ON p-AUTOMORPHIC p-GROUPS
J. R. BOEN

In a paper to appear, G. Higman has ‘‘classified’’ the finite 2-groups
whose involutions are permuted cyclically by their automorphism groups
[1]. He found that such a group is either generalized quaternion,
abelian of type (2", ---,2"), or of exponent four and class two. He
also proved that a finite p-group with an automorphism permuting its
subgroups of order p ecyeclically is abelian if p is odd. We say that a
group is m-automorphic if it has the property that any two of its
elements of order k are conjugate under an automorphism where 7 is
a set of positive integers and ke x. In this paper we conjucture that
a finite p-automorphic p-group is abelian for odd », and prove that a
counterexample cannot be generated by fewer than four elements.

We use the following notation. Let p"** be the exponent of the
p-group G; H,(G) denotes the set of elements of G whose orders do not
exceed p*; G' is the commutator subgroup of G; (x, ¥) = 2 ‘¥ 'vy; Z(G)
is the center of G and Z,(G) is the preimage of Z(G/Z) in the cannonical
homomorphism of G onto G/Z; @(H) is the Frattini subgroup of the
group H; | H| is the order of H; |x| is the order of the element x.
GL(3, p) is the full linear group of degree three over the prime Galois
field GF'(p).

Henceforth let G denote a finite p-automorphic non-abelian p-group
for odd p. Note that H(G) = H, S Z = Z(G), so H, is a subgroup.

LEmMmA 1. G/H, is p-automorphic.

Proof. Clearly there exists e Z,(G) such that | x| = p* because G
cannot be of exponent p. Consider ye G where |y| = p’. By the
definition of G there exists a e Aut (G) such that (y*)* = 2?. Let y* =

i4
wx. Thus (¥*)? = (wx)? = wrz(z, w)(Z) by the choice of #. If Z hasan
element of order p*, choose x to be it. Then (x,w)=1. If Z =H,
then (x, w)e H, and (z, w)(g) =1. In either case (¥*)? = (¥?)* = 2* =
w?x? so we H, and (yH)* = zH,. Q.E.D.

LEmMmMA 2. If G’ = H,, then H,(G) = 0(G) = Z.

Proof. @(G) = @ = G'P where P is the subgroup of G generated
by pth powers. G’ = H, implies that G is of class two, so (2%, %) =
(x,y*) = (x,y)* =1. Hence @® = Z. In the canonical homomorphism of G
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onto G/G’ = K, H,(G) = H, is the preimage of H, (K)= ?&(K). (H,is
a subgroup because G is regular; K is abelian and has equal invariants).
If there exists #e Z such that |z | = p"* then for any yeG where
[y| = p* we have (¥*")* = x*" for some ac Aut(G). By the same
reasoning used in Lemma 1 it follows that %® = wx where we H,.
Hence y*c Z so yc Z and G is abelian, a contradiction. Q.E.D.

LEMMA 8. If G' = H,, then @:x— x*" i3 an isomorphism of G|Z
onto G'.

Proof. Since G is of class two, (zy)™ = x™y™(y, w)(2) where m = p".
But ( 2) is a multiple of » so (¥, ac)( ) = =1 and @ is an endomorphism

of G. Clearly H, = Z is the kernel of . At least one nonidentity

element of G’ is an mth power, hence every one is and thus G/Z = G'.
Q.E.D.

THEOREM. A finite non-abelian p-automorphic p-group G cannot
be generated by fewer than four elements.

Proof. It is easily seen that H, = @. By repeated application of
Lemma 1 we arrive at a G, such that G| = H(G,) where G, has the same
number of generators as G. Since we argue by contradiction we may
assume without loss of generality that G' = H,.

Clearly G cannot be cyclic. If G can be generated by two elements,
the fact that G is of class two implies that G’ is eyclic; this contradicts
Lemma 3. Hence we assume G to be a three-generator group, say
G = {u,, w,, u;}. Lemma 2 implies the following identities.

(1) (uimguzh, wrupuih’) = i< 50072 where h, b' € Z and s;; = (u;, ;).
(ii) (uiuguzh)?” = ]t where t; = ul”.

Now every element of G’ is a commutator. Thus there exist rela-
tions ¢; = sdusdieg, 3, ¢ =1,2,8, where |A| =] (a;;)| #0. Let a be an
automorphism of G, say u? = uaufeuish,, ¢ =1,2,3, where h;€ Z and

z;;€ GF(p). (i) implies that s?; = J[<:8,%* where Ty, = 2,2, — L.
Hence

17 = (8,3118,0128,213)® = (8,311)%(8,312)*(8,383)® = 32%14‘!132%151235%1”13
But (ii) implies that
t? = [t = sirisongipisasngirisasn

Equating these two representations of ¥ and noting that s, s, and sy
are independent, we have



ON p-AUTOMORPHIC p»-GROUPS 815
(iif) AX = XA

where A = (a;;), X = (x;;), and X = (%;;) are nonsingular 3-square ma-
trices over GF(p). It is clear that X = | X| B X B where X7 is
the transpose of X and B = (b;;) has the entries b, =b,, = —b,, =1
and the remaining b;; = 0. Thus, substituting for X in (iii), we equate
the determinants of the two sides of (iii) and find that | X| =1. (iii)
then takes the form:

(iv) CX*C* = X where C = AB*,

It follows that (iv) holds for all X in some transitive (on the non-
zero vectors of the 3-space V) subgroup T of GL(3, p). Thus | T]| is
divisible by »* — 1. |GL(@3, p)| = p*(p — 1)(»* — 1)(p®* — 1). Let q be a
prime divisor of p* + p 4+ 1 where ¢ > 3. It is easily shown that such
a q exists and that ¢ is relatively prime to p —1 and p + 1. Thus a
Sylow g¢-subgroup of T is a Sylow g¢-subgroup GL(8, p). GL(8, p) con-
tains a cyclic transitive subgroup of order p* — 1, the multiplicative
group of the right-regular representation of GF(p®) considered as a
vector space over GF(p). Hence a Sylow g-subgroup of GL(3, p) is
cyelic, so an Xe T of order ¢ is conjugate to

w
Y = w? where 0w’ =1
w?

in GL(3, p®). But Y is certainly not conjugate to Y7 in GL(8, p°)
from which it follows that X will not satisfy (iv), a contradiction.
Q.E.D.

The author is indebted to G. Higman and G. E. Wall for their
suggestions, and to the referee for correcting an error.
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