
OPERATORS OF FINITE RANK IN
A REFLEXIVE BANACH SPACE

A. OLUBUMMO

1. Let X be a reflexive Banach space and F(X) the Banach algebra
of all uniform limits of operators of finite rank, in X. Bonsall [1] has
characterized F{X) as a simple, U*-annihilator algebra: F(X) contains
no proper closed two-sided ideals, every proper, closed right (left) ideal
of F(X) has a nonzero left (right) annihilator, and, given any TeF(X),
there exists Γ* e F(X) such that

In this note, we obtain a new characterization for F(X) (Theorem
3.2): a Banach algebra A is the algebra F(X) of all uniform limits of
operators of finite rank in a reflexive Banach space X if and only if A
is a simple, weakly compact, I?*-algebra with minimal ideals (A is weakly
compact if left- and right-multiplications by every ae A are weakly
compact operators). In the process of proving this result, we obtain a
characterization of reflexive Banach spaces which seems to be of some
independent interest (Theorem 2.2): a Banach space X is reflexive if and
only if every operator in X of rank 1 is a weakly compact element of
B(X).

2. Let X be a Banach space and B = B(X) the Banach algebra
of all bounded operators in X with the uniform topology. For Te B,
let Rτ denote the operator in B obtained by multiplying elements of B
on the right by T: RT(A) = AT for Ae B.

Suppose that T is a fixed operator of rank 1 in X with H =
[xe X: Tx = 0]. Then H is a closed hyperplane in Xand if x0 is an ele-
ment of X such that Tx0 Φ 0, then X = H 0 (x0) and we may assume that
||α>o|| = 1. Write B' - [Si6 B: S(H) - (0)]. For each Se B\ we define
an element xs of X by setting xs — S(xQ) The mapping S —> xs is clearly
linear.

LEMMA 2.1. The linear mapping S-+xs is a homeomorphism of
Bf onto X.

Proof. It is clear that the mapping is one-to-one and, since
||S(ίco)|| ^ | |S | | , it is continuous. It is also onto; in fact, let <£>GX* be
such that φ(H) = (0), φ(x0) = 1. Then for given xe X, the operator Sx

defined by setting Sx(y) = φ(y)x, ye Xbelongs to Bf and is mapped into
x by the mapping S—*S(x0). Hence, by the closed graph theorem, the
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mapping is bicontinuous and the proof is complete.
Let Bλ denote the unit ball in B, so that Rτ{Bλ) = [PTe B: \\P\\ ̂  1].

LEMMA 2.2. RT(BJ = [ A e B': \\AxQ\\ g || TxQ\\\.

Proof. It is clear that R^B,) a[Ae B':\\Axo\\ ^ \\ Txo\\]. Now let
i e B' with HAajoll ^ 112X11; we find PeB, such that A = PT. There
exists f e X* such that | | ^ | | = 1 and t ( 2 X ) = \\Tχo\\. We define P by
setting Px = ψ(αj)Aa?0/|| 2X11. Then PTα = 0 if # e H and P 2 X = A#o.
Thus PT and A coincide in the subspace (x0) and must therefore coincide
everywhere in X. Finally | | P | | = sup,,^,^ I!^(#)A$O||/|| 2X| | ^ 1; hence
PeB, and Rτ(Bλ) = [Ae B': | |Aαo | | ^ I |2X| |].

LEMMA 2.3. Lei F be any subset of B'. If FB' denotes the closure
of F with respect to the weak topology of Br and FB the closure of F
with respect to the weak topology of B, then FB' = FB.

Proof. Let P o e FB' and let

N = JV(P0; Φ19 Φ2, , Φn; e)

= [Pe B: \Φk(P - P o ) | < ε; k = 1,2, ^.9n;ΦkeB*]

be an arbitrary neighborhood of Po in B. Then the neighborhood JV' =
N(P0; Φ'u Φ'2, --.,Φ'n;e) of Po obtained by taking the restriction of Φk to
B' for each k, contains a point P of F. Since Pmust therefore belong
to N, it follows that FB' S FB.

Now suppose that PoeFB. Then PoeB' since Br is closed with
respect to the weak topology of B(X) (being linear and strongly closed).
Let N' = [Pe B': \ φk(P - Po) | < ε, k = 1, 2, . . , n; φk e (B')*] be an arbi-
trary neighborhood of Po in Bf. Then again, by considering the
neighborhood N= [Pe B: \ Φk(P- Po) \< e, k = 1,2, . . , n , Φk e β*] obtained
by extending φk to Φk, for each &, on the whole of B, we can find
P e ί 7 such that P e JV'. Hence FB S i^B . This completes the proof.

THEOREM 2.1. A Bαnαch space X is reflexive if and only if every
operator in X of rank 1 is a right weakly compact element of B(X).

Proof. If X is reflexive and T is of rank 1, then by Lemma 2.1,
J5' is homeomorphic with X under the correspondence S «-> S(x0). Now
the image of Bλ under Rτ is a bounded subset of B' which is therefore
contained in a set U which is compact with respect to the weak topology
of Bf and by Lemma 2.3, with respect to the weak topology of B(X).
Thus Rτ is a weakly compact operator in B(X) and T is a right weakly
compact element of B(X).
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Now suppose that Rτ is weakly compact in B(X). Then RT{B^ is
contained in a set V c Bf which is compact with respect to the weak
topology of B{X) and hence also with respect to the weak topology
of Bf. Now the ball Q = [Ae Br: \\A\\ ̂  | | Txo\\l\\xo\\] is contained in

RT{B^) c V and is weakly closed. Hence Q is compact with respect to
the weak' topology of Br and therefore Bf is reflexive. Since Br is
homeomorphic with X, it follows that X is reflexive and the proof is
complete.

COROLLARY 2.1. If X is a reflexive Banach space, then the algebra
F(X) of all uniform limits of operators of finite rank in X is a
weakly compact algebra.

COROLLARY 2.2. (Ogasawara [2] Theorem 4.) Let H be a Hilbert
space and B(H) the Banach algebra of all bounded operators in H.
If T is a compact operator in H, then T is a weakly compact element
of B{H).

3. This section is devoted to the study of simple, weakly compact,
i?*-algebras with minimal ideals.

LEMMA 3.1. Let Abe a simple Banach algebra with minimal ideals.
Then every maximal regular left ideal M of A has a nonzero right
annihilator.

Proof. Since A is a simple Banach algebra, there exists an
idempotent ee A such that M Π Ae = (0) and i l ί φ i e = i . Since M
is regular, there is je A such tha't xj — xe Mfor every xe A. For some
α0e A and m 0 e l , j = m0 + αoe, aoe Φ 0. Suppose now that m is an
arbitrary element in M. We have mj — me Mand mj — maoe = mm0e M,
from which it follows that m — mαoee M. Now, me M and hence
maoe e M. However, maoe e Ae since Ae is a left ideal, thus maQe e Mf] Ae =
(0) and since m is arbitrary in M, the lemma is proved.

LEMMA 3.2. Let A be a simple Banach algebra with minimal right
ideals. IfjeA and j has no left reverse, then there exists a Φ 0 such
that ja — a.

Proof. Let J = [yj — y: ye A]. Then J is a regular left ideal of
A which is proper since j $ J. Hence by Lemma 3.1, there exists aeA,
a Φ 0 such that Ja = (0), i.e. such that yja — ya = 0 for all ye A or
A(ja — a) = (0). Since (A)r = (0), this implies that ja — a.

LEMMA 3.3. Let A be a simple B*-algebra with minimal right
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ideals. If \ \ is any other norm in A with \a\ S \\a\\ for each α e A,

then I I = || | | .

Proof. Lemma 3.2 implies t h a t if | | is any other norm in A, then

lim^oo \an\lln = lim^oo \\an\\l!n for every α e A (Cf [4], Lemma 3.1). Then

since A is a J3*-algebra, we have

| α # | | α | ^ |α*α| ^ lim | ( α % ) w | 1 / w

and since |α*| ^ ||α*|| and |α | ^ | |α | | , the result follows.

THEOREM 3.1. A Banach algebra A is the algebra F(X) of all
uniform limits of operators of finite rank in a reflexive Banach space
X if and only if A is a simple, weakly compact, B%-algebra with
minimal right ideals.

Proof. Let A be a simple, weakly compact, J5*-algebra with eA a
minimal right ideal, e a primitive idempotent. We represent A as an
algebra of operators S$f in eA, the latter regarded as a Banach space.
Corresponding to each a e A, we define an operator a e j y by a: x ~> xa
for x e eA. The correspondence a —> a is obviously an isomorphism and
if we take | |α | | = supMβnSi | |αα||, xe eA, the correspondence is an isometry
in view of Lemma 3.3. Thus A is isomorphic and isometric to jzf and
A is the uniform closure of

Next we show that eA is a reflexive Banach space. Now e has no
left reverse in A; hence by Lemma 3.2, there exists ae A, a Φ 0 such
that ea — a. The set P = [αe A: eα = α] is a right ideal of A and since
P ξ^ eA, we must have P — eA since eA is minimal. If e is now regarded
as a left weakly compact operator on A, then it is clear that the set
P = eA is a reflexive Banach space.

Our next step is to show that in the representation described above,
j ^ contains all operators of finite rank in eA. Corresponding to each
aeAe, there exists a continuous linear functional <pa on eA satisfying
<pa(x)e — xa, xe eA. Let G = [<pae (eA)*: ae A]; then G is a linear

subspace of (eA)*. We show that G is closed with respect to the usual
norm in (eA)* defined by \\g>\\ — sup^n^ \<p(x)\ %e eA. For aeAe, we
have xa — φa(x)e, xeeA, and since | |α | | = | |α | | for each aeA, we have

| |α | | = | |α | | = sup \\xa\\ aeAe

= sup \\φa(x)e\\
11*11^1

= sup |?>α(aOIIM|
l l l
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Thus G is topologically equivalent to Ae and hence closed. Having proved
that G is a closed linear subspace of (eA)*, we now show that G is in
fact the whole of (eA)*. Suppose that there exists φ'e(eA)* such that
φr$G. Since G is closed, there exists Φe(eA)** such that Φ(φa) = 0
for all φaeG and Φ(φf) — 1. However, eA is a reflexive Banach space:
hence there exists uoe eA, uQ Φ 0 such that Φ(ψ) — <p(uQ) for all φe (eA)*.
In particular, for φa e G, this implies that 0 = φa(uύ)e — uoa for all a e Ae,
which in turn implies that uQe (Ae)L = (0) which is absurd. Hence G =
(eA)*. From this it follows that sf contains all operators of rank 1
and hence all operators of finite rank in eA, since if T is an operator
of rank 1 in eA, then there exists φe (eA)* and uoe eA such that xT =
φ(x)u0, xe eA. Since φeG, there exist ae Ae and φae (eA)* such that
<P = φa and #α = <pα(x)e. Let uQ = βα0 for some αoe L̂; we have #Γ =
φa(x)u0 = φa(x)ea0 =xaa0, and since aaoe A, the operator aaQ — T belongs
to j y .

Finally, the uniform closure of the set of all operators of finite rank
in eA is a closed two-sided ideal of sf which must coincide with s/ since
j ^ is simple. Thus the "if" part of the theorem is proved.

That F(X) is a simple, weakly compact jB*-algebra with minimal
ideals follows form corollary 1 and a result due to Bonsall and Goldie
[1], Theorem 2. This completes the proof of the theorem.

REMARKS. 1. The problems discussed here were suggested by
reading Ogasawara and Yoshinaga [2,3] and Bonsall [1].

2. Work on this paper was started at University College, Ibadan,
and completed at Yale University. The author wishes to express his
gratitude to the Carnegie Corporation of New York and to Yale University
for financial support.
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