 627;’;(55 8 gz
gé\édz =Kz, J)dz .
But
vy = e e
TR = 2D 2SS e
and
K(z Odz = -1 ;équ
Lz, £)dz = iaﬁ_a%d
Consequently:
oz <P ; - )dz = —nlz, O)dz + -+ Z i 1T wi(2)wi(£)dz
Z(B5)de = —nKG Ddz + %2 S 11 wiE)w Q)

2G. We now shall study in a more detailed way the orthogonal
We recall that

Pa:Fase_i—ram'

In our planar case, I',,, = I',., and I", has then the decomposition

complement of I7,,.

Fa:Fae—i_Pam'

2H. The following lemma is useful for the study of reproducing
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kernels.

LeEmmA., If I',=1Iy+ T+ -+« + I, if there exists a reproducing
kernel kdz for I',, and if kdz has the decomposition

kdz = S kdz where kdzel,
i=1
then k,dz is the reproducing kernel for I;.

Proof. Let a,dzel';. By the reproducing property of kdz on I',,
(a,dz, kdz) = a;(¢). But
(a.dz, kdz) = (a,.dz, g kjdz> = g (a.dz, k,dz)
= (a.dz, k,dz)

because

(a,dz, k;dz) =0 for 1 +j.
This proves

(a;dz, k,dz) = a¢) .

2I. We shall prove a somewhat related proposition for the orthogo-
nal kernel.

LeMMA, Let I',=I,+1I,+ -« +1T,.

Let sdz be a singular differential which isin 'y, 1 <k < n except
for some analytic singularity 0.

Let us suppose there exists an orthogonal kermel hdz for I', cor-
responding to the singularity 0.

If hdz — sdz = >, b,dz.

Then sdz + 9,dz is the orthogonal kernel for I',.

Proof. Let a,dzel,. hdz is orthogonal to I", hence:
(a.dz, hdz) = 0 = <a,,dz, sdz + S f)idz> — (audz, sdz + 0,d2) .
i=1

But sdz + 9, dze ', except for the singularity, therefore
sdz + b dz

is the orthogonal kernel for I", corresponding to the singularity 6.
Conversely, let us suppose we know the orthogonal kernel sdz +
Y.dz for I',, we can extend it to an orthogonal kernel for I',. Let
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consequently I', = I, -+ I";, and let us suppose there exists a finite

basis for I";. By the process of orthonormalization one can get an or-
thonormal basis

edz, edz, +-+,e,dz for I, .

Any element of /7, has the following expression:
adz = a,dz + ;V_‘: Hedz .
Let us suppose that the corresponding orthogonal kernel for I”, is

hdz = sdz + bH,dz + i vedz .
Then

(adz, hdz) = 0 = <akdz + ﬁ pedz, sdz + 9,dz + i v,e,-dz)
= (a,dz, sdz + §,dz) + <akdz, i, vieidz>

=+ <§i Hedz, sdz + Dkdz> + (é Hedz, é Vieidz>

Mz

s ﬂi[(eidz, sdz + bdz) + <eidz, Ezjl vieidzﬂ

-
il

Il
Ms=

til(edz, sdz) + vi(edz, edz)] .

1

Il
-

This has to be true for all £, hence:

y, = —(e,dz, sdz) .

2]J. We now shall apply the two preceeding lemmas to the con-
struction of the reproducing kernels for the orthogonal complement of
I, in I',, namely I',,, and of the orthogonal kernel for I", corresponding
to the singularity dz/(z — ¢)*. The method has an obvious extension to
the construction of m kernels and of orthogonal kernels corresponding
to dz/(z — &)™, m > 0.

2K. First let us construct the reproducing kernel ky(z, ¢)dz for I',,.
The analytic measures for the & — 1 boundary contours 2, form a basis
for I',,. Let wi(2)dz be the corresponding differentials. We wish to
construct a linear combination

S aOwie)dz

which possesses the reproducing property on the elements of the basis:
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(wita)de, S aOwiEdz) = wi) (G =1 -+ k)

or

S n @) (widz, widz) = wi(E) .

We have to combute
(widz, widz) = (dw; + ido?, do; + idw}) = 2(dw;, dw,)
= ZS_dw,dco;" = 28 w,;dwf
w

- _25

;2% g5 — —2S 89: g5 — 4zp,
“on B; ON

Therefore:
k—1
47 3, &Py = wi(t)

and
- 1 k—1

a) = = 3 Mwi(e)

which shows that the reproducing kernel ky(z, £)dz for I, is

k—11k

e, )z = —— 33 5, Mwigwi@)dz

2L. To find now the orthogonal kernel A(z, ¢)dz corresponding to
the singularity dz/(z — ¢)* we look for an expression

Bz, £)dz = — % _ 1 S Owia)de .
G0 A

By definition, for w(z)dze .,

(witade, — L + Sb(Owi)dz) = 0

& — ¢y
or
gbi(w;(z)dz, wi(2)dz) = ( @)z, =& dz 5)2).

Now

< (=)dz, - dz §)2> = —1, Swz%dz% .
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Let a be the boundary of a circle of radius » around z =¢. Then

(w;dz, L) _ lim L g w(2)dz

&= o idea(Z—0)
_ S wiz)dz limg wiz)dz
1(E=0 rle(@=0)

The last integral has limit zero, because on &,z — £ = 7*}/(z — ¢). On B
however, w/(z) is imaginary. It follows then that on 38

wh(z)dz = —wi(z)dz .

Therefore

(widz, (zi_zw =1 z«_;_;(j—)og _ _m .

The integral can be transferred to a hence

e i e L0

We find then that:

g b, P.Ar = —2mwi(¢)

or
b, = —4 > 11,;wi(¢) .

The orthogonal kernel has then the following expression:

dz
(z—¢r

The results obtained in this section may be extended to open Riemann
surfaces, following the method which will be outlined in the next chapter.

iio(zy ¢ )dz =

- LS S e

Chapter IV. RIEMANN SURFACES OF NON-ZERO GENUS

1. Kernels For I',,. We shall extend in this paragraph our results
about reproducing and orthogonal kernels to non-planar open Riemann
surfaces. We shall first construct the reproducing kernel for I,,.

1A. We recall the orthogonal decomposition:

Pa:rue—i_ras'
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On an arbitrary surface W, the principal functions p, and p, have
vanishing flux. Therefore the differentials op,/60z and 8p,/6z are analytic
semi-exact. It follows that (8/62)((p. — p)/2)dz € I",,.. Therefore
—(1/7)(@/dz)((p, — py)/2)dz has a unique decomposition:

__l_ﬂ(pl—_po)_dz =w, + w,, where w, eI, w, eI, .
T oz 2

Let us first consider a compact bordered surface W. The differential

o, has the same periods as —(1/7)(0/02)((p, — »,)/2)dz. The analytic
Schottky differential w, may be written as:

ws = ¢1 + i¢2
where ¢, and ¢, are analytic Schottky differentials which are real on the
boundary B8 of W. We shall prove the following result:
THEOREM. Let p, and p, be the principal funmctions on W corre-

sponding to the singularity 1/(z — ¢). Then

w, = 1 6 (pl D) dz —
T oz 2

is the reproducing kernel for I',(W).

Proof. Let a'(z)dzel’,,., We compute the inner product (a¢'(z)dz, ®,):

(@' (2)dz, w,) = igﬁa’(z)dzw—e

= ij a(z)[ 71[ 6‘1 & —2) > P) gz — (g, F 7:¢2)]

=i] a@| L2222 ge — (5, ig))|.

The integral may be transferred to the boundary « of a circle of radius
r around z =¢. We get:

@@z 0) =i| o LIBED gz (5, —ig)].

But in a neighborhood of z = ¢,

_a_(pl + po) dz = —dz
oz 2 20z — ¢)

+ b(z)dz
where b(z)dz is analytic. Therefore

@@z, 0) = —i| SO 4] a@) 5B dz ~ i oo — in)
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When 7 tends to zero the last two integrals tend to zero. The first
has value a'(¢). Therefore

(@'(2)dz, @) = &'(¢) ,

which completes the proof of the theorem.

1B. We describe now a procedure to construct w,. We suppose
that —(1/7)(0/02)((p, — p,)/2)dz is known; in particular its periods can
be computed. The differential w, is an analytic Schottky differential
on W. It can be extended to the double W of W. The double W is
a closed surface, on which one can construct a unique analytic Schottky
differential w; with the same periods as —(1/7)(8/02)((p, — p,)/2)dz. The
expression —(1/7)(@/02)((p, — p,)/2)dz — w, has no period at all. It is
analytic exact, and by the uniqueness of the decomposition ®. = w,.
Knowing w,, we get w, = —(1/7)({(p, — py)/2)dz — w,, the reproducing
kernel for 7", (W).

1C. An analogous procedure can be applied to obtain orthogonal
kernels with singularity dz/(z — &)™, m = 0. We shall show, for instance,
how to get the kernel corresponding to dz/(z — ¢).

Accordingly, let us suppose there exists a differential sdz analytic
exact except for the singularity dz/(z — ¢)* on W. We shall use the
following decomposition for —2(8/6z)(p, + p,)/2dz:

—25@@ — sdz = @, + w,, With @, e [ (W)
Z

wls € FGS(W) .

Let a'dze I, W), @,, = +r, + 14, Where 4, and +, are analytic Schottky
differentials on W, which are real on 8. We show that —2(8/62)((p, +
p,)/2)dz — w,, is the orthogonal kernel for W corresponding to the singu-
larity dz/(z — ¢)*. Thus:

<a’dz, _2i(___p1 + 1) dz — 6018>
0z 2

= ll_'rn0 igﬁ_wa[—Z%ww — M]

~tim |, —af 0 P 4 G

Clearly, the last integral tends to zero when » — 0. The first integral
may be written as an inner product and we get:
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(a’dz, —25@2—@_{2_—%) — 0)13>

— (a’dz, 20 (P = P) gy (4, — i) =0.
oz 2

To actually construct the kernel, it suffices to compute the periods of

—2(8/82)(p, + p)/2 and obtain, as in the case of the reproducing kernel,

the analytic Schottky differential which exhibits the same periods on W.

1D. We wish now to extend the preceding results to the case of
open Riemann surfaces. Let W be an arbitrary Riemann surface, {2,}
a canonical exhaustion of W. Each 2, is of finite genus and has a
compact bordered closure.

Let I',.(2,) be the space of analytic differentials on 2,; we call
koo, (2, £)dz the reproducing kernel for 77..(2,), huo (2, £)dz the orthogonal
kernel for I,,(2,) corresponding to the singularity dz/(z — )™, m = 0.
We prove the following proposition.

1E. THEORVEM. If W is not of class &7,,, there exists a repro-
ducing kernel kyz, &)dz for I',(W).

Proof. Let QC Q' < W, when 2 and 2’ are elements of {2,}. Let
¢ e . We recall that a reproducing kernel is nonnegative at 2 =¢. Then:

Veowdz — Teogdz |5 = || koedz |5 + || Eoard2 |5 — 2o (€, €)
or

| leoordz — Feoadz || < || ko2 |} + || Foond2 |5 — 2KoalE, £)
= koﬂ(§9 é‘) - ko!)’(gr C) .

Therefore the sequence {kvogn(é‘, £)} is a nonincreasing sequence of
nonnegative numbers. It has then a limit when n— . If W¢ 27,
this limit cannot be zero. In fact, if there exists on W an analytic
function f(2) of bounded norm, then f'(z)dze ", (W) and, by Theorem
2A, Ch. 11, if f'(¢) + 0.

2 2

kg,,(z, £)dz
koﬂ(é‘r ;)

<|zee
=17

2 2

or

1 S”f'(z)olz
ko&, 8) 1L F1(©)

when 2 — W, the right hand side remains bounded. Hence the left

2

’
2
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hand side has to remain bounded too and

lim ko (£, 8) # 0 .

But
ooz — Jeood2||2 < || oprdz — Feogd2 |3 < Jeoal€, £) — Foar(E, ©) -

where Q2 is fixed and 2" cCcQcC £'.
If 2 now tends to W, then

lim ||kyodz — Fopedz||or = 0
2,9 -w
and therefore léogdz has a limit k,dz when 2 — W and that limit is at-

tained uniformly on every compact subset EcC W,
Moreover, for each 2¢{2,} the following decomposition holds:

T a pl_po
oadl :—~—-<-—>d — W,
0l o2 2 92 @eo

The preceding equation shows that when 2 tends to W, w,, has a limit
such that

. R im(—2 (PL=P
}}P,{lywsﬂ—yﬂ( k“”dz)+}:irfvl( naz< 2 )de>

= —kdz __6_(____191 — p0> .
% 2 w

It remains to show that lzodz has the reproducing property. For a(z2)dz ¢
r'.(W) we form:

(a(2)dz, kdz — Kood2), = (a(2)dz, Kdz)o — alt) .
By Schwarz’s inequality
|(@(@)dz, kidz)s — a9 < || a(2)dz 3] kudz — Foadz |l ;
when 2 tends to W:
lim | (a(2)dz, kud2)s — a()] = 0 .

Therefore

(a(z)dz, kdz) = a(¢) .

1F. An analggous proof can be used to show the existence of
orthogonal kernels h,,dz on W,

1G. We prove now that if We 2,,, the reproducing kernel Koodz
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vanishes as 2 — W. 1If not,
| kudz|? = g, ) # o

and the preceding proof can be carried over. But then lgodz is the dif-
ferential of an analytic function of finite Dirichlet norm, which contra-
dicts the fact that We & ,.

2. Kernels for I',.

2A. We shall use the following decomposition of I',:
Fa, = Fae —i_ Paa .

We have constructed a reproducing kernel for I",,., To get the repro-
ducing kernel for I",, it remains to find the reproducing kernel for 7I°,,.

2B. Let 2¢{Q,}. We consider the double £ of 2. On Q there
exists a canonical homology basis {4;, B;}. One may define on 2 analytic
differentials «, with period 1 on A4,, 0 on A, for & #+ k, and “symmetric”
on £ in the sense that they are analytic Schottky differentials on 2.

These «, = a,dz form a basis for I',(2). They are linearly inde-
pendent because their periods are linearly independent, and every
a(z)dz € I',(2) can be expressed as a linear combination of the «a,: if we
subtract from a(z)dz a linear combination of the «, such that the dif-
ference has no A,-periods, this difference can be extended by “symmetry”
to 2, and we would have on 2 an analytic differential without A,-period.
Such a differential is necessarily zero.

2C. Let N be the total number of «,. N is equal to ¢’, the genus
of 2. It depends on the genus ¢ and on the number of contours ¢ of
2. ¢gd=29+c—1.

We form now a linear combination

N
> b;a(?)dz

which has the reproducing property on I',(2). It suffices to show that
the property is valid for the a;, (k =1--- N). We want

(aa)dz, $10.00a,@)dz) = ai(o)

or

ﬁ« Ei(akdzy a;dz)g = a,(¢) .
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Because the a,dz are a basis, the matrix (¢,,) such that
(a,dz, a,dz), = ty,
is non-singular.

We now may solve the system for the b,

i gz(g)tkz = a,(¢)

N

>, T (8) where (Ty) = (8.)7"

k=1

b.(£)

and we get the reproducing kernel:
N N
k{o(z, £)dz = % kgl Ta($)ai(z)dz .

2D. By the method of the preceding section it is now easy to show
that kidz = lim,_, ki, (2, £)dz exists and possesses the reproducing pro-
perty. We have constructed the kernel

kfz, ©)dz = ki(z, £)dz + ki(z, £)dz

which has the reproducing property on I"(W).
By an obvious modification of the preceding argument one may
construct m kernels k,dz, and orthogonal kernels A,,dz (m = 0) for I".(W).
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