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Introduction* It is the purpose of this paper to establish some
properties of the zeros of solutions of ordinary, self-adjoint differential
equations of arbitrary even order of the form

(1) [r(x)yM]M + (-iy+1p(x)y = 0

where r(x) > 0, p(x) > 0, and both coefficients are continuous on [α, oo).
Of particular concern is the existence of a nontrivial solution of (1)
which satisfies one of the following sets of two-point boundary con-
ditions

(2) y(a) = y'(a) = . . . = y^\a) = 0 = y(b) = y\b) = . . . = y^\b)

(3) y(a) = y\a) = ... = y^\a) = 0 = y1φ) = y[(b) = . . . = y[^\b)

where yx{x) = τ(x)y{n)(x), a notation which will be continued throughout
the discussion, and b > a.

Recently the special fourth-order case (n — 2) has been investigated ex-
tensively by W. Leighton and Z. Nehari [10], by H. M. and R. L. Sternberg
[13], by H. C. Howard [8], and by J. H. Barrett [2, 3, 4]. In the present
paper some of the methods of Barrett [2,4] are extended to the general
case; and, in so doing, some of the arguments used for n = 2 are simplified.

W. T. Reid has recently announced [12] a general discussion includ-
ing the above types of zeros of solutions of quasi-differential equations of
even order of which (1) is a special case. Reid discusses related eigenvalue
inequalities and his methods are variational in nature and assume some
basic results of the spectral theory for boundary problems that have
been established earlier in the study of the calculus of variations.

This discussion, which generalizes Barrett's methods, has the ad-
vantage that only fairly well-known properties of matrices and differ-
ential equations are used. Furthermore, and most important, a con-
siderably stronger criterion for the existence of a non-trivial solution
satisfying (2) (see Theorem 4.3) and of one satisfying (3) (see Corollary
5.1) is established by utilizing the simple form of (1). Then two com-
parison theorems, established by an application of Reid's variational
results [12], extend these stronger results to the general self-ad joint
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case, i.e., the differential equation of the form

(4) [rn(x)V(nΎn) + Σ P o K - l ^ + V ^ ) ^ ^ = 0 ,

where r^x) > 0 for i = 0,1, 2, , n, and all of the coefficients are
continuous on [a, co). This extension is discussed in §6.

For the sake of completeness, there is developed in the first section
a canonical representation of (1) as a system of two first-order matrix
equations as given by H. Kaufman and R. L. Sternberg [9], as modified
by Barrett [4], and as modified here by a method suggested by a
problem in [6, problem 19, p. 206]. This system is of the form

Y' = E(x)Z , Zr = -F(x)Y,

and is so designed that a singularity of the ^th-order matrix Y(x) at
x = b gives the existence of a nontrivial solution of (1) satisfying the
conditions (2); and a singularity of Z(x) at x = h gives the existence of
a nontrivial solution of (1) satisfying the conditions (3). These properties
are discussed in § 2. In § 3, the determinants of Y(x) and Z{x) are
shown to satisfy certain second-order, self-adjoint differential equations
which generalizes a result for the case n = 2 due to Leighton and
Nehari [10] and Barrett [2], In §§4 and 5, conditions for the existence
of nontrivial solutions satisfying the conditions (2) and (3) are discussed.

l A matrix differential system related to (1)» This discussion
parallels [4] with a slightly different modification suggested by a prob-
lem in [6, page 206]. Let y(x) be any solution of (1) and let

y1(x) = r(x)y{n)(x) ,

a notation which will be used throughout the discussion. Define the
wth-order column vectors a(x) and a(x) by

a(x) = (α.) = (y«-»), a(x) = {&,) - ( ( - 1 ) % ^ ) >

where i — 1, 2, , n. Then a(x) and ά(x) satisfy the system

a! = Ba + C(x)ά

a' = A{x)a - B*ά ,

where A(x), B, and C(x) are n x n matrices defined as follows, (i denotes
the row index and j the column index).

A(x) = (ai3{x)) ,

where

Ma) = (~l)n+1P(%), a,ij(x) = 0 for i Φ 1 or j Φ 1 .

B = ψij), where bid = 1 for j = i + 1, bi5 = 0 for j Φ i + 1 .

C(x) - (ci3(x)) ,
where
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e»nO*O — (—ϊ)nlr(x), ciά(x) = 0 for i φ n or j Φ n .

Next, consider the nxn matrices D(x) and D(x) which satisfy

D' = BD, D(a) = In and D' = - B * A J5(α) - J. ,

respectively, where In is the w x n identity matrix. For simplicity in
the remainder of the paper, and with no loss in generality, let a = 0.
Now, the equations for D(x) and D(x) can be solved to give

D(x) = (d^x)), where diS(x) = 0 for i > j and

dij(x) = xύ~ιlU - ϊ)\ for i ^ j .

D(x) = (d^ (^)), where d^-fa) Ξ 0 f or i < i and

diό{x) - (-ly-V-^/ίi - i ) ! for j £ i .

Now, let /δ(a?) and β(x) be ^th-order vectors defied by the relations

a(x) = D{x)β{x), ά(x) = ( - l ) 5(a?),β(a?) .

Substitution into (5) then yields

β> = £7(0;)^
( 6 ) /3' = - F ( x ) ^ ,

where E(x) and F(ίc) are w x n matrices defined as follows.

E(x) = (βiiίa?)), where

eiά(χ) = (—ly+V*-*^/^ - i)!(w - i ) ! φ θ ,

^(») = (/«(*)), where /4J(a?) = x^v&W - l ) ! ( i - 1)!
for i ^ i and /<,.(») = /<,.(») .

Thus, ^(a;) and F(x) are symmetric, positive semi-definite matrices.
D{x), E(x), and F(x)t are generalizations of matrices used by Barrett
[4] for n = 2.

Let {Ui(x)}f i = 1, 2, 3, •• , n be a set of solutions of (1) which
satisfy the boundary conditions

[UiixW'-v = 0 for x = 0 and ί, i = 1, 2, , n .

N.iίa?)]0'"" = δϋ for x = 0 and i, i = 1, 2, , w

and M<i:ι(ίB) = r(a;)^Λ)(ίc) .

Now, denote the ^th order vector with components uij~1](x), j = 1,
2, , n, by aUt(x) and the ?ιth order vector with components
(-l)%ί?f i }(a0, ί = 1, 2, , n, by αW£(x). Then define

(8) i8tt4(αj) = D - ^ K / x ) , ^(a?) = ( - l ) ^ - 1 ^ ) ^ ^ ) , i = 1, 2, . . , n .

THEOREM 1.1. Lβί F(α?) be an nxn matrix whose columns (in the
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order i = 1, 2, , n) are the βUi(x) and let Z(x) be an nxn matrix
whose columns are (in the order i = 1, 2, , n) the βH(x). Then Y(x)
and Z(x) satisfy

(9) Y* = EZ, Z' = -FY.

Proof. This theorem can be verified by direct substitution.

2. Relations between the system (9) and equation (1) First, two
types of zeros of solutions of (1) are defined as follows.

DEFINITION 2.1. The number ^(0) is the smallest number b on
(0, oo) such that the boundary conditions

(10) y(0) = τ/'(0) = ... = j/<-»(0) - 0 - y(b) = y\b) = ... = y«-*Q>)

are satisfied nontrivially by a solution y(x) of (1). This is the type of
boundary problem considered in [2,4, 12, 13].

DEFINITION 2.2. The number μ^O) is the smallest number b on
(0, oo) such that the boundary conditions

(11) 7/(0) - y'(0) = ... = ί,<-»(0) = 0 = yλ{b) = y[φ) = ... = y[^\b)

are satisfied nontrivially by a solution y{x) of (1). This is a generaliza-
tion of the type of condition first used by Barrett [2,4] and Howard
[8] as an intermediate condition to (10).

THEOREM 2.1. A number b ε (0, oo) is the smallest number on that
interval for which det Y(b) — 0 if and only if b — 3̂ (0) for (1). A
number b ε (0, oo) is the smallest number on that interval for which
det Z(b) = 0 if and only if b = μλ(0) for (1).

Proof. Note first of all that det Y= W[ulf ---,un] and det Z(x)
— W[u1Λfu2ιl, * ,un>1], where W turns out to be a Wronskian in each
case. The former is true since

Y(x) = D-\x)Mx) ,

j*(x) being the matrix of W[ulf u2, , un], and det D(x) = 1. To verify
t h a t det Z(x) = W[u1Λ,u2tl, •• , / M W I 1 ] , observe that

jt(x) being the matrix whose columns are the ccUi(x) in the order i = 1,
2, ,w. But det (-l)nj?{x) = W[u1Λ, u2ιl, . , un,ί] and det D(x) = l.
Using the definition of the functions u{(x), the result now follows.
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2* Second-order, self-adjoint, linear differential equations which
liave det Y(x) and det Z(x) as solutions* To simplify the notation, let

det Y(x) = σ(x) , det Z{x) = p(x)

in the remainder of the discussion. Note that σ(0) = 0 and ^(0) = 1.
Consider, first, the following lemmas.

LEMMA 3.1. Let σ(x) denote the Wronskian, W[uu u2, , u^]
(n > 1) where the functions ut(x) are as defined in § 1 and (7). Then
d{x) Φ0 on (0, oo).

Proof. Assume that σ(x) has a zero on (0, oo). Then there is a
solution y(x) of (1) which is a linear combination of u^x), u2(x), •••,
un-x{x) and a minimum value x = b on (0, oo) such that y(0) = y'(0) =
. . . = y<»-»(0) - ^- 1 } (0) - 0 and y(b) = y\b) - = y (-«(δ) - 0.

Let ?/(#) have m distinct zeros on (0, b) (m ^ 0), the first such zero
ΐ>eing x = c on (0,6]; and suppose, without loss of generality, that
#(#) > 0 on (0, c). Then, because of the conditions on y(x) at x — 0,
^(0) ^ 0. Now, noting the condition on y(x) at α? = 0 and x = b,
Kolle's theorem can be applied to y{x), y'(x), •••, yίn~2)(x) in turn to give
the following information.

y\x) has at least m + 1 distinct zeros on (0, 6).
y"(x) has at least m + 2 distinct zeros on (0, 6).

(̂»-!)(/») has at least m + n — 1 distinct zeros on (0, 6).
^(cc) has at least m + n — 1 distinct zeros on (0, b).
y[{x) has at least m + n — 2 distinct zeros on (0, 6), the first one

of which can be chosen to the right of the first of the above
m + n — 1 distinct zeros of yλ(x).

Ui(x) has at least m + n — 3 distinct zeros on (0, 6), the first one
of which can be chosen to the right of the first of the above
m + n — 2 distinct zero of y[(x).

yίn~1](x) has at least m distinct zeros on (0, b) if m Φ 0, the first
one of which can be chosen to the right of the first of the
above m + 1 distinct zeros of y[n~2){x).

(If m = 0, the last statement is replaced by the statement that
ηjίn-\x) Φ 0 on (0, 6).)

Then, from the last statement for m Φ 0, y[n){x), and hence y(x),
has at least m distinct zeros on (0, b) since ^"""(O) = 0. If m = 0,
y(x) has no zeros on (0, b). But y(x) has exactly m distinct zeros on
<0, b). Thus, each of the functions yίn~1](x), •• fyϊ(x),vΊ(x) must have
exactly the number of distinct zeros on (0, b) as given in the preceding
statements since each has at least that number of zeros and if any
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one had more distinct zeros, it would follow that y(x) had more than
m distinct zeros. Also, all of the distinct zeros of y(x) are simple.

Next, y^'^ix) — (—l)nl p(t)y(t)dt. Consider the case where n is even.

Then yl^ix) > 0 for x on °(0, c). Thus, yίn~2)(x) must begin at x = 0
with zero slope, have positive slope on (0, c), and have a zero before
its slope has a zero (since for m Φ 0 the first zero of y^'^ix) is to the
right of the first zero of y[n~2)(x) on (0, oo) and for m = 0, y^'^ix) Φ 0
on (0, b) by the above considerations). This is possible only if j/ίn"2)(0)
< 0. Then y[n~*\x) must begin at x = 0 with negative slope and have
a zero before its slope has a zero which implies that yίn~d)(0) > 0.
Iteration of this argument gives ^(0) < 0, a contradiction. For the
case in which n is odd, this contradiction is obtained similarly. Thus,
σ(x) ^ 0 o n (0, oo).

LEMMA 3.2. Let p(x) denote the Wronskian, W[ulιlfu2ιl, " ,un-1Λ]
(n > 1) where uJtl(x) = r(x)Ujn)(x) and the functions u{{x) are as in
Lemma 3.1. Then p{x) > 0 on [0, oo).

Proof. This result is proved in the same way as the preceding
lemma. p{x) > 0 on [0, oo) since /?(0) = 1.

LEMMA 3.3. The solutions u^x), as previously defined, satisfy the
following set of n(n — l)/2 identities (n > 1):

(12) m-m^xWZTΓHx) - u%){x)utϊ™-v{x))\ = 0 ,
ra=0

i = 1, 2, , n — 1 and j — 1, 2, , n — i »

Proof. The lemma is established by an induction on the following
general observations:

(ruln)){n) + (-ly+'pUi = 0 , (ru'^j)™ + (-l)n+1puί+j = 0

and hence uJtruft,)™ - ui+j(ruln)){n) = 0; that is, uiu
(^jΛ - uί+ju[ni = 0.

Then n integrations by parts from 0 to x give

+ Σ (-l)"+HtίϊKr"-u + (-l)n+1[uil)uiΛ = 0 ,
m=0 JO

from which the lemma follows.
Next, note that the function {r(x)σ'{x))f is as follows:

(13) (r(x)σ'(x))> - Dx{x) + D2(x) ,

where Dλ(x) is an nth order determinant whose first n — 1 rows are
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(u[j)u{

2

j) up), j = 0, , n — 3, n — 1, and whose last row is (u1Λ, u2tl

• w».i); and D2(x) is an wth order determinant whose first n — 1 rows
are the same as those of Dτ{x) except that j = 0, , w — 2, and whose
last row is (u'1Λ, u'2tl u'n>1).

LEMMA 3.4. (r(#)0"'(#))' com 6β written as

(13') (r(α)e7'(aθ)'

/% other words, the two determinants on the right-hand side of (13) are
identically equal.

Proof. Let Witi+j denote the sub-Wronskian of W[ulf u2, , un]
which is obtained from the latter by deletion of the ith and (i + i)th
columns and the last two rows. Then, using the equations (12), consider

m = 0
{*>«ft7"-1> - « ίτ}<r"- u ] = o ,

for i = 1, 2, , % — 1 and j = 1, 2, , n — i. Summing these n(n — l)/2
identities yields

i=l j=l m=0

Now take m = n — 1. This gives

which is exactly the first determinant on the right-hand side of (13) if
n is odd and the negative of the determinant if n is even. This can
be seen by expanding the determinant by Laplace's development based
upon minors of the last two rows.

Next take m = n — 2. Then, as above, this gives the negative of
the second determinant on the right side of (13) if n is odd and the
determinant if n is even.

The result (13') will now follow if it can be shown that

n—1 n—i n—3

In particular, this holds for each m fixed between 0 and n — 3 as
follows. Fix m so that 0 ^ m ^ n — 3. Then consider the identically
zero determinant (two identical rows)
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u2
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y^(n-m-l)
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••• u.

••• <

• %iB-3 )

• Ίjfy '

= Σ,Σ,[(-irH+2n-1wi,i+3{uruiι-Jτ
1) - ttίTXr--1')],

the expansion being by Laplace's development based upon minors of the
last two rows. But this expansion is either equal to the above with a
fixed m or the negative of the above with a fixed m. Thus, the asser-
tion holds; and (13') follows.

THEOREM 3.1. The function σ(x) — det Y(x) is a solution of

(14) (rσ'lσ2)' + 2r(δ/α3)σ - 0 ,

on (0, co), where δ(x) is a determinant of order n — 1 whose rows are
(u[j)u{

2

ά) n where j = 0, , n — 3, n (n > 1).

Proof. Using (13'), the differential equation (14) can be written
in the form (2lσ)(D1σ — rσ'σ' + rSσ) — 0. Now, if it can be established
that the left hand side of this equation is identically zero on (0, oo), (14)
will be established. To show this, consider the following identically
zero determinant (can be verified by the use of induction and expansion
by minors) and its Laplace development based upon minors of the first
n — 1 columns.

(15)

u[ ui

0

u[

0

ui

< - i

%iri2)

o
o

0

0

u2

ui

ui'

Λi(n-l)
Wn-l

0

0

K

u.(n-3)

( ) ( ) = 0 .

The right hand side of this equation is exactly the term which was to
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be shown identically zero. This completes the proof of the theorem.
An analogous result to Theorem 3.1 for ρ{x) = det Z(x) is given as

follows.

THEOREM 3.2. The function ρ(x) = det Z{x) is a solution of

(16) (p'lPP2)' + (2lp)(δjps)p = 0 ,

on (0, oo), where

(17)
K-1,1

η,(n)

4. Conditions for the existence of /*i(0)* This first two theorems
of this section generalize results for the case n = 2 by Barrett in [2,
4]. These results could, also, be obtained by specialization of Reid's
work in [12]. Theorem 4.3, on the other hand, generalizes Barrett's
Lemma 2.6 in [2], gives an improvement over Theorem 4.2, and gives
a condition for the existence of μx(0) which improves the specialization
obtained from [12].

THEOREM 4.1. // ^(0) exists, then μ^O) exists and 0 <

Proof, det Z(0) = 1 and thus there is a maximum value x = b on
(0, oo] such that Z(x) is nonsingular on [0,6). On [0,6), h t K(x) =
Y(x)Z~\x) so that K(x) is symmetric and

(18) K\x) = E(x) + K(x)F(x)K(x), K(0) = 0 .

K(x) has been discussed and utilized in [1] and [11], as well as [4]
where Barrett has used it for the case n = 2. Now let f = (!<) be an
wth order, constant, column vector. Then, using (18),

ξ*E(t)ξdt
o

{-1)n~lξΛn - 2 ) ! Jd t '

and hence K(x) is positive definite on (0, 6). Thus, det K(x) =
det Γ(α?)/det Z(α?) is positive and Y(x) is nonsingular on (0, b). This implies
that 2̂ (0) does not exist on (0, b) and the result of the theorem follows.
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THEOREM 4.2. / / I x2{n~1)p(x)dx = oo, then μx(0) exists.
j

Proof. Suppose that I xnn~ι)p{x) dx = oo and det Z(x) > 0 on [0, oo).
Then by the preceding theorem, det Y(x) > 0 on (0, oo) and the
matrix K{x) = Y{x)Z~\x) is positive definite on (0, oo). Thus, for every
constant vector ξ — (§;), (i = 1, 2, , w), it follows that

Hence, if #0 e (0, oo) and x e (x09 oo), it follows that

ξ*F(t)ξdt < ξ*K-\xo)ξ < oo ,
o

and the theorem follows.
In order to use to advantage the second-order equation (16) which

ρ(x) satisfies (as Barrett does in [2]), it must first be established that
the coefficients in (16) are positive on (0, oo). Lemma 3.2 gives p(x) > 0
on [0, oo). Thus, it remains to be shown that S^x), as defined by (17),
is positive on (0, oo). In fact, it is necessary to know that a certain
family of determinants (which includes Sλ(x)) contains only determinants
which are nonzero on (0, co) and that certain of these (including δ^x))
are positive on (0, oo). These results are given in Lemma 4.1.

Consider the matrix M{x) with 2n rows and n — 1 columns (n > 1)
whose first n rows are, in order, the row vectors (u[k)u{

2

k) u^), k =
0,1, "',n — 1, and whose last n rows are, in order, the row vectors
(u[kMk)i ' tt£llfl), k = 0,1, , n - 1. Let j^~" denote the family of
determinants of order n — 1 obtained from M(x) by deleting n + 1 rows
and taking the determinant of the resulting square matrix. Note that
for every determinant D(x) in ^ " , D(0) = 0, except the case D(x) =
p(x) when D(0) ~ 1. Two subsets of j^~ are the sets {8j(x)/p(x)} and
{7j(x)}, j = 1, , n — 2 (n > 2) defined as follows:

DEFINITION 4.1. Sά(x)lp(x) is a determinant of order n — 1 with first
row (%!, %2 ^n-i) and remaining rows, in order, (^^ί^ί wi-i.i)> A; =
0,1, , ̂  — j — 2, w — j , , n — 2.

DEFINITION 4.2. γy(a?) is a determinant of order n — 1 with rows, in
order, « K i uH°lltl), k = 0,1, , n - i ~ 3, n - i - 1, , n - 1.

LEMMA 4.1. If D{x) is any determinant belonging to j ^ ~ , then
D(x) Φ-0 on (0, oo). Furthermore, if D(x) is any determinant in the
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set {8j(x)lp(x)} or in the set {7j(x)}, j = 1, , n — 2, then D(x) > 0 on
(0, oo).

Proof. A general determinant D(x) in &~ will have the form:

D(x) =

t t j
<<1)

where for some fe,0^i;^tι-l, {ίiK=ϊ are some fc of the integers
between 0 and n — 1 and 0 ^ iλ < ί2 < < iΛ ^ n — 1; and {ίilpfcTl
are some n — 1 — k of the integers between 0 and n — 1 and 0 ^ i

The method of proof of the first part of the lemma, which will
now be outlined, is the same as that of Lemmas 3.1 and 3.2 except
for the added generality. In fact these two lemmas are included in
the present lemma, but were established separately and in the last
section for clarity.

Assume that D(x) has a zero on (0, oo). Then there is a solution
y(x) of (1) which is a linear combination of uλ(x)9 u2(x), •• ,un-1(x) and
a minimum value x = b on (0, oo) such that y(0) = y'(Q) — — ̂ ^ ( O )
— 2 / ( ? ) ~ 1 ) ( 0 ) = 0 a n d y { i χ ) { b ) = y { i 2 ) ( b ) = = y i i ] c ) ( b ) = y [ i j c + l ) ( b ) = = • • • =

yUn-tfφ) — o. Recall that yx{x) = r(x)y{n)(x). Rollers theorem can now
be applied successively to y(x) and, as in Lemma 3.1, a contradiction to
the assumption is obtained to give the first part of the lemma.

The technique for establishing the second part of the lemma in-
volves an iterated differentiation procedure which will now be described.
Since, for all j , δi(0)/p(0) = 0 and 7, (0) = 0, a straightforward method
of establishing the desired result should be that of showing that for
each j the first nonvanishing derivative of 8J(X)IP(X) at x = 0 or of
Ύj(x) at x — 0 is positive. This requires modification, however, since
the assumptions on the continuity of p(x) are not sufficient to obtain
all of the necessary derivatives directly.

Note the determinant forms of 8J(X)IP(X) and 7ό{x). The following
discussion applies equally well to members of either of the sets of
determinants. Differentiate the determinant D(x) successively until
either:

(i) One of the determinants arising in the differentiation process
is a positive constant times p(x), or
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(ii) One or more of the determinants arising in the differentiation
process has the row vector {u[nl, u{

2

nl ••• ul?2ltl) in the last row and some
vector other than (ulf u2 un^) in the first row (for in this case the
determinant is zero since u{"}(x) = ( — l)np(x)Uj(x)).

If (i) occurs first or in the same step as (ii) after m differentiations,
then D{h)(0) — 0 for k = 1, , m — 1 since all of the determinants
obtained belong to ^ and l5(m)(0) = kp(0) = k for some positive con-
stant k, k being the number of times that determinant has appeared in
the differentiation process. Thus, D(x) > 0 on (0, oo) since D(x) Φ 0 on
(0, oo) and its first nonvanishing derivative at x = 0 exists and is
positive.

If (ii) occurs first after m differentiations, the determinants of the
form given in (ii) can be altered in form by replacing the last row by
( — l)np(x) (ulfu2 ••• un^) and then bringing this row to the position of
the first row and letting rows 1,2, •• ,n — 2 become rows 2,3, •••,
n — 1, respectively. The latter operation requires n — 2 row inter-
changes so that each of these determinants is now some member of
^ (and not of the sets {S3lp} or {γ, }) multiplied by + p(x). Let x0 be
some positive finite number and denote the maximum and minimum
values of p(x) on [0, x0] by pM and pm, respectively. Then, for each of
these determinants multiplied by p{x), replace p(x) by pm if that de-
terminant is positive on (0, oo) and replace p(x) by pM if that determi-
nant is negative on (0, oo). Recall that each determinant is nonzero
by the first part of the lemma. On [0, x0], let fx(x) denote the new
function obtained from D{m)(x) by making these changes in certain
determinants of D{m)(x). Then D{m)(x) ^ fx{x) on [0, x0] and D{m)(0) =
/i(0) - 0.

Next, on [0, x0], defferentiate fx(x) successively until (i) or (ii)
occurs and then repeat the entire process just described. This process
can be continued until for some minimum integer h and some integer
q, a function f^]{x) (on [0, #0]) with the following properties is obtained.
/w(0) = kp(0) = k>0, and /^(0) - 0 for j = 0,1, , q - 1. Then
fh(%) > 0 in some right-hand neighborhood of x = 0. Finally, from the
set of inequalities obtained, from the fact that each/^x) (j = 1, 2, , h
if q > 0 and j = 1,2, , h — 1 if q = 0) and its appropriate derivatives
are all zero for x — 0, and from the first part of the lemma, it follows
that D(x) > 0 on (0, oo).

The following generalization of a theorem of Barrett [2] gives a
weaker condition for the existence of a /̂ (O) for (1) and thus a stronger
result than Theorem 4.2 (and hence a better result than Reid's results
[12] give for this case since Theorem 4.2 coincides with Reid's result
in [12]).

p(x)(I pfdx = oo, where I p is the nth Her-
xo
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ated integral of p(x), then μ^O) exists.

Proof. From Lemma 3.2 and Lemma 4.1, it follows that (16) has
positive coefficients on (0, oo). Since ^(0) = 1, ρ'(0) = 0, a well-known
result for second-order, self-adjoint differential equations [2, Theorem
1.3] can be applied to give the existence of a zero of p(x) on (0, oo) if

S CO

p{x)p\x)dx — oo. But, using Theorem 2.1, a zero of
p{x) on (0, oo) implies the existence of a /*i(0).

Thus, Theorem 4.3 will be proved if it can be shown that

ρ(x) ^kTp , x0 > 0, k > 0 ,

for then the hypothesis of the theorem implies that the desired prop-

S oo

p{x)p\x)dx = oo, is true.
Now, p(x) = W[ultl(x),u2Λ(x), , un-1Λ(x)] and differentiation yields

ρ"(x) = γx(χ) + s^x), where 7λ(x) and S^x) are as previously defined.
Then, consider

p"{x) - Sx(x) and [p»(x) - δ^x)]' = Ύ2(x) + S2(x) .
Next, \{p" — Si)' — δ2]' = γ3 + δ3 is obtained, and the process can be

continued to obtain finally

» _ Slγ - 80' - 8.y δw_4)' - δ._8]' - γ%_2 + δ%_2

where 7i(ic) and δj(x), j = 1, , w — 2, are as previously defined.

Then, one more differentiation gives

[(• (((£" - SO' - δ2)' - 80' 8n_0' - δ._J' = φ)8*{x) ,

where 8*(x) is a detei^ninant of order n — 1 with first row (ul9 u2

%n_0 and remaining rows

« ί , u£l <*Λ.i) for k = 1, 2, , n - 2.

Now, by using Lemma 4.1 and the fact that γ;_2 = p(a?)8*(a?), δ*(α?)
must be positive on (0, oo). Also, by the techniques of Lemma 4.1,
δ*'(x) is positive on (0, oo). Thus S*(x) is an increasing function on
(0, oo) and for any x0 > 0,

" P(t)δ*(t)dt 2: 8*(xo)\" p(t)dt = k Tpy k > 0 .
x0 J x0 XQ

Now, using Lemma 4.1, the expression

XQ
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can be integrated n — 1 times and the inequality preserved. This gives
p(x) ^ k IX

XQ p, the result needed to complete the proof of the theorem.
Note that for 0 < x0 < xx ^ x < oo,

P(x)dx,
VU — 1)1

and thus Theorem 4.2 follows from Theorem 4.3. Hence, as remarked
previously, Theorem 4.3 gives the better condition for the existence of
μx{b) for any b ε [0, oo).

5. Conditions for the existence of ^(0) Consider the matrix H(x)
= —Z(x)Y-\x) defined on (0,^(0)). Note that H(x) is then equal to
— K~\x), where K{x) is the matrix used in Theorem 4.1 and satisfying
(18). Then H(x) is symmetric on (0, ^(0)) and satisfies

(19) H'{x) = F{x) + H{x)E{x)H(x) ,

as in [1] and [11],
Note that H(x) is defined and symmetric on (0, oo) if there does

not exist an î(O). Then consider the following lemma.

LEMMA 5.1. If ^(0) does not exist for (1), then all the eigenvalues
of H(x) are nondecreasing on (0, co).

Proof. From the properties of the matrices E{x) and F(x) as
discussed in § 1 and from (19), it follows that H\x) ^ 0 on (0, oo) if
the inequality is used to imply positive semi-definiteness of H'(x)« Then
H(x2) — H(x^) is positive semi-definite if 0 < x1 < x2 < °°, i.e., H(x2) ̂>
H{x^). Then, from classical extremizing properties of eigenvalues, the
result of the lemma follows.

In the present notation, /̂ (O) denotes the^ first zero of p(x) on
(0, oo). In addition, let μ.2(0) be the second distinct zero of ^(0) on
(0, oo), μ3(0) the third distinct zero of p(x) on (0, oo), and so forth.

THEOREM 5.1. // ^(0), μ2(0), μ3(0), , μn(0), /W0) all exist (i.e.,
if P(χ) has n + 1 distinct zeros on (0, co)), then î(O) exists.

Proof. Suppose î(O) does not exist so that Lemma 5.1 applies.
Also, H(x) = — Z{x)Y~\x) is defined on (0, oo) and has singularities at
the ^(0) so that det H(ft(0)) = 0, i = 1, 2, , n + 1. But det H(x)
is equal to the product of the eigenvalues of H(x) and thus, by Lemma
5.1, det H(x) can vanish at most n times on (0, oo) unless det H(x) = 0
on a subinterval of (0, oo). Assume the latter is true. Then det Z(x)
= ρ(χ) = 0 on a subinterval of (0, oo). But ^(0) = 1 and ρ{x) satisfies



THE BEHAVIOR OF SOLUTIONS OF ORDINARY, SELF-ADJOINT 959

the linear, second order, self-adjoint differential equation (16) which
implies that p(x) cannot be identically zero on a sub-interval of (0, oo)
without being identically zero on the entire half line. This contradic-
tion completes the proof of the theorem.

THEOREM 5.2. // μ^O) exists and \ dxlr(x) — oo, then ηλ{0) exists.

Proof. Assume that μ^O) does not exist. Then, using Lemma 5.1
and Theorem 5.1, it follows that the maximum eigenvalue of H(μλ{ϋ))
— 0 and that there is a value x — x0 on (/A(0), oo) such that the maxi-
mum eigenvalue of H(x) is positive on [x0, oo). Furthermore, there is
a value x = x1 ̂  xQ such that H(x) is nonsingular on [x19 oo). Then,
from (19), H-^H^H^x) ^ E(x) on [xl9 oo). Also, if ξ is any con-
stant column vector of unit length, then on [x19 oo),

(20) ξ*H~\x)ξ ^ max eigenvalue of H-\xλ)

— min eigenvalue i E(t)dt .

Now, noting the form of |*( 1 E(t)dt)ξ (as shown in the proof of
VJo /

Theorem 4.1), where ξ is an arbitrary, nonzero, wth-order, constant
vector, [°°dxlr(x) = oo implies that W(~δ7(ί)dί)f = oo. But Reid [12]
has proved a result which, in the terminology of the present problem,

E(t)dt)ξ = oo for arbitrary, nonzero, constant vec-
0 / Γx

tors, then the minimum eigenvalue of\ E(t)dt approaches oo as x ap-
Jo

proaches oo. Then, it follows from (20) that there is a values x = x2

on (xl9 oo) such that H~\x) and H(x) are negative definite on [x2, oo).
This contradicts the fact that the maximum eigenvalue of H(x) is
positive on [x0, oo). This contradiction gives the result of the theorem.

Theorem 5.2 can be obtained from Reid's results in [12]. The proof
given here is entirely different, however, from that in [12].

p(x)(I pfdx = oo and \ dx/r(x) = co,
x0 J

^(0) exists (n > 1).

then

Proof. This result follows immediately by combining Theorems 4.3
and 5.2.

6 Conditions for the existence of μλ(0) and ̂ (0) for (4). From
the general results of Reid's [12], two theorems can be obtained and
then used to prove two comparison theorems pertinent to the present dis-
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cussion. Then a comparison of (1) and (4) can be give conditions for
the existence of /̂ (O) and %(0) for (4), a more general self-ad joint
equation then (1). For (4), ^(0) is defined as in Definition 2.1 and (10).
However, for (4), the definition of /̂ (O) is obtained by altering Defini-
tion 2.2 by replacing (11) by

(11') y(0) = y'(0) = = y (-1 }(0) - 0 - ^(6) - y2(b) = . . . = yn(b) ,

where yx(x) = r(x)y{n)(x) as before and

Vi(χ) = (rMyln)r-1} + Σi-iy+Kr^xW-'y-t-v, ΐ - 2,3,. ., n

Reid's results are stated in the notation of the present discussion.

THEOREM 6.1. (Reid [12]) A necessary and sufficient condition for
the nonexistence of %(0) on (0, c] for (1) is that

(21) IJy; 0, δ] - ( W ) 0 / ( w ) ) 2 - P(x)y2]dx > 0
Jo

/or all values ofb on (0, c] and all functions y(x) such that y(x) e C^fO, δ],
y(x) is absolutely continuous on [0, δ], (^/(%))2 ^ s integrable on [0, δ], α^d
?/(#) feαs nth-order zeros at x = 0 α^d α? = 6. Λiso, i/ %(0) exists for
a solution y(x) of (1), ίfeew /Jy; 0, %(0)] = 0.

For the equation (4), the statement analogous to (21) is

(22) I2[y; 0, δ] - \\r(x)(y^y - ^{x^y^dx > 0 ,
JO i=0

where τ/(#) is the same as in the statement of Theorem 6.1.

THEOREM 6.2. (Reid [12]) A necessary and sufficient condition for
the nonexistence of βλ(O) on (0, c] for (1) is that (21) (or (22) if (4) is
used) hold for all values of b on (0, c) and all functions y(x) such that
y(x) G C*-1^, δ], y(x) is absolutely continuous on [0, δ], (y{n)f is inte-
grable on [0, δ] and y(x) has an nth-order zero at x — 0. Also, if μλ(Q)
exists for a solution y(x) of (1), then I^y; 0, /A(0)] = 0.

Theorem 6.1 can now be utilized to obtain the following results.

THEOREM 6.3. // %(0) exists for (1) at x = xlf r(x) ^ rn(x), and
p(x) <̂  ro(x), then ^(0) exists for (4) at x — x2, say, and 0 < x2 ̂  a?1#

THEOREM 6.4. // μλ(0) exists for (1) at x = x19 r(x) ^ rw(a?),
p(x) ^ ro(aj), ίΛβ^ ^(0) exists for (4) αί x = x2, say, and 0 < x2 ̂  ajle

Now, take r(#) = r%(αj) and p(x) = ro(x) on [0, oo); and then the
following results are obtained by combining the results of § 4 and 5 and
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those of the present section.

S oo χn

ro(x)(I rofdx = co, then μjb) exists for (4) for
XQ

each b e [0, oo).

S oo

dx/rn(x) = oo, then %(0)
exists for (4).

S X f oo

ro(x)(IrQydx = oo and \ dx/rn(x) = oo, then,
XQ J

î(O) exists for (4).
Theorem 6.5 and Corollary 6.1 give stronger results than the cor-

responding results of Reid's [12] since the latter have the condition
1 x^^-Ur^x^dx = oo while the former have the weaker condition

S X

ro(x)(Iroydx. (See the proof of Theorem 4.3 for a comparison of
these conditions.) Theorem 6.6 can be obtained from Reid's work [12].
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